Distributed Multi-Objective Algorithm for Preventing Multi-Ship Collisions at Sea

Avoidance of collisions at sea is crucial to navigational safety. In this paper, we use a distributed algorithm to communicate the entire collision avoidance trajectory information for each ship. In each communication, we suggest a new improvement function considering safety and efficiency to identi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of navigation Ročník 73; číslo 5; s. 971 - 990
Hlavní autoři: Li, Jinxin, Wang, Hongbo, Guan, Zhiying, Pan, Chong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge, UK Cambridge University Press 01.09.2020
Témata:
ISSN:0373-4633, 1469-7785
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Avoidance of collisions at sea is crucial to navigational safety. In this paper, we use a distributed algorithm to communicate the entire collision avoidance trajectory information for each ship. In each communication, we suggest a new improvement function considering safety and efficiency to identify the avoidance ship in each cycle. Considering the nonlinear collision avoidance trajectory of ships, a new method for calculating the degree of danger using a velocity obstacle algorithm is proposed. Therefore, in each communication, each ship considers the avoidance behaviours of other ships in planning its avoidance trajectory. Additionally, we combine bi-criterion evolution (BCE) and the ant lion optimiser to plan the entire collision avoidance path. Three scenarios are designed to demonstrate the performance of this method. The results show that the proposed method can find a suitable collision-free solution for all ships.
AbstractList Avoidance of collisions at sea is crucial to navigational safety. In this paper, we use a distributed algorithm to communicate the entire collision avoidance trajectory information for each ship. In each communication, we suggest a new improvement function considering safety and efficiency to identify the avoidance ship in each cycle. Considering the nonlinear collision avoidance trajectory of ships, a new method for calculating the degree of danger using a velocity obstacle algorithm is proposed. Therefore, in each communication, each ship considers the avoidance behaviours of other ships in planning its avoidance trajectory. Additionally, we combine bi-criterion evolution (BCE) and the ant lion optimiser to plan the entire collision avoidance path. Three scenarios are designed to demonstrate the performance of this method. The results show that the proposed method can find a suitable collision-free solution for all ships.
Author Wang, Hongbo
Guan, Zhiying
Li, Jinxin
Pan, Chong
Author_xml – sequence: 1
  givenname: Jinxin
  orcidid: 0000-0001-8598-2098
  surname: Li
  fullname: Li, Jinxin
  organization: (State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China)
– sequence: 2
  givenname: Hongbo
  surname: Wang
  fullname: Wang, Hongbo
  email: wang_hongbo@jlu.edu.cn
  organization: (State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China)
– sequence: 3
  givenname: Zhiying
  surname: Guan
  fullname: Guan, Zhiying
  organization: (State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China)
– sequence: 4
  givenname: Chong
  surname: Pan
  fullname: Pan, Chong
  organization: (State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China)
BookMark eNp9kFtLwzAYhoNMcKv-AO8CXldzbNrLMY8wmTK9LmmSbhldM5N04L-3ZQNB0e_mvfje5zu8EzBqXWsAuMToGiMsbpaICsoySgkaitMTMMYsK1Ihcj4C46GdDv0zMAlh01tylvMxeL21IXpbddFo-Nw10aaLamNUtHsDp83KeRvXW1g7D1-82Zs22nZ1NC7XdgdnrmlssK4NUEa4NPIcnNayCebiqAl4v797mz2m88XD02w6TxXFIqYSE80kwxWSAklDhJCKUZVlkmuak1oTlRtWIF3lDKFKqcLooqac1FhhyTOagKvD3J13H50Jsdy4zrf9ypIwioqs4L0mAB9cyrsQvKnLnbdb6T9LjMohufJXcj0jfjDKRhn7H6OXtvmXpEdSbitv9cp8H_U39QWTJYKf
CitedBy_id crossref_primary_10_1016_j_oceaneng_2023_115888
crossref_primary_10_3390_jmse13050887
crossref_primary_10_1016_j_oceaneng_2023_116038
crossref_primary_10_3390_jmse10060814
crossref_primary_10_3390_jmse8121002
crossref_primary_10_1016_j_oceaneng_2025_122537
crossref_primary_10_1017_S0373463323000012
crossref_primary_10_1007_s00773_021_00796_z
crossref_primary_10_1016_j_asoc_2025_113865
crossref_primary_10_1016_j_oceaneng_2024_119512
crossref_primary_10_3233_JCM_247518
crossref_primary_10_1016_j_ocecoaman_2024_107450
crossref_primary_10_1109_ACCESS_2021_3059248
crossref_primary_10_3390_jmse10081047
crossref_primary_10_3390_jmse10060765
crossref_primary_10_1016_j_oceaneng_2023_115510
crossref_primary_10_1016_j_oceaneng_2023_116524
crossref_primary_10_1016_j_apor_2025_104753
crossref_primary_10_3390_jmse10111688
crossref_primary_10_3390_jmse12101719
crossref_primary_10_3390_jmse10111723
crossref_primary_10_3390_jmse11020337
crossref_primary_10_1017_S0373463322000650
crossref_primary_10_1109_TITS_2024_3419046
crossref_primary_10_3389_fmars_2024_1516586
crossref_primary_10_3390_app11167299
crossref_primary_10_1016_j_oceaneng_2022_111666
crossref_primary_10_1109_TTE_2022_3221643
Cites_doi 10.1016/j.oceaneng.2018.01.001
10.1017/S0373463318000796
10.1109/TEVC.2015.2504730
10.2991/iccse-15.2015.20
10.1080/02533839.2015.1047799
10.1155/2019/4068783
10.2478/pomr-2018-0092
10.12716/1001.09.01.03
10.1109/TITS.2014.2376031
10.1016/j.oceaneng.2018.10.008
10.1007/s10514-016-9580-2
10.1017/S0373463312000483
10.1016/j.oceaneng.2019.106158
10.51400/2709-6998.1929
10.1016/j.advengsoft.2015.01.010
10.1155/2018/7586496
10.20965/jaciii.2014.p0839
10.1007/s10489-011-0319-7
10.1017/S037346331700008X
10.1016/j.oceaneng.2018.07.012
10.1016/j.oceaneng.2016.08.030
10.1016/j.ress.2013.04.006
10.1016/j.jfranklin.2018.07.042
10.1017/S0373463318000048
ContentType Journal Article
Copyright Copyright © The Royal Institute of Navigation 2020
Copyright_xml – notice: Copyright © The Royal Institute of Navigation 2020
DBID AAYXX
CITATION
3V.
7SC
7SP
7TN
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
FR3
GNUQQ
H8D
H96
HCIFZ
JQ2
KR7
L.G
L6V
L7M
L~C
L~D
M2P
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S0373463320000053
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Science Database
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Military & Naval Science
Engineering
EISSN 1469-7785
EndPage 990
ExternalDocumentID 10_1017_S0373463320000053
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
.FH
09C
09E
0E1
0R~
29L
3V.
4.4
5GY
5VS
66.
6TJ
6~7
74X
74Y
7~V
88I
8CJ
8FE
8FG
8FH
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFS
ACGOD
ACIMK
ACIWK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHPGS
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BHPHI
BJBOZ
BKSAR
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
D1J
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
GNUQQ
HCIFZ
HG-
HST
HZ~
H~9
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KAFGG
KC5
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S6-
S6U
SAAAG
T9M
UAO
UT1
VH1
WFFJZ
WQ3
WXU
WXY
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~02
~V1
AAKNA
AATMM
AAYXX
ABGDZ
ABVKB
ABXHF
ACDLN
ACEJA
ACRPL
ADMLS
ADNMO
AEMFK
AEUYN
AFFHD
AFZFC
AGQPQ
AKMAY
ANOYL
CITATION
PHGZM
PHGZT
PQGLB
7SC
7SP
7TN
7XB
8FD
8FK
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c317t-a12d4a41b0a70ae277ac43c66a5d382fd2c8e490db8400bcc9ed9f352f1c1a563
IEDL.DBID M2P
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000556837900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0373-4633
IngestDate Mon Nov 10 02:59:03 EST 2025
Sat Nov 29 04:04:52 EST 2025
Tue Nov 18 21:48:41 EST 2025
Wed Mar 13 05:50:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Distributed Local Search Algorithm
Bi-Criterion Evolution
Multiple Ships Collision Avoidance
Velocity Obstacle Algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-a12d4a41b0a70ae277ac43c66a5d382fd2c8e490db8400bcc9ed9f352f1c1a563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8598-2098
PQID 2430969524
PQPubID 29781
PageCount 20
ParticipantIDs proquest_journals_2430969524
crossref_primary_10_1017_S0373463320000053
crossref_citationtrail_10_1017_S0373463320000053
cambridge_journals_10_1017_S0373463320000053
PublicationCentury 2000
PublicationDate 20200900
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 20200900
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of navigation
PublicationTitleAlternate J. Navigation
PublicationYear 2020
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Mercado Velasco, Borst, Ellerbroek, Van Paassen, Mulder 2015; 16
Mirjalili 2015; 83
Wang, Li, Li 2018; 71
Huang, van Gelder, Wen 2018; 151
Lee, Jeon, Oh 2017; 41
Lyu, Yin 2019; 72
Shi, Junda, Tengli, Chuan, Jian 2018; 355
Zhang, Yan, Yang, Wall 2013; 118
Wang 2015; 38
Szlapczynski, Szlapczynska 2016; 126
Altan 2019; 187
Song, Su, Dong, Shen 2018; 170
Tsou, Hsueh 2010; 18
Wang 2013; 66
Li, Wang, Zhao 2019
Li, Yang, Liu 2016; 20
Lisowski 2018; 2018
Kang, Chen, Zhu, Wang 2018; 20
Sormunen, Hanninen, Kujala 2016; 46
Kim, Hirayama, Park 2014; 18
Ni, Liu, Cai, Wang 2018; 25
Szlapczynski, Szlapczynska 2012; 37
Kim, Hirayama, Okimoto 2017; 70
Kim, Hirayama, Okimoto 2015; 9
Kozynchenko, Kozynchenko 2018; 164
Kang (S0373463320000053_ref3) 2018; 20
S0373463320000053_ref26
S0373463320000053_ref24
S0373463320000053_ref25
S0373463320000053_ref22
S0373463320000053_ref23
S0373463320000053_ref20
Sormunen (S0373463320000053_ref18) 2016; 46
S0373463320000053_ref19
S0373463320000053_ref17
S0373463320000053_ref15
S0373463320000053_ref16
S0373463320000053_ref5
S0373463320000053_ref13
S0373463320000053_ref14
S0373463320000053_ref4
S0373463320000053_ref11
S0373463320000053_ref7
S0373463320000053_ref12
S0373463320000053_ref6
S0373463320000053_ref9
S0373463320000053_ref10
S0373463320000053_ref8
S0373463320000053_ref1
S0373463320000053_ref2
Tsou (S0373463320000053_ref21) 2010; 18
References_xml – volume: 83
  start-page: 80
  year: 2015
  end-page: 98
  article-title: The ant lion optimizer
  publication-title: Advances in Engineering Software
– volume: 25
  start-page: 14
  issue: 03
  year: 2018
  end-page: 25
  article-title: Modelling of ship's trajectory planning in collision situations by hybrid genetic algorithm
  publication-title: Polish Maritime Research
– volume: 18
  start-page: 839
  issue: 5
  year: 2014
  end-page: 848
  article-title: Collision avoidance in multiple-ship situations by distributed local search
  publication-title: Journal of Advanced Computational Intelligence and Intelligent Informatics
– volume: 187
  start-page: 106
  year: 2019
  end-page: 115
  article-title: Collision diameter for maritime accidents considering the drifting of vessels
  publication-title: Ocean Engineering
– volume: 38
  start-page: 1020
  issue: 8
  year: 2015
  end-page: 1025
  article-title: Obstacle detection and avoidance with noisy measurements using danger zone concepts
  publication-title: Journal of the Chinese Institute of Engineers
– volume: 70
  start-page: 1
  issue: 4
  year: 2017
  end-page: 20
  article-title: Distributed stochastic search algorithm for multi-ship encounter situations
  publication-title: Journal of Navigation
– year: 2019
  article-title: Ship's trajectory planning based on improved multi-objective algorithm for collision avoidance
  publication-title: Journal of Advanced Transportation
– volume: 72
  start-page: 588
  issue: 3
  year: 2019
  end-page: 608
  article-title: COLREGS-constrained real-time path planning for autonomous ships using modified artificial potential fields
  publication-title: Journal of Navigation
– volume: 20
  start-page: 645
  issue: 5
  year: 2016
  end-page: 665
  article-title: Pareto or non-pareto: bi-criterion evolution in multi-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 46
  start-page: 163
  issue: 118
  year: 2016
  end-page: 177
  article-title: Marine traffic, accidents, and underreporting in the Baltic Sea
  publication-title: Zeszyty Naukowe
– volume: 126
  start-page: 47
  year: 2016
  end-page: 56
  article-title: An analysis of domain-based ship collision risk parameters
  publication-title: Ocean Engineering
– volume: 118
  start-page: 93
  issue: 10
  year: 2013
  end-page: 105
  article-title: Incorporation of formal safety assessment and bayesian network in navigational risk estimation of the Yangtze River
  publication-title: Reliability Engineering & System Safety
– volume: 9
  start-page: 23
  issue: 1
  year: 2015
  end-page: 29
  article-title: Ship collision avoidance by distributed Tabu search
  publication-title: The International Journal on Marine Navigation and Safety of Sea Transportation
– volume: 66
  start-page: 265
  issue: 2
  year: 2013
  end-page: 281
  article-title: A novel analytical framework for dynamic quaternion ship domains
  publication-title: Journal of Navigation
– volume: 170
  start-page: 351
  year: 2018
  end-page: 360
  article-title: A two-level dynamic obstacle avoidance algorithm for unmanned surface vehicles
  publication-title: Ocean Engineering
– volume: 71
  start-page: 989
  issue: 4
  year: 2018
  end-page: 1010
  article-title: Application of real-coded genetic algorithm in ship weather routing
  publication-title: Journal of Navigation
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 8
  article-title: Dynamic games methods in synthesis of safe ship control algorithms
  publication-title: Journal of Advanced Transportation
– volume: 18
  start-page: 746
  issue: 5
  year: 2010
  end-page: 756
  article-title: The study of ship collision avoidance route planning by ant colony algorithm
  publication-title: Journal of Marine Science and Technology
– volume: 355
  start-page: 7626
  issue: 15
  year: 2018
  end-page: 7642
  article-title: Optimal formation control and collision avoidance in environment with multiple rectangle obstacles
  publication-title: Journal of the Franklin Institute
– volume: 151
  start-page: 308
  year: 2018
  end-page: 321
  article-title: Velocity obstacle algorithms for collision prevention at sea
  publication-title: Ocean Engineering
– volume: 16
  start-page: 2297
  issue: 4
  year: 2015
  end-page: 2302
  article-title: The use of intent information in conflict detection and resolution models based on dynamic velocity obstacles
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 41
  start-page: 1
  issue: 6
  year: 2017
  end-page: 17
  article-title: Velocity obstacle based local collision avoidance for a holonomic elliptic robot
  publication-title: Autonomous Robots
– volume: 20
  start-page: 777
  issue: 6
  year: 2018
  end-page: 786
  article-title: Collision avoidance path planning for ships by particle swarm optimization
  publication-title: Journal of Marine Science and Technology
– volume: 164
  start-page: 640
  year: 2018
  end-page: 649
  article-title: Applying the dynamic predictive guidance to ship collision avoidance: crossing case study simulation
  publication-title: Ocean Engineering
– volume: 37
  start-page: 155
  issue: 2
  year: 2012
  end-page: 174
  article-title: On evolutionary computing in multi-ship trajectory planning
  publication-title: Applied Intelligence
– volume: 46
  start-page: 163
  year: 2016
  ident: S0373463320000053_ref18
  article-title: Marine traffic, accidents, and underreporting in the Baltic Sea
  publication-title: Zeszyty Naukowe
– ident: S0373463320000053_ref2
  doi: 10.1016/j.oceaneng.2018.01.001
– ident: S0373463320000053_ref12
  doi: 10.1017/S0373463318000796
– ident: S0373463320000053_ref9
  doi: 10.1109/TEVC.2015.2504730
– ident: S0373463320000053_ref25
  doi: 10.2991/iccse-15.2015.20
– ident: S0373463320000053_ref24
  doi: 10.1080/02533839.2015.1047799
– ident: S0373463320000053_ref10
  doi: 10.1155/2019/4068783
– ident: S0373463320000053_ref15
  doi: 10.2478/pomr-2018-0092
– ident: S0373463320000053_ref5
  doi: 10.12716/1001.09.01.03
– ident: S0373463320000053_ref13
  doi: 10.1109/TITS.2014.2376031
– ident: S0373463320000053_ref17
  doi: 10.1016/j.oceaneng.2018.10.008
– ident: S0373463320000053_ref8
  doi: 10.1007/s10514-016-9580-2
– ident: S0373463320000053_ref23
  doi: 10.1017/S0373463312000483
– volume: 20
  start-page: 777
  year: 2018
  ident: S0373463320000053_ref3
  article-title: Collision avoidance path planning for ships by particle swarm optimization
  publication-title: Journal of Marine Science and Technology
– ident: S0373463320000053_ref1
  doi: 10.1016/j.oceaneng.2019.106158
– volume: 18
  start-page: 746
  year: 2010
  ident: S0373463320000053_ref21
  article-title: The study of ship collision avoidance route planning by ant colony algorithm
  publication-title: Journal of Marine Science and Technology
  doi: 10.51400/2709-6998.1929
– ident: S0373463320000053_ref14
  doi: 10.1016/j.advengsoft.2015.01.010
– ident: S0373463320000053_ref11
  doi: 10.1155/2018/7586496
– ident: S0373463320000053_ref4
  doi: 10.20965/jaciii.2014.p0839
– ident: S0373463320000053_ref19
  doi: 10.1007/s10489-011-0319-7
– ident: S0373463320000053_ref6
  doi: 10.1017/S037346331700008X
– ident: S0373463320000053_ref7
  doi: 10.1016/j.oceaneng.2018.07.012
– ident: S0373463320000053_ref20
  doi: 10.1016/j.oceaneng.2016.08.030
– ident: S0373463320000053_ref26
  doi: 10.1016/j.ress.2013.04.006
– ident: S0373463320000053_ref16
  doi: 10.1016/j.jfranklin.2018.07.042
– ident: S0373463320000053_ref22
  doi: 10.1017/S0373463318000048
SSID ssj0008485
Score 2.371408
Snippet Avoidance of collisions at sea is crucial to navigational safety. In this paper, we use a distributed algorithm to communicate the entire collision avoidance...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 971
SubjectTerms Algorithms
Avoidance behaviour
Collision avoidance
Collision dynamics
Collisions
Communication
Methods
Multiple objective analysis
Navigational safety
Safety
Ships
Trajectory planning
Velocity
Title Distributed Multi-Objective Algorithm for Preventing Multi-Ship Collisions at Sea
URI https://www.cambridge.org/core/product/identifier/S0373463320000053/type/journal_article
https://www.proquest.com/docview/2430969524
Volume 73
WOSCitedRecordID wos000556837900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1469-7785
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0008485
  issn: 0373-4633
  databaseCode: PCBAR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1469-7785
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0008485
  issn: 0373-4633
  databaseCode: M7S
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1469-7785
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0008485
  issn: 0373-4633
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1469-7785
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0008485
  issn: 0373-4633
  databaseCode: M2P
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTxwhFH-p2oMeautH1lYNh6YHI5EBZhhOjfUjXly3ribeNsCAH9Hd7e7UxP--wDK7NSZ78TIHBgLJezx-wOP3A_gulCROG4IzqRXmZe5wqRXzvmx5bqkpiHFRbEK02-XNjeykA7dxSqtsYmIM1NXAhDPyA8qZR9syp_zn8A8OqlHhdjVJaCzAkkc2WUjpOqedaSQueZTkJEwwzAvGmlvNSBntC0MZjTA5aCPPuBVer1GvQ3Rcd05X3zviz_ApIU50OHGRL_DB9tdg5T8ewjVonUeu7tEL-oHayvseSlN-HX4fB2bdIIplKxRf6-IL_TCJkujw8dZ3WN89IQ99UcMG1b9NFbt390MUTibi-_UxUjXqWrUB16cnV0dnOMkwYOPBRY1VRiuueKaJEkRZKoQynJmiUHnFSuoqakrLJam03ywSbYy0lXQe2LnMZCov2CYs9gd92wLEM1dJ4yjjwiOhTElFuBNC57nR1m8Et2B_aoRemkzj3iQRTfTe2GwLSGOnnkmU5kFZ43Fek71pk-GEz2Ne5e3GsrPRzMz6df7vb7BMw-Y8JqRtw2I9-mt34KN5ru_Ho11Y-nXS7lzuRo8NX9H9B4U47dg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PTxQxFH5BNFEPCogBBewBPRgbOm1nOj0QQvgRCLBiwITb0HZawOCy7o4Q_in-RtrOzK7EZG8cuHbayXT69b3X9vX7AJaFksRpQ3AitcI8Tx3OtWIey5anlpqMGBfFJkSnk5-cyMMJuGvvwoS0ytYmRkNdXpmwR75COfPRtkwpX-v9wUE1KpyuthIaNSz27O2NX7INVnc3_fh-pnR763hjBzeqAth4X1lhldCSK55oogRRlgqhDGcmy1Raspy6kprccklK7dc-RBsjbSmdj1NcYhKVZsy_9xk854FZLKQK0sOh5c95lAAlTDDMM8baU9RIUe0LQxmNYXnQYh5xOTz0iQ9dQvRz22-f2h-agjdNRI3W6ykwDRO2OwOv_-FZnIG5g8hF3r9FX1BH-bmFGpP2Dn5sBubgIPplSxRvI-Pv-lftBdD65ZnvYHX-G_nQHrVsV92zpuLR-UUPhZ2XeD9_gFSFjqyahZ-P0t33MNm96to5QDxxpTSOMi58pJcoqQh3Qug0Ndr6he48fBsOetEYi0FRJ9qJ4j-MzANpcVGYhrI9KIdcjmvyddikV_OVjKu80CJp9DUjGH0Y__gTvNw5Ptgv9nc7ex_hFQ0bETH5bgEmq_5fuwgvzHV1MegvxVmC4PSxQXcP_NdJRQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NTxQxGH6DYIwe_EANKGIP6sHY0Gk70-mBkIVlI0HXVTThNradFjC4rLujhL_Gr6PtzOxKTPbGwetMO5nOPO9H27fPA_BKKEmcNgQnUivM89ThXCvmsWx5aqnJiHFRbEL0-_nhoRwswGV7FiaUVbY-MTrq8syENfINypnPtmVK-YZryiIG3d7W6BcOClJhp7WV06ghsm8vzv30bbK51_X_-jWlvd2vO-9xozCAjY-bFVYJLbniiSZKEGWpEMpwZrJMpSXLqSupyS2XpNR-HkS0MdKW0vmcxSUmUWnG_HNvwVKeZdJb1NJgZ7vzZRoHch4FQQkTDPOMsXZPNRJW-4vhGo1JelBmnjE7XI-Q1wNEjHq9B__z93oI95tcG3Vq43gEC3a4DPf-YmBchpWPkaV8fIHeoL7yVocaZ_cYPncDp3CQA7MliueU8Sf9o44PqHN65AdYHf9EPulHLQ_W8KhpeHB8MkJhTSae3J8gVaEDq57AtxsZ7lNYHJ4N7QognrhSGkcZFz4HTJRUhDshdJoabf0UeBXeTQFQNG5kUtQleKL4By-rQFqMFKYhcw-aIqfzuryddhnVTCbzGq-1qJq9zQxSz-bffgl3PNaKD3v9_edwl4YViliVtwaL1fi3fQG3zZ_qZDJeb0wGwfebRt0VTDdTTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Multi-Objective+Algorithm+for+Preventing+Multi-Ship+Collisions+at+Sea&rft.jtitle=Journal+of+navigation&rft.au=Li%2C+Jinxin&rft.au=Wang%2C+Hongbo&rft.au=Guan%2C+Zhiying&rft.au=Pan%2C+Chong&rft.date=2020-09-01&rft.pub=Cambridge+University+Press&rft.issn=0373-4633&rft.eissn=1469-7785&rft.volume=73&rft.issue=5&rft.spage=971&rft.epage=990&rft_id=info:doi/10.1017%2FS0373463320000053&rft.externalDocID=10_1017_S0373463320000053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0373-4633&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0373-4633&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0373-4633&client=summon