Quotienting the delay monad by weak bisimilarity

The delay datatype was introduced by Capretta (Logical Methods in Computer Science, 1(2), article 1, 2005) as a means to deal with partial functions (as in computability theory) in Martin-Löf type theory. The delay datatype is a monad. It is often desirable to consider two delayed computations equal...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical structures in computer science Ročník 29; číslo 1; s. 67 - 92
Hlavní autori: CHAPMAN, JAMES, UUSTALU, TARMO, VELTRI, NICCOLÒ
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cambridge, UK Cambridge University Press 01.01.2019
Predmet:
ISSN:0960-1295, 1469-8072
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The delay datatype was introduced by Capretta (Logical Methods in Computer Science, 1(2), article 1, 2005) as a means to deal with partial functions (as in computability theory) in Martin-Löf type theory. The delay datatype is a monad. It is often desirable to consider two delayed computations equal, if they terminate with equal values, whenever one of them terminates. The equivalence relation underlying this identification is called weak bisimilarity. In type theory, one commonly replaces quotients with setoids. In this approach, the delay datatype quotiented by weak bisimilarity is still a monad–a constructive alternative to the maybe monad. In this paper, we consider the alternative approach of Hofmann (Extensional Constructs in Intensional Type Theory, Springer, London, 1997) of extending type theory with inductive-like quotient types. In this setting, it is difficult to define the intended monad multiplication for the quotiented datatype. We give a solution where we postulate some principles, crucially proposition extensionality and the (semi-classical) axiom of countable choice. With the aid of these principles, we also prove that the quotiented delay datatype delivers free ω-complete pointed partial orders (ωcppos). Altenkirch et al. (Lecture Notes in Computer Science, vol. 10203, Springer, Heidelberg, 534–549, 2017) demonstrated that, in homotopy type theory, a certain higher inductive–inductive type is the free ωcppo on a type X essentially by definition; this allowed them to obtain a monad of free ωcppos without recourse to a choice principle. We notice that, by a similar construction, a simpler ordinary higher inductive type gives the free countably complete join semilattice on the unit type 1. This type suffices for constructing a monad, which is isomorphic to the one of Altenkirch et al. We have fully formalized our results in the Agda dependently typed programming language.
AbstractList The delay datatype was introduced by Capretta (Logical Methods in Computer Science, 1(2), article 1, 2005) as a means to deal with partial functions (as in computability theory) in Martin-Löf type theory. The delay datatype is a monad. It is often desirable to consider two delayed computations equal, if they terminate with equal values, whenever one of them terminates. The equivalence relation underlying this identification is called weak bisimilarity. In type theory, one commonly replaces quotients with setoids. In this approach, the delay datatype quotiented by weak bisimilarity is still a monad–a constructive alternative to the maybe monad. In this paper, we consider the alternative approach of Hofmann (Extensional Constructs in Intensional Type Theory, Springer, London, 1997) of extending type theory with inductive-like quotient types. In this setting, it is difficult to define the intended monad multiplication for the quotiented datatype. We give a solution where we postulate some principles, crucially proposition extensionality and the (semi-classical) axiom of countable choice. With the aid of these principles, we also prove that the quotiented delay datatype delivers free ω-complete pointed partial orders (ωcppos). Altenkirch et al. (Lecture Notes in Computer Science, vol. 10203, Springer, Heidelberg, 534–549, 2017) demonstrated that, in homotopy type theory, a certain higher inductive–inductive type is the free ωcppo on a type X essentially by definition; this allowed them to obtain a monad of free ωcppos without recourse to a choice principle. We notice that, by a similar construction, a simpler ordinary higher inductive type gives the free countably complete join semilattice on the unit type 1. This type suffices for constructing a monad, which is isomorphic to the one of Altenkirch et al. We have fully formalized our results in the Agda dependently typed programming language.
The delay datatype was introduced by Capretta ( Logical Methods in Computer Science , 1(2), article 1, 2005) as a means to deal with partial functions (as in computability theory) in Martin-Löf type theory. The delay datatype is a monad. It is often desirable to consider two delayed computations equal, if they terminate with equal values, whenever one of them terminates. The equivalence relation underlying this identification is called weak bisimilarity. In type theory, one commonly replaces quotients with setoids. In this approach, the delay datatype quotiented by weak bisimilarity is still a monad–a constructive alternative to the maybe monad. In this paper, we consider the alternative approach of Hofmann ( Extensional Constructs in Intensional Type Theory , Springer, London, 1997) of extending type theory with inductive-like quotient types. In this setting, it is difficult to define the intended monad multiplication for the quotiented datatype. We give a solution where we postulate some principles, crucially proposition extensionality and the (semi-classical) axiom of countable choice. With the aid of these principles, we also prove that the quotiented delay datatype delivers free ω-complete pointed partial orders (ωcppos). Altenkirch et al. (Lecture Notes in Computer Science, vol. 10203, Springer, Heidelberg, 534–549, 2017) demonstrated that, in homotopy type theory, a certain higher inductive–inductive type is the free ωcppo on a type X essentially by definition; this allowed them to obtain a monad of free ωcppos without recourse to a choice principle. We notice that, by a similar construction, a simpler ordinary higher inductive type gives the free countably complete join semilattice on the unit type 1. This type suffices for constructing a monad, which is isomorphic to the one of Altenkirch et al. We have fully formalized our results in the Agda dependently typed programming language.
Author CHAPMAN, JAMES
UUSTALU, TARMO
VELTRI, NICCOLÒ
Author_xml – sequence: 1
  givenname: JAMES
  orcidid: 0000-0001-9036-8252
  surname: CHAPMAN
  fullname: CHAPMAN, JAMES
  email: james.chapman@strath.ac.uk
  organization: †Department of Computer and Information Sciences, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, U.K. Email: james.chapman@strath.ac.uk
– sequence: 2
  givenname: TARMO
  orcidid: 0000-0002-1297-0579
  surname: UUSTALU
  fullname: UUSTALU, TARMO
  email: tarmo@cs.ioc.ee
  organization: ‡Department of Software Science, Tallinn University of Technology, Akadeemia tee 21B, 12618 Tallinn, Estonia Email: tarmo@cs.ioc.ee, niccolo@cs.ioc.ee
– sequence: 3
  givenname: NICCOLÒ
  surname: VELTRI
  fullname: VELTRI, NICCOLÒ
  email: tarmo@cs.ioc.ee
  organization: ‡Department of Software Science, Tallinn University of Technology, Akadeemia tee 21B, 12618 Tallinn, Estonia Email: tarmo@cs.ioc.ee, niccolo@cs.ioc.ee
BookMark eNp9kF1LwzAYhYNMcJv-AO8KXlffNF_NpQy_YCCiXpc0TWdmm8wkQ_rv7dhAUPTqvTjnOeflzNDEeWcQOsdwiQGLq2eQHHAhGRYAgEt6hKaYcpmXIIoJmu7kfKefoFmM69FCMMgpgqetT9a4ZN0qS28ma0ynhqz3TjVZPWSfRr1ntY22t50KNg2n6LhVXTRnhztHr7c3L4v7fPl497C4XuaaYJFyCaZlXPK2FrSRmtWMEgYKWiNLVWjKJDY1cErKgmshRc1Kw4E1rSbSkJaQObrY526C_9iamKq13wY3VlYFplCO4ZiPLrx36eBjDKatNsH2KgwVhmo3TPVrmJERPxhtk0rWuxSU7f4lyYFUfR1sszLfT_1NfQGNbXX8
CitedBy_id crossref_primary_10_1016_j_scico_2020_102492
crossref_primary_10_1016_j_jlamp_2022_100846
crossref_primary_10_1145_3704892
crossref_primary_10_1145_3495528
crossref_primary_10_1145_3522729
crossref_primary_10_1145_3632869
crossref_primary_10_1016_j_entcs_2019_09_014
crossref_primary_10_1017_S0960129521000153
crossref_primary_10_1145_3747530
Cites_doi 10.1016/j.apal.2011.06.017
10.1145/3018610.3018615
10.1016/0304-3975(94)00124-2
10.1017/S0956796809007308
10.2168/LMCS-1(2:1)2005
10.1016/0890-5401(91)90052-4
10.1093/comjnl/bxh162
10.1007/3-540-48167-2_12
10.2168/LMCS-10(3:14)2014
10.1109/LICS.2017.8005130
10.1016/j.tcs.2005.06.002
ContentType Journal Article
Copyright Copyright © Cambridge University Press 2017
Copyright_xml – notice: Copyright © Cambridge University Press 2017
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S0960129517000184
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Quotienting the delay monad by weak bisimilarity
J. Chapman, T. Uustalu and N. Veltri
EISSN 1469-8072
EndPage 92
ExternalDocumentID 10_1017_S0960129517000184
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
.DC
.FH
09C
09E
0E1
0R~
29M
3V.
4.4
5GY
5VS
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAFUK
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABVKB
ABVZP
ABXAU
ABZCX
ACBMC
ACDLN
ACETC
ACGFS
ACGOD
ACIMK
ACIWK
ACMRT
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADKIL
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
C0O
CAG
CBIIA
CCPQU
CCQAD
CCTKK
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S6-
S6U
SAAAG
T9M
TN5
UT1
WFFJZ
WQ3
WXU
WYP
XJT
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
AAKNA
AAYXX
ABGDZ
ABXHF
ACEJA
AFFHD
AKMAY
AMVHM
ANOYL
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c317t-90ef5696fb74d9c5b54350a0fe98a2c4591eb0643826c797b58e605dfc39e3f33
IEDL.DBID M2P
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451889100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-1295
IngestDate Fri Jul 25 19:38:26 EDT 2025
Sat Nov 29 03:56:52 EST 2025
Tue Nov 18 20:02:54 EST 2025
Tue Jan 21 06:18:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-90ef5696fb74d9c5b54350a0fe98a2c4591eb0643826c797b58e605dfc39e3f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9036-8252
0000-0002-1297-0579
PQID 2140856916
PQPubID 33085
PageCount 26
ParticipantIDs proquest_journals_2140856916
crossref_primary_10_1017_S0960129517000184
crossref_citationtrail_10_1017_S0960129517000184
cambridge_journals_10_1017_S0960129517000184
PublicationCentury 2000
PublicationDate 20190100
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 20190100
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationSubtitle MSCS
PublicationTitle Mathematical structures in computer science
PublicationTitleAlternate Math. Struct. Comp. Sci
PublicationYear 2019
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Norell (S0960129517000184_ref22) 2009
S0960129517000184_ref24
Hyland (S0960129517000184_ref14) 1990
Chicli (S0960129517000184_ref8) 2003
S0960129517000184_ref23
S0960129517000184_ref20
Escardó (S0960129517000184_ref11) 2004
S0960129517000184_ref21
(S0960129517000184_ref26) 2013
Goncharov (S0960129517000184_ref12) 2015
Kraus (S0960129517000184_ref17) 2013
Cockett (S0960129517000184_ref9) 2012
Hughes (S0960129517000184_ref15) 2000; 37
S0960129517000184_ref16
Hofmann (S0960129517000184_ref13) 1997
Troelstra (S0960129517000184_ref25) 1988
S0960129517000184_ref1
S0960129517000184_ref10
S0960129517000184_ref2
S0960129517000184_ref4
S0960129517000184_ref5
S0960129517000184_ref7
Kennedy (S0960129517000184_ref6) 2009
Altenkirch (S0960129517000184_ref3) 2017
S0960129517000184_ref19
S0960129517000184_ref18
References_xml – volume-title: Homotopy Type Theory: Univalent Foundations of Mathematics
  year: 2013
  ident: S0960129517000184_ref26
– ident: S0960129517000184_ref5
  doi: 10.1016/j.apal.2011.06.017
– volume-title: Constructivism in Mathematics: An Introduction
  year: 1988
  ident: S0960129517000184_ref25
– start-page: 95
  volume-title: Selected Papers from Int. Wksh. on Types for Proofs and Programs, TYPES 2002
  year: 2003
  ident: S0960129517000184_ref8
– start-page: 534
  volume-title: Proceedings of the 20th International Conference on Foundations of Software Science and Computation Structures, FoSSaCS 2017
  year: 2017
  ident: S0960129517000184_ref3
– volume-title: CPHS/BCS Distinguished Dissertations
  year: 1997
  ident: S0960129517000184_ref13
– ident: S0960129517000184_ref4
  doi: 10.1145/3018610.3018615
– ident: S0960129517000184_ref21
  doi: 10.1016/0304-3975(94)00124-2
– start-page: 117
  volume-title: Proceedings of 28th Conference on the Mathematical Foundations of Program Semantics, MFPS XXVIII
  year: 2012
  ident: S0960129517000184_ref9
– ident: S0960129517000184_ref16
  doi: 10.1017/S0956796809007308
– ident: S0960129517000184_ref24
– volume: 37
  start-page: 67
  volume-title: Science of Computer Programming
  year: 2000
  ident: S0960129517000184_ref15
– ident: S0960129517000184_ref7
  doi: 10.2168/LMCS-1(2:1)2005
– start-page: 21
  volume-title: Proceedings of Wksh. on Domain-Theoretical Methods for Probabilistic Programming
  year: 2004
  ident: S0960129517000184_ref11
– start-page: 131
  volume-title: Proceedings of International Conference on Category Theory
  year: 1990
  ident: S0960129517000184_ref14
– ident: S0960129517000184_ref20
  doi: 10.1016/0890-5401(91)90052-4
– start-page: 183
  volume-title: Proceedings of 31st Conference on Mathematical Foundations of Programming Semantics, MFPS XXXI
  year: 2015
  ident: S0960129517000184_ref12
– start-page: 230
  volume-title: Revised Lectures from Proceedings of the 6th International School on Advanced Functional Programming, AFP 2008
  year: 2009
  ident: S0960129517000184_ref22
– ident: S0960129517000184_ref19
  doi: 10.1093/comjnl/bxh162
– ident: S0960129517000184_ref18
  doi: 10.1007/3-540-48167-2_12
– ident: S0960129517000184_ref2
  doi: 10.2168/LMCS-10(3:14)2014
– ident: S0960129517000184_ref10
  doi: 10.1109/LICS.2017.8005130
– ident: S0960129517000184_ref1
  doi: 10.1016/j.tcs.2005.06.002
– start-page: 115
  volume-title: Proceedings of 22nd International Conference on Theorem Proving in Higher Order Logics, TPHOLs 2009
  year: 2009
  ident: S0960129517000184_ref6
– ident: S0960129517000184_ref23
– start-page: 173
  volume-title: Proceedings of 11th International Conference on Typed Lambda Calculi and Applications, TLCA 2013
  year: 2013
  ident: S0960129517000184_ref17
SSID ssj0013109
Score 2.3231568
Snippet The delay datatype was introduced by Capretta (Logical Methods in Computer Science, 1(2), article 1, 2005) as a means to deal with partial functions (as in...
The delay datatype was introduced by Capretta ( Logical Methods in Computer Science , 1(2), article 1, 2005) as a means to deal with partial functions (as in...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 67
SubjectTerms Computer science
Delay
Programming languages
Quotients
Title Quotienting the delay monad by weak bisimilarity
URI https://www.cambridge.org/core/product/identifier/S0960129517000184/type/journal_article
https://www.proquest.com/docview/2140856916
Volume 29
WOSCitedRecordID wos000451889100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1469-8072
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0013109
  issn: 0960-1295
  databaseCode: P5Z
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1469-8072
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0013109
  issn: 0960-1295
  databaseCode: K7-
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1469-8072
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0013109
  issn: 0960-1295
  databaseCode: M7S
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1469-8072
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0013109
  issn: 0960-1295
  databaseCode: BENPR
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (subscription)
  customDbUrl:
  eissn: 1469-8072
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0013109
  issn: 0960-1295
  databaseCode: M2P
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH64Hby4i3UpOXgSg5Nk0kxOomIRxFI3EC9lsowUta22Kv33vsxiEaEXLzlkkiG8bF_ee3wfwL5zgrNUcuo51zSW1tHUM0kNNzpBRICgI8nFJlSrlTw86HbpcBuWaZXVmZgf1K5vg4_8iLPAxdVANHM8eKNBNSpEV0sJjVmYR2TDQkrXFW9PogisSPFAlE7xXpNVVDOnjMbKUBf46SIWyE0n3Aq_76jfR3R-7zSX_zviFVgqESc5KZbIKsz43hosV2oOpNzc6xBdf_QLjtXeE0FYSAJ_5JjgX1JHzJh8-fSZmO6w-9rF1zCC9w24b57fnV3QUk-BWkQJI6ojn-F4GplRsdNWGolYKUqjzOsk5TaWmnkTIAo-OazSysjE42vHZVZoLzIhNmGu1-_5LSAuY9I7GTUyLWIhYmMN40Y46bNEcatqcPhjzU65K4adIqNMdf4YvwZRZfCOLbnJg0TGy7QuBz9dBgUxx7TGu9UUTUYzmZ_t6Z93YBFhki4cL7swN3r_8HuwYD9H3eF7HeZPz1vtmzrMXipazxdgKNUtlm35-A2uVtu7
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5EBb34FutzD3oRF5NNtskeREQtSmupoOAtZh-RoLa1D6V_yt_obB4WEXrz4HWTDUtmduabndlvAPa19pgbc0YNY4L6XGkaG5dTyaQIEREg6AizZhNBsxk-PIjWFHyWd2FsWWVpEzNDrTvKnpEfM9dycVURzZx236jtGmWzq2ULjVwt6mb0gSFb_-T6AuV7wFjt8u78ihZdBahCXzmgwjEJfqeayMDXQnHJETE4sZMYEcZM-Vy4RlpHjcBbBSKQPDSI-XWiPGG8xB6Aosmf8S2zmC0VZK1x1sLNS0owKqDoR3mZRc0oqnHQjlk-PMe1ZKpjLoefPvGnS8j8XG3xv_2hJVgoEDU5y7fAMkyZ9goslt0qSGG8VsG5HXZyDtn2E0HYSyw_5ojgqmNN5Ih8mPiZyLSfvqYY7WNwsgb3f7LudZhud9pmA4hOXG40d6qJ8HzP86WSLpOe5iYJA6aCChx9Sy8qdn0_yivmguiXsCvglAKOVMG9bluAvEyacvg9pZsTj0x6ebtUifFqxvqwOfnxHsxd3d00osZ1s74F8wgJRX7ItA3Tg97Q7MCseh-k_d5upu4EHv9ae74Ak6gzQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quotienting+the+delay+monad+by+weak+bisimilarity&rft.jtitle=Mathematical+structures+in+computer+science&rft.au=Chapman%2C+James&rft.au=UUSTALU%2C+TARMO&rft.au=VELTRI%2C+NICCOL%C3%92&rft.date=2019-01-01&rft.pub=Cambridge+University+Press&rft.issn=0960-1295&rft.eissn=1469-8072&rft.volume=29&rft.issue=1&rft.spage=67&rft.epage=92&rft_id=info:doi/10.1017%2FS0960129517000184
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1295&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1295&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1295&client=summon