Realization of GKM fibrations and new examples of Hamiltonian non-Kähler actions
We classify fibrations of abstract $3$-regular GKM graphs over $2$-regular ones, and show that all fibrations satisfying the known necessary conditions for realizability are, in fact, realized as the projectivization of equivariant complex rank-$2$ vector bundles over quasitoric $4$-manifolds or $S^...
Uloženo v:
| Vydáno v: | Compositio mathematica Ročník 159; číslo 10; s. 2149 - 2190 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London, UK
London Mathematical Society
01.10.2023
Cambridge University Press |
| Témata: | |
| ISSN: | 0010-437X, 1570-5846 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We classify fibrations of abstract $3$-regular GKM graphs over $2$-regular ones, and show that all fibrations satisfying the known necessary conditions for realizability are, in fact, realized as the projectivization of equivariant complex rank-$2$ vector bundles over quasitoric $4$-manifolds or $S^4$. We investigate the existence of invariant (stable) almost complex, symplectic, and Kähler structures on the total space. In this way, we obtain infinitely many Kähler manifolds with Hamiltonian non-Kähler actions in dimension $6$ with prescribed one-skeleton, in particular with a prescribed number of isolated fixed points. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0010-437X 1570-5846 |
| DOI: | 10.1112/S0010437X2300742X |