Distributed Multi-Objective Algorithm for Preventing Multi-Ship Collisions at Sea
Avoidance of collisions at sea is crucial to navigational safety. In this paper, we use a distributed algorithm to communicate the entire collision avoidance trajectory information for each ship. In each communication, we suggest a new improvement function considering safety and efficiency to identi...
Saved in:
| Published in: | Journal of navigation Vol. 73; no. 5; pp. 971 - 990 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cambridge, UK
Cambridge University Press
01.09.2020
|
| Subjects: | |
| ISSN: | 0373-4633, 1469-7785 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Avoidance of collisions at sea is crucial to navigational safety. In this paper, we use a distributed algorithm to communicate the entire collision avoidance trajectory information for each ship. In each communication, we suggest a new improvement function considering safety and efficiency to identify the avoidance ship in each cycle. Considering the nonlinear collision avoidance trajectory of ships, a new method for calculating the degree of danger using a velocity obstacle algorithm is proposed. Therefore, in each communication, each ship considers the avoidance behaviours of other ships in planning its avoidance trajectory. Additionally, we combine bi-criterion evolution (BCE) and the ant lion optimiser to plan the entire collision avoidance path. Three scenarios are designed to demonstrate the performance of this method. The results show that the proposed method can find a suitable collision-free solution for all ships. |
|---|---|
| AbstractList | Avoidance of collisions at sea is crucial to navigational safety. In this paper, we use a distributed algorithm to communicate the entire collision avoidance trajectory information for each ship. In each communication, we suggest a new improvement function considering safety and efficiency to identify the avoidance ship in each cycle. Considering the nonlinear collision avoidance trajectory of ships, a new method for calculating the degree of danger using a velocity obstacle algorithm is proposed. Therefore, in each communication, each ship considers the avoidance behaviours of other ships in planning its avoidance trajectory. Additionally, we combine bi-criterion evolution (BCE) and the ant lion optimiser to plan the entire collision avoidance path. Three scenarios are designed to demonstrate the performance of this method. The results show that the proposed method can find a suitable collision-free solution for all ships. |
| Author | Wang, Hongbo Guan, Zhiying Li, Jinxin Pan, Chong |
| Author_xml | – sequence: 1 givenname: Jinxin orcidid: 0000-0001-8598-2098 surname: Li fullname: Li, Jinxin organization: (State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China) – sequence: 2 givenname: Hongbo surname: Wang fullname: Wang, Hongbo email: wang_hongbo@jlu.edu.cn organization: (State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China) – sequence: 3 givenname: Zhiying surname: Guan fullname: Guan, Zhiying organization: (State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China) – sequence: 4 givenname: Chong surname: Pan fullname: Pan, Chong organization: (State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China) |
| BookMark | eNp9kFtLwzAYhoNMcKv-AO8CXldzbNrLMY8wmTK9LmmSbhldM5N04L-3ZQNB0e_mvfje5zu8EzBqXWsAuMToGiMsbpaICsoySgkaitMTMMYsK1Ihcj4C46GdDv0zMAlh01tylvMxeL21IXpbddFo-Nw10aaLamNUtHsDp83KeRvXW1g7D1-82Zs22nZ1NC7XdgdnrmlssK4NUEa4NPIcnNayCebiqAl4v797mz2m88XD02w6TxXFIqYSE80kwxWSAklDhJCKUZVlkmuak1oTlRtWIF3lDKFKqcLooqac1FhhyTOagKvD3J13H50Jsdy4zrf9ypIwioqs4L0mAB9cyrsQvKnLnbdb6T9LjMohufJXcj0jfjDKRhn7H6OXtvmXpEdSbitv9cp8H_U39QWTJYKf |
| CitedBy_id | crossref_primary_10_1016_j_oceaneng_2023_115888 crossref_primary_10_3390_jmse13050887 crossref_primary_10_1016_j_oceaneng_2023_116038 crossref_primary_10_3390_jmse10060814 crossref_primary_10_3390_jmse8121002 crossref_primary_10_1016_j_oceaneng_2025_122537 crossref_primary_10_1017_S0373463323000012 crossref_primary_10_1007_s00773_021_00796_z crossref_primary_10_1016_j_asoc_2025_113865 crossref_primary_10_1016_j_oceaneng_2024_119512 crossref_primary_10_3233_JCM_247518 crossref_primary_10_1016_j_ocecoaman_2024_107450 crossref_primary_10_1109_ACCESS_2021_3059248 crossref_primary_10_3390_jmse10081047 crossref_primary_10_3390_jmse10060765 crossref_primary_10_1016_j_oceaneng_2023_115510 crossref_primary_10_1016_j_oceaneng_2023_116524 crossref_primary_10_1016_j_apor_2025_104753 crossref_primary_10_3390_jmse10111688 crossref_primary_10_3390_jmse12101719 crossref_primary_10_3390_jmse10111723 crossref_primary_10_3390_jmse11020337 crossref_primary_10_1017_S0373463322000650 crossref_primary_10_1109_TITS_2024_3419046 crossref_primary_10_3389_fmars_2024_1516586 crossref_primary_10_3390_app11167299 crossref_primary_10_1016_j_oceaneng_2022_111666 crossref_primary_10_1109_TTE_2022_3221643 |
| Cites_doi | 10.1016/j.oceaneng.2018.01.001 10.1017/S0373463318000796 10.1109/TEVC.2015.2504730 10.2991/iccse-15.2015.20 10.1080/02533839.2015.1047799 10.1155/2019/4068783 10.2478/pomr-2018-0092 10.12716/1001.09.01.03 10.1109/TITS.2014.2376031 10.1016/j.oceaneng.2018.10.008 10.1007/s10514-016-9580-2 10.1017/S0373463312000483 10.1016/j.oceaneng.2019.106158 10.51400/2709-6998.1929 10.1016/j.advengsoft.2015.01.010 10.1155/2018/7586496 10.20965/jaciii.2014.p0839 10.1007/s10489-011-0319-7 10.1017/S037346331700008X 10.1016/j.oceaneng.2018.07.012 10.1016/j.oceaneng.2016.08.030 10.1016/j.ress.2013.04.006 10.1016/j.jfranklin.2018.07.042 10.1017/S0373463318000048 |
| ContentType | Journal Article |
| Copyright | Copyright © The Royal Institute of Navigation 2020 |
| Copyright_xml | – notice: Copyright © The Royal Institute of Navigation 2020 |
| DBID | AAYXX CITATION 3V. 7SC 7SP 7TN 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W FR3 GNUQQ H8D H96 HCIFZ JQ2 KR7 L.G L6V L7M L~C L~D M2P M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1017/S0373463320000053 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts Oceanic Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Science Database Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Military & Naval Science Engineering |
| EISSN | 1469-7785 |
| EndPage | 990 |
| ExternalDocumentID | 10_1017_S0373463320000053 |
| GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N .FH 09C 09E 0E1 0R~ 29L 3V. 4.4 5GY 5VS 66. 6TJ 6~7 74X 74Y 7~V 88I 8CJ 8FE 8FG 8FH 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABBZL ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABXAU ABZCX ABZUI ACBMC ACCHT ACETC ACGFS ACGOD ACIMK ACIWK ACMRT ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADGEJ ADKIL ADOCW ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMTW AENCP AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHPGS AHQXX AHRGI AI. AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BHPHI BJBOZ BKSAR BLZWO BMAJL BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 D1J DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD GNUQQ HCIFZ HG- HST HZ~ H~9 I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU KAFGG KC5 KCGVB KFECR L6V L98 LHUNA LW7 M-V M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OYBOY P2P PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG ROL RR0 S6- S6U SAAAG T9M UAO UT1 VH1 WFFJZ WQ3 WXU WXY WYP ZDLDU ZJOSE ZMEZD ZYDXJ ~02 ~V1 AAKNA AATMM AAYXX ABGDZ ABVKB ABXHF ACDLN ACEJA ACRPL ADMLS ADNMO AEMFK AEUYN AFFHD AFZFC AGQPQ AKMAY ANOYL CITATION PHGZM PHGZT PQGLB 7SC 7SP 7TN 7XB 8FD 8FK F1W FR3 H8D H96 JQ2 KR7 L.G L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c317t-a12d4a41b0a70ae277ac43c66a5d382fd2c8e490db8400bcc9ed9f352f1c1a563 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000556837900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0373-4633 |
| IngestDate | Mon Nov 10 02:59:03 EST 2025 Sat Nov 29 04:04:52 EST 2025 Tue Nov 18 21:48:41 EST 2025 Wed Mar 13 05:50:52 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Distributed Local Search Algorithm Bi-Criterion Evolution Multiple Ships Collision Avoidance Velocity Obstacle Algorithms |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c317t-a12d4a41b0a70ae277ac43c66a5d382fd2c8e490db8400bcc9ed9f352f1c1a563 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8598-2098 |
| PQID | 2430969524 |
| PQPubID | 29781 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_2430969524 crossref_primary_10_1017_S0373463320000053 crossref_citationtrail_10_1017_S0373463320000053 cambridge_journals_10_1017_S0373463320000053 |
| PublicationCentury | 2000 |
| PublicationDate | 20200900 2020-09-00 20200901 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 20200900 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge, UK |
| PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
| PublicationTitle | Journal of navigation |
| PublicationTitleAlternate | J. Navigation |
| PublicationYear | 2020 |
| Publisher | Cambridge University Press |
| Publisher_xml | – name: Cambridge University Press |
| References | Mercado Velasco, Borst, Ellerbroek, Van Paassen, Mulder 2015; 16 Mirjalili 2015; 83 Wang, Li, Li 2018; 71 Huang, van Gelder, Wen 2018; 151 Lee, Jeon, Oh 2017; 41 Lyu, Yin 2019; 72 Shi, Junda, Tengli, Chuan, Jian 2018; 355 Zhang, Yan, Yang, Wall 2013; 118 Wang 2015; 38 Szlapczynski, Szlapczynska 2016; 126 Altan 2019; 187 Song, Su, Dong, Shen 2018; 170 Tsou, Hsueh 2010; 18 Wang 2013; 66 Li, Wang, Zhao 2019 Li, Yang, Liu 2016; 20 Lisowski 2018; 2018 Kang, Chen, Zhu, Wang 2018; 20 Sormunen, Hanninen, Kujala 2016; 46 Kim, Hirayama, Park 2014; 18 Ni, Liu, Cai, Wang 2018; 25 Szlapczynski, Szlapczynska 2012; 37 Kim, Hirayama, Okimoto 2017; 70 Kim, Hirayama, Okimoto 2015; 9 Kozynchenko, Kozynchenko 2018; 164 Kang (S0373463320000053_ref3) 2018; 20 S0373463320000053_ref26 S0373463320000053_ref24 S0373463320000053_ref25 S0373463320000053_ref22 S0373463320000053_ref23 S0373463320000053_ref20 Sormunen (S0373463320000053_ref18) 2016; 46 S0373463320000053_ref19 S0373463320000053_ref17 S0373463320000053_ref15 S0373463320000053_ref16 S0373463320000053_ref5 S0373463320000053_ref13 S0373463320000053_ref14 S0373463320000053_ref4 S0373463320000053_ref11 S0373463320000053_ref7 S0373463320000053_ref12 S0373463320000053_ref6 S0373463320000053_ref9 S0373463320000053_ref10 S0373463320000053_ref8 S0373463320000053_ref1 S0373463320000053_ref2 Tsou (S0373463320000053_ref21) 2010; 18 |
| References_xml | – volume: 83 start-page: 80 year: 2015 end-page: 98 article-title: The ant lion optimizer publication-title: Advances in Engineering Software – volume: 25 start-page: 14 issue: 03 year: 2018 end-page: 25 article-title: Modelling of ship's trajectory planning in collision situations by hybrid genetic algorithm publication-title: Polish Maritime Research – volume: 18 start-page: 839 issue: 5 year: 2014 end-page: 848 article-title: Collision avoidance in multiple-ship situations by distributed local search publication-title: Journal of Advanced Computational Intelligence and Intelligent Informatics – volume: 187 start-page: 106 year: 2019 end-page: 115 article-title: Collision diameter for maritime accidents considering the drifting of vessels publication-title: Ocean Engineering – volume: 38 start-page: 1020 issue: 8 year: 2015 end-page: 1025 article-title: Obstacle detection and avoidance with noisy measurements using danger zone concepts publication-title: Journal of the Chinese Institute of Engineers – volume: 70 start-page: 1 issue: 4 year: 2017 end-page: 20 article-title: Distributed stochastic search algorithm for multi-ship encounter situations publication-title: Journal of Navigation – year: 2019 article-title: Ship's trajectory planning based on improved multi-objective algorithm for collision avoidance publication-title: Journal of Advanced Transportation – volume: 72 start-page: 588 issue: 3 year: 2019 end-page: 608 article-title: COLREGS-constrained real-time path planning for autonomous ships using modified artificial potential fields publication-title: Journal of Navigation – volume: 20 start-page: 645 issue: 5 year: 2016 end-page: 665 article-title: Pareto or non-pareto: bi-criterion evolution in multi-objective optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 46 start-page: 163 issue: 118 year: 2016 end-page: 177 article-title: Marine traffic, accidents, and underreporting in the Baltic Sea publication-title: Zeszyty Naukowe – volume: 126 start-page: 47 year: 2016 end-page: 56 article-title: An analysis of domain-based ship collision risk parameters publication-title: Ocean Engineering – volume: 118 start-page: 93 issue: 10 year: 2013 end-page: 105 article-title: Incorporation of formal safety assessment and bayesian network in navigational risk estimation of the Yangtze River publication-title: Reliability Engineering & System Safety – volume: 9 start-page: 23 issue: 1 year: 2015 end-page: 29 article-title: Ship collision avoidance by distributed Tabu search publication-title: The International Journal on Marine Navigation and Safety of Sea Transportation – volume: 66 start-page: 265 issue: 2 year: 2013 end-page: 281 article-title: A novel analytical framework for dynamic quaternion ship domains publication-title: Journal of Navigation – volume: 170 start-page: 351 year: 2018 end-page: 360 article-title: A two-level dynamic obstacle avoidance algorithm for unmanned surface vehicles publication-title: Ocean Engineering – volume: 71 start-page: 989 issue: 4 year: 2018 end-page: 1010 article-title: Application of real-coded genetic algorithm in ship weather routing publication-title: Journal of Navigation – volume: 2018 start-page: 1 year: 2018 end-page: 8 article-title: Dynamic games methods in synthesis of safe ship control algorithms publication-title: Journal of Advanced Transportation – volume: 18 start-page: 746 issue: 5 year: 2010 end-page: 756 article-title: The study of ship collision avoidance route planning by ant colony algorithm publication-title: Journal of Marine Science and Technology – volume: 355 start-page: 7626 issue: 15 year: 2018 end-page: 7642 article-title: Optimal formation control and collision avoidance in environment with multiple rectangle obstacles publication-title: Journal of the Franklin Institute – volume: 151 start-page: 308 year: 2018 end-page: 321 article-title: Velocity obstacle algorithms for collision prevention at sea publication-title: Ocean Engineering – volume: 16 start-page: 2297 issue: 4 year: 2015 end-page: 2302 article-title: The use of intent information in conflict detection and resolution models based on dynamic velocity obstacles publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 41 start-page: 1 issue: 6 year: 2017 end-page: 17 article-title: Velocity obstacle based local collision avoidance for a holonomic elliptic robot publication-title: Autonomous Robots – volume: 20 start-page: 777 issue: 6 year: 2018 end-page: 786 article-title: Collision avoidance path planning for ships by particle swarm optimization publication-title: Journal of Marine Science and Technology – volume: 164 start-page: 640 year: 2018 end-page: 649 article-title: Applying the dynamic predictive guidance to ship collision avoidance: crossing case study simulation publication-title: Ocean Engineering – volume: 37 start-page: 155 issue: 2 year: 2012 end-page: 174 article-title: On evolutionary computing in multi-ship trajectory planning publication-title: Applied Intelligence – volume: 46 start-page: 163 year: 2016 ident: S0373463320000053_ref18 article-title: Marine traffic, accidents, and underreporting in the Baltic Sea publication-title: Zeszyty Naukowe – ident: S0373463320000053_ref2 doi: 10.1016/j.oceaneng.2018.01.001 – ident: S0373463320000053_ref12 doi: 10.1017/S0373463318000796 – ident: S0373463320000053_ref9 doi: 10.1109/TEVC.2015.2504730 – ident: S0373463320000053_ref25 doi: 10.2991/iccse-15.2015.20 – ident: S0373463320000053_ref24 doi: 10.1080/02533839.2015.1047799 – ident: S0373463320000053_ref10 doi: 10.1155/2019/4068783 – ident: S0373463320000053_ref15 doi: 10.2478/pomr-2018-0092 – ident: S0373463320000053_ref5 doi: 10.12716/1001.09.01.03 – ident: S0373463320000053_ref13 doi: 10.1109/TITS.2014.2376031 – ident: S0373463320000053_ref17 doi: 10.1016/j.oceaneng.2018.10.008 – ident: S0373463320000053_ref8 doi: 10.1007/s10514-016-9580-2 – ident: S0373463320000053_ref23 doi: 10.1017/S0373463312000483 – volume: 20 start-page: 777 year: 2018 ident: S0373463320000053_ref3 article-title: Collision avoidance path planning for ships by particle swarm optimization publication-title: Journal of Marine Science and Technology – ident: S0373463320000053_ref1 doi: 10.1016/j.oceaneng.2019.106158 – volume: 18 start-page: 746 year: 2010 ident: S0373463320000053_ref21 article-title: The study of ship collision avoidance route planning by ant colony algorithm publication-title: Journal of Marine Science and Technology doi: 10.51400/2709-6998.1929 – ident: S0373463320000053_ref14 doi: 10.1016/j.advengsoft.2015.01.010 – ident: S0373463320000053_ref11 doi: 10.1155/2018/7586496 – ident: S0373463320000053_ref4 doi: 10.20965/jaciii.2014.p0839 – ident: S0373463320000053_ref19 doi: 10.1007/s10489-011-0319-7 – ident: S0373463320000053_ref6 doi: 10.1017/S037346331700008X – ident: S0373463320000053_ref7 doi: 10.1016/j.oceaneng.2018.07.012 – ident: S0373463320000053_ref20 doi: 10.1016/j.oceaneng.2016.08.030 – ident: S0373463320000053_ref26 doi: 10.1016/j.ress.2013.04.006 – ident: S0373463320000053_ref16 doi: 10.1016/j.jfranklin.2018.07.042 – ident: S0373463320000053_ref22 doi: 10.1017/S0373463318000048 |
| SSID | ssj0008485 |
| Score | 2.3714967 |
| Snippet | Avoidance of collisions at sea is crucial to navigational safety. In this paper, we use a distributed algorithm to communicate the entire collision avoidance... |
| SourceID | proquest crossref cambridge |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 971 |
| SubjectTerms | Algorithms Avoidance behaviour Collision avoidance Collision dynamics Collisions Communication Methods Multiple objective analysis Navigational safety Safety Ships Trajectory planning Velocity |
| Title | Distributed Multi-Objective Algorithm for Preventing Multi-Ship Collisions at Sea |
| URI | https://www.cambridge.org/core/product/identifier/S0373463320000053/type/journal_article https://www.proquest.com/docview/2430969524 |
| Volume | 73 |
| WOSCitedRecordID | wos000556837900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1469-7785 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0008485 issn: 0373-4633 databaseCode: PCBAR dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1469-7785 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0008485 issn: 0373-4633 databaseCode: M7S dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1469-7785 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0008485 issn: 0373-4633 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1469-7785 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0008485 issn: 0373-4633 databaseCode: M2P dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JTwMhFH5xO-jB3dQ1HIwHI3EGmIWTcY0Xa7WaeGvYxiXa1nY08d8LlGk1Jr14mQMDgeQ9Hh_w-D6A3cTQXPFC4NykHDMjBJZxJnFhjJSJ4lQa4cUmsno9f3jgjXDg1g9plVVM9IFad5Q7Iz8kjFq0zRPCjrrv2KlGudvVIKExCdMW2cQupeuKNIaROGdekjOiGcUspbS61fSU0bbQlREPk5028ohb4fca9TtE-3XnYuG_I16E-YA40fHARZZgwrSXYe4HD-Ey1K48V3fvC-2hurC-h8KUX4GbM8es60SxjEb-tS6-li-DKImOXx9th-XTG7LQF1VsUO3HULH59NxF7mTCv1_vI1GiphGrcH9xfnd6iYMMA1YWXJRYxEQzwWIZiSwShmSZUIyqNBWJpjkpNFG5YTzS0m4WI6kUN5oXFtgVsYpFktI1mGp32qYGiCecxNqkkmuneR1LYoiIcmn3LIrZdXIdDoZGaIXJ1G8NEtGy1h-brUNU2amlAqW5U9Z4Hddkf9ikO-DzGFd5q7LsaDQjs26M_70Js8Rtzn1C2hZMlb0Psw0z6rN87vd2YPrkvN643fEe675Z8xs9le58 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RQCocoKVFvNr60PaAajWxnYcPVYVKEQjYUgESt-DHhIdgWXZDK_5Uf2NtJ9kFVdobh14dO4rj8Tzsme8DeJ8gz40sFc0xlVSgUlTHmaYlotaJkVyjCmQTWaeTn5zIgwn409bC-LTKVicGRW1vjD8j_8wEd962TJj42rulnjXK3662FBq1WOzi_W8Xsg2-7Gy69f3A2Nb3o2_btGEVoMbZyoqqmFmhRKwjlUUKWZYpI7hJU5VYnrPSMpOjkJHVLvaJtDESrSydn1LGJlZJyt17n8GU8MhiPlWQHQw1fy4CBWjEM05Fynl7ixogql2jb2PBLfdczCMsh8c28bFJCHZua_5_-0MvYK7xqMlGvQVewgR2F2D2Ac7iAiztByzy_j35SDrK7S3SqLRX8HPTIwd70i-0JFQj0x_6srYCZOPqzE2wOr8mzrUnLdpV96zpeHh-0SP-5CXU5w-Iqsghqtdw_CTTXYTJ7k0Xl4DIRLLYYqql9ZzesWbIVJRrF5MZ4fyAZfg0XPSiURaDok60y4p_ZGQZolYuCtNAtnvmkKtxQ9aHQ3o1Xsm4zmutJI2-ZiRGK-Mfv4Pn20f7e8XeTmd3FWaYP4gIyXdrMFn17_ANTJtf1cWg_zbsEgKnTy10fwHP50np |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bTxQxFD5BMEYfvKAGFLEP6oOxYabtXPpAyMKykaDrKprwNvZyBjC4rLujhL_Gr6PtzOxKTPaNB19n2sl05juXtqffB_AqQZ4bWSqaYyqpQKWojjNNS0StEyO5RhXEJrJ-Pz88lIMFuGzPwviyytYnBkdtz4xfI99ggrtsWyZMbJRNWcSg29sa_aJeQcrvtLZyGjVE9vHi3E3fJpt7XfevXzPW2_268542CgPUuLhZURUzK5SIdaSySCHLMmUEN2mqEstzVlpmchQystrNgyJtjEQrS5ezlLGJVZJy99xbsJSnqXQWtTTY2e58mcaBXARB0IhnnIqU83ZPNRBWu4v-GgtJuldmnjE7XI-Q1wNEiHq9B__z93oI95tcm3Rq43gECzhchnt_MTAuw8rHwFI-viBvSF85qyONs3sMn7ueU9jLgaEl4Zwy_aR_1PGBdE6P3ACr45_EJf2k5cEaHjUND45PRsSvyYST-xOiKnKA6gl8u5HhPoXF4dkQV4DIRLLYYqql9WrfsWbIVJRrN1szwmUIq_BuCoCicSOToi7By4p_8LIKUYuRwjRk7l5T5HRel7fTLqOayWRe47UWVbO3mUHq2fzbL-GOw1rxYa-__xzuMr9CEary1mCxGv_GF3Db_KlOJuP1xmQIfL9p1F0BOYNT8g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Multi-Objective+Algorithm+for+Preventing+Multi-Ship+Collisions+at+Sea&rft.jtitle=Journal+of+navigation&rft.au=Li%2C+Jinxin&rft.au=Wang%2C+Hongbo&rft.au=Guan%2C+Zhiying&rft.au=Pan%2C+Chong&rft.date=2020-09-01&rft.pub=Cambridge+University+Press&rft.issn=0373-4633&rft.eissn=1469-7785&rft.volume=73&rft.issue=5&rft.spage=971&rft.epage=990&rft_id=info:doi/10.1017%2FS0373463320000053&rft.externalDocID=10_1017_S0373463320000053 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0373-4633&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0373-4633&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0373-4633&client=summon |