Detecting coal content in gangue via machine vision and genetic algorithm-backpropagation neural network

•Three-dimensional (3D) features were extracted to predict coal content in gangue.•Eight optimal features were selected according to Spearman correlation coefficient.•Original model, 2D model, Non-optimized model and 3D model were built and compared. Coal content in gangue is one of the important te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation Jg. 201; S. 111739
Hauptverfasser: Zhang, Chunlong, Dou, Dongyang, Sun, Fengjie, Huang, Zixuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 30.09.2022
Schlagworte:
ISSN:0263-2241, 1873-412X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Three-dimensional (3D) features were extracted to predict coal content in gangue.•Eight optimal features were selected according to Spearman correlation coefficient.•Original model, 2D model, Non-optimized model and 3D model were built and compared. Coal content in gangue is one of the important technical and economic indicators of coal preparation plants and cannot be detected online at present. A novel approach based on binocular machine vision and genetic algorithm-backpropagation neural network (GA-BPNN) was proposed. First, the sample image was segmented, and each region was judged to be coal or gangue. Four size and eleven density features were extracted from each region. For the size features, the values of each feature were summed up by class, whereas the average operation was performed for the density features. The values of gangue features were divided by those of coal features to obtain an initial feature set based on a two-dimensional (2D) image. By contrast, binocular images were collected to estimate a three-dimensional (3D) feature, that is, the height features of coal and gangue particles. Subsequently, the projected area and the height feature were multiplied to obtain another 3D feature, that is, the volume feature. The Spearman correlation coefficient was adopted as the feature selection method, and eight optimal features were extracted from the final feature set, including both 2D and 3D features. Then, the coal content in gangue was modeled using a BPNN optimized by GA. Finally, three models were built based on 17 complete features, 6 optimal 2D features, and 8 optimal 3D features; another model without GA optimization was also built. The gangue sample experiment of Hongliu Coal Preparation Plant showed that the average relative error of our method was 7.98%, which is much better than that of the other three models.
AbstractList •Three-dimensional (3D) features were extracted to predict coal content in gangue.•Eight optimal features were selected according to Spearman correlation coefficient.•Original model, 2D model, Non-optimized model and 3D model were built and compared. Coal content in gangue is one of the important technical and economic indicators of coal preparation plants and cannot be detected online at present. A novel approach based on binocular machine vision and genetic algorithm-backpropagation neural network (GA-BPNN) was proposed. First, the sample image was segmented, and each region was judged to be coal or gangue. Four size and eleven density features were extracted from each region. For the size features, the values of each feature were summed up by class, whereas the average operation was performed for the density features. The values of gangue features were divided by those of coal features to obtain an initial feature set based on a two-dimensional (2D) image. By contrast, binocular images were collected to estimate a three-dimensional (3D) feature, that is, the height features of coal and gangue particles. Subsequently, the projected area and the height feature were multiplied to obtain another 3D feature, that is, the volume feature. The Spearman correlation coefficient was adopted as the feature selection method, and eight optimal features were extracted from the final feature set, including both 2D and 3D features. Then, the coal content in gangue was modeled using a BPNN optimized by GA. Finally, three models were built based on 17 complete features, 6 optimal 2D features, and 8 optimal 3D features; another model without GA optimization was also built. The gangue sample experiment of Hongliu Coal Preparation Plant showed that the average relative error of our method was 7.98%, which is much better than that of the other three models.
ArticleNumber 111739
Author Huang, Zixuan
Zhang, Chunlong
Dou, Dongyang
Sun, Fengjie
Author_xml – sequence: 1
  givenname: Chunlong
  surname: Zhang
  fullname: Zhang, Chunlong
  organization: Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, China University of Mining and Technology, Xuzhou 221116, PR China
– sequence: 2
  givenname: Dongyang
  surname: Dou
  fullname: Dou, Dongyang
  email: ddy41@cumt.edu.cn
  organization: Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, China University of Mining and Technology, Xuzhou 221116, PR China
– sequence: 3
  givenname: Fengjie
  surname: Sun
  fullname: Sun, Fengjie
  email: baiyu5415@sina.com
  organization: Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, China University of Mining and Technology, Xuzhou 221116, PR China
– sequence: 4
  givenname: Zixuan
  surname: Huang
  fullname: Huang, Zixuan
  organization: Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, China University of Mining and Technology, Xuzhou 221116, PR China
BookMark eNqNkMtOwzAQRS1UJNrCP4QPSPDYjeOsECpPqRIbkNhZjjNJ3SZO5bhF_D0JZYFYdTMziztHumdGJq5zSMg10AQoiJtN0qLu9x5bdCFhlLEEADKen5EpyIzHC2AfEzKlTPCYsQVckFnfbyilgudiStb3GNAE6-rIdLoZhgsDKbIuqrWr9xgdrI5abdbWjXdvOxdpV0Y1OgzWRLqpO2_Duo0LbbY73-10rcOYcrj3A3GIfXZ-e0nOK930ePW75-T98eFt-RyvXp9elner2HDIQiyFTGklwUhaFrQSUkqOwKsUihxQMlFCDgUXgEZDluXFIgWmaTGUSUVWaT4n-ZFrfNf3Hiu187bV_ksBVaMytVF_lKlRmToqG35v__0aG37KBK9tcxJheSTgUPFg0aveWHQGS-sHzars7AmUb3FBlH0
CitedBy_id crossref_primary_10_1016_j_measurement_2024_114723
crossref_primary_10_1080_19392699_2023_2190097
crossref_primary_10_1088_1361_6501_ad2ad4
crossref_primary_10_1016_j_powtec_2025_121668
crossref_primary_10_1016_j_eswa_2025_126880
crossref_primary_10_1016_j_mineng_2024_108903
crossref_primary_10_3390_chemengineering9040092
crossref_primary_10_1080_19392699_2024_2390499
Cites_doi 10.1002/cjce.23860
10.1016/j.istruc.2021.12.055
10.1038/323533a0
10.1109/TASE.2018.2840345
10.1049/iet-ipr.2019.1055
10.1080/19392699.2022.2051011
10.1080/19392699.2021.1932842
10.1088/1742-6596/1574/1/012173
10.1016/j.optlaseng.2019.06.011
10.1504/IJOGCT.2016.074768
10.1016/j.measurement.2020.108663
10.1016/j.measurement.2018.08.026
10.1109/RCAR.2018.8621725
10.1016/j.rcim.2019.03.001
10.1109/ACCESS.2020.2981534
10.1016/j.powtec.2006.03.017
10.1016/j.powtec.2022.117669
10.1109/ICICTA.2009.142
10.1080/15567036.2013.872718
10.1007/s11042-018-7092-0
10.1109/CVPR.2005.56
10.3788/LOP202158.0215004
10.1016/j.minpro.2011.07.008
10.1109/ICINFA.2010.5512011
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2022.111739
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2022_111739
S0263224122009447
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GS5
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
ZMT
~G-
29M
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABXDB
ACLOT
ACNNM
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c317t-86850f81c80db0f68883e13f51b91e826d191b361eca1779b4512a0b396567fa3
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000847979200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-2241
IngestDate Tue Nov 18 21:33:10 EST 2025
Sat Nov 29 07:21:37 EST 2025
Fri Feb 23 02:36:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Coal content in gangue
BP neural network
Machine vision
Binocular Stereo Vision
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c317t-86850f81c80db0f68883e13f51b91e826d191b361eca1779b4512a0b396567fa3
ParticipantIDs crossref_primary_10_1016_j_measurement_2022_111739
crossref_citationtrail_10_1016_j_measurement_2022_111739
elsevier_sciencedirect_doi_10_1016_j_measurement_2022_111739
PublicationCentury 2000
PublicationDate 2022-09-30
PublicationDateYYYYMMDD 2022-09-30
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-30
  day: 30
PublicationDecade 2020
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yu Jiexiao, Zhang Meiqi, Su Yuting, Three-dimensional vehicle detection algorithm based on binocular vision, Laser Optoelectronics PROGRESS(2), 2021. doi: https://doi.org/10.3788/L0P202158.0215004.
Robert Singh, Chaudhury (b0035) 2020; 14
Tang, Zhu, Chen, Wu, Chen, Li, Li (b0060) 2022; 37
Yongzhou Wan, et al., Prediction of BP neural network and preliminary application for suppression of low‐temperature oxidation of coal stockpiles by pulverized coal covering, Canad. J. Chem. Eng. 98.12 (2020). doi: https://doi.org/10.1002/cjce.23860.
Zhang, Yang (b0090) 2015; 37
X.-M. Ma, Coal Gangue Image Identification and Classification with Wavelet Transform, 2009, in: doi: https://doi.org/10.1109/icicta.2009.142.
H. Hirschmuller, n.d. Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information, IEEE Conference on Computer Vision and Pattern Recognition. doi: https://doi.org/10.1109/cvpr.2005.56.
Wenfei, Yingjie, Ling (b0135) 2009; 09
Tang, Li, Wang, Chen, Feng, Zou, Huang (b0065) 2019; 59
Qi, Dou (b0140) 2022; 407
Zhu, Wu, Wang, Zhang (b0040) 2020; 79
Wang, Huang, Dou, Qiu (b0050) 2022; 42
Chen, Tang, Zou, Huang, Li, He (b0070) 2019; 122
Tang, Li, Feng, Liu, Zou, Chen (b0075) 2018; 130
M. Li, K. Sun, An Image Recognition Approach for Coal and Gangue Used in Pick-Up Robot, 2018. in: .. doi: https://doi.org/10.1109/rcar.2018.8621725.
X. Zhang P. Shen J. Gao X. X, D. Qi L. Zhang A. Xue X. Liang X. Chen, A license plate recognition system based on Tamura texture in complex conditions, International Conference on Information and Automation (ICIA), 2010, doi: https://doi.org/10.1109/icinfa.2010.5512011.
Perez, Estevez, Vera, Castillo, Aravena, Schulz, Medina (b0105) 2011; 101
Zhang, Yang (b0100) 2016; 11
Mi, Zheng (b0080) 2020; 5
Wang (b0095) 2006; 165
Li, Su, Yang, Zhang (b0115) 2014; 2014
Lv, Jiao (b0125) 2020; 1574
Qiu, Dou, Zhou, Yang (b0005) 2021; 173
Wang, Li, Chen, Diekel, Jia (b0025) 2019; 16
Haoxiang Huang, Dongyang Dou, Gangyang Liu, Modeling of coal and gangue volume based onshape clustering and image analysis, Int. J. Coal Preparation Utilizat. doi: https://doi.org/10.1080/19392699.2022.2051011.
Rumelhart, Hinton, Williams (b0130) 1986; 323
Eshaq, Hu, Li, Alfarzaeai (b0010) 2020; 8
Yang Chunyu, Zhen, Linna (b0055) 2021; 08
Wang (10.1016/j.measurement.2022.111739_b0095) 2006; 165
10.1016/j.measurement.2022.111739_b0015
Rumelhart (10.1016/j.measurement.2022.111739_b0130) 1986; 323
Qiu (10.1016/j.measurement.2022.111739_b0005) 2021; 173
Mi (10.1016/j.measurement.2022.111739_b0080) 2020; 5
Chen (10.1016/j.measurement.2022.111739_b0070) 2019; 122
Wang (10.1016/j.measurement.2022.111739_b0025) 2019; 16
10.1016/j.measurement.2022.111739_b0110
Li (10.1016/j.measurement.2022.111739_b0115) 2014; 2014
10.1016/j.measurement.2022.111739_b0030
Zhu (10.1016/j.measurement.2022.111739_b0040) 2020; 79
Wang (10.1016/j.measurement.2022.111739_b0050) 2022; 42
Tang (10.1016/j.measurement.2022.111739_b0065) 2019; 59
Robert Singh (10.1016/j.measurement.2022.111739_b0035) 2020; 14
Lv (10.1016/j.measurement.2022.111739_b0125) 2020; 1574
Qi (10.1016/j.measurement.2022.111739_b0140) 2022; 407
Tang (10.1016/j.measurement.2022.111739_b0060) 2022; 37
Tang (10.1016/j.measurement.2022.111739_b0075) 2018; 130
Zhang (10.1016/j.measurement.2022.111739_b0090) 2015; 37
Eshaq (10.1016/j.measurement.2022.111739_b0010) 2020; 8
Zhang (10.1016/j.measurement.2022.111739_b0100) 2016; 11
Perez (10.1016/j.measurement.2022.111739_b0105) 2011; 101
Yang Chunyu (10.1016/j.measurement.2022.111739_b0055) 2021; 08
10.1016/j.measurement.2022.111739_b0120
10.1016/j.measurement.2022.111739_b0045
Wenfei (10.1016/j.measurement.2022.111739_b0135) 2009; 09
10.1016/j.measurement.2022.111739_b0020
10.1016/j.measurement.2022.111739_b0085
References_xml – reference: M. Li, K. Sun, An Image Recognition Approach for Coal and Gangue Used in Pick-Up Robot, 2018. in: .. doi: https://doi.org/10.1109/rcar.2018.8621725.
– volume: 37
  start-page: 426
  year: 2022
  end-page: 441
  ident: b0060
  article-title: Seismic performance evaluation of recycled aggregate concrete-filled steel tubular columns with field strain detected via a novel mark-free vision method
  publication-title: Structures
– reference: Yongzhou Wan, et al., Prediction of BP neural network and preliminary application for suppression of low‐temperature oxidation of coal stockpiles by pulverized coal covering, Canad. J. Chem. Eng. 98.12 (2020). doi: https://doi.org/10.1002/cjce.23860.
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 8
  ident: b0115
  article-title: Target Image Matching Algorithm Based on Binocular CCD Ranging
  publication-title: Abstract Appl. Anal.
– volume: 08
  start-page: 164
  year: 2021
  end-page: 174
  ident: b0055
  article-title: Binocular vision measurement of coal flow on belt conveyor based on deep learning
  publication-title: Chin. J. Scientific Instrum.
– volume: 5
  start-page: 219
  year: 2020
  ident: b0080
  article-title: Binocular vision vehicle environment collision early warning method based on machine learning
  publication-title: Int. J. Vehicle Informat. Commun. Syst.
– volume: 165
  start-page: 1
  year: 2006
  end-page: 10
  ident: b0095
  article-title: Image analysis of particles by modified Ferret method—best-fit rectangle
  publication-title: Powder Technol.
– reference: H. Hirschmuller, n.d. Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information, IEEE Conference on Computer Vision and Pattern Recognition. doi: https://doi.org/10.1109/cvpr.2005.56.
– reference: X.-M. Ma, Coal Gangue Image Identification and Classification with Wavelet Transform, 2009, in: doi: https://doi.org/10.1109/icicta.2009.142.
– volume: 407
  start-page: 117669
  year: 2022
  ident: b0140
  article-title: Prediction of density and sulfur content level of high-sulfur coal based on image processing
  publication-title: Powder Technol.
– volume: 09
  start-page: 54
  year: 2009
  end-page: 56
  ident: b0135
  article-title: The basic principles of genetic algorithm and its application research
  publication-title: Software Guide
– volume: 37
  start-page: 181
  year: 2015
  end-page: 191
  ident: b0090
  article-title: The density fraction estimation of coarse coal by use of the kernel method and machine vision
  publication-title: Energy Sources Part A
– volume: 1574
  start-page: 012173
  year: 2020
  ident: b0125
  article-title: Experiment of Stereo matching algorithm based on binocular vision
  publication-title: J. Phys. Conf. Ser.
– volume: 42
  start-page: 1915
  year: 2022
  end-page: 1924
  ident: b0050
  article-title: Detection of coal content in gangue via image analysis and particle swarm optimization–support vector machine
  publication-title: Int. J. Coal Preparat. Utilizat.
– reference: Yu Jiexiao, Zhang Meiqi, Su Yuting, Three-dimensional vehicle detection algorithm based on binocular vision, Laser Optoelectronics PROGRESS(2), 2021. doi: https://doi.org/10.3788/L0P202158.0215004.
– volume: 8
  start-page: 55204
  year: 2020
  end-page: 55220
  ident: b0010
  article-title: Separation between coal and gangue based on infrared radiation and visual extraction of the YCbCr color space
  publication-title: IEEE Access
– volume: 59
  start-page: 36
  year: 2019
  end-page: 46
  ident: b0065
  article-title: Real-time detection of surface deformation and strain in recycled aggregate concrete-filled steel tubular columns via four-ocular vision
  publication-title: Robotics Comput. Integr. Manuf.
– reference: X. Zhang P. Shen J. Gao X. X, D. Qi L. Zhang A. Xue X. Liang X. Chen, A license plate recognition system based on Tamura texture in complex conditions, International Conference on Information and Automation (ICIA), 2010, doi: https://doi.org/10.1109/icinfa.2010.5512011.
– volume: 130
  start-page: 372
  year: 2018
  end-page: 383
  ident: b0075
  article-title: Binocular vision measurement and its application in full-field convex deformation of concrete-filled steel tubular columns
  publication-title: Measurement
– volume: 79
  start-page: 14539
  year: 2020
  end-page: 14551
  ident: b0040
  article-title: Identification of grape diseases using image analysis and BP neural networks
  publication-title: Multimedia Tools Appl.
– volume: 122
  start-page: 170
  year: 2019
  end-page: 183
  ident: b0070
  article-title: High-accuracy multi-camera reconstruction enhanced by adaptive point cloud correction algorithm
  publication-title: Opt. Lasers Eng.
– volume: 14
  start-page: 2532
  year: 2020
  end-page: 2540
  ident: b0035
  article-title: Comparative analysis of texture feature extraction techniques for rice grain classification
  publication-title: IET Image Proc.
– volume: 101
  start-page: 28
  year: 2011
  end-page: 36
  ident: b0105
  article-title: Ore grade estimation by feature selection and voting using boundary detection in digital image analysis
  publication-title: Int. J. Miner. Process.
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: b0130
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 11
  start-page: 279
  year: 2016
  end-page: 289
  ident: b0100
  article-title: Narrow density fraction prediction of coarse coal by image analysis and MIV-SVM
  publication-title: Int. J. Oil Gas Coal Technol.
– volume: 173
  start-page: 108663
  year: 2021
  ident: b0005
  article-title: On-line prediction of clean coal ash content based on image analysis
  publication-title: Measurement
– volume: 16
  start-page: 640
  year: 2019
  end-page: 653
  ident: b0025
  article-title: Facilitating human-robot collaborative tasks by teaching-learning-collaboration from human demonstrations
  publication-title: IEEE Trans. Autom. Sci. Eng.
– reference: Haoxiang Huang, Dongyang Dou, Gangyang Liu, Modeling of coal and gangue volume based onshape clustering and image analysis, Int. J. Coal Preparation Utilizat. doi: https://doi.org/10.1080/19392699.2022.2051011.
– ident: 10.1016/j.measurement.2022.111739_b0045
  doi: 10.1002/cjce.23860
– volume: 37
  start-page: 426
  year: 2022
  ident: 10.1016/j.measurement.2022.111739_b0060
  article-title: Seismic performance evaluation of recycled aggregate concrete-filled steel tubular columns with field strain detected via a novel mark-free vision method
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.12.055
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.measurement.2022.111739_b0130
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 16
  start-page: 640
  issue: 2
  year: 2019
  ident: 10.1016/j.measurement.2022.111739_b0025
  article-title: Facilitating human-robot collaborative tasks by teaching-learning-collaboration from human demonstrations
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2018.2840345
– volume: 14
  start-page: 2532
  issue: 11
  year: 2020
  ident: 10.1016/j.measurement.2022.111739_b0035
  article-title: Comparative analysis of texture feature extraction techniques for rice grain classification
  publication-title: IET Image Proc.
  doi: 10.1049/iet-ipr.2019.1055
– ident: 10.1016/j.measurement.2022.111739_b0030
  doi: 10.1080/19392699.2022.2051011
– volume: 42
  start-page: 1915
  issue: 7
  year: 2022
  ident: 10.1016/j.measurement.2022.111739_b0050
  article-title: Detection of coal content in gangue via image analysis and particle swarm optimization–support vector machine
  publication-title: Int. J. Coal Preparat. Utilizat.
  doi: 10.1080/19392699.2021.1932842
– volume: 1574
  start-page: 012173
  issue: 1
  year: 2020
  ident: 10.1016/j.measurement.2022.111739_b0125
  article-title: Experiment of Stereo matching algorithm based on binocular vision
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1574/1/012173
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.measurement.2022.111739_b0115
  article-title: Target Image Matching Algorithm Based on Binocular CCD Ranging
  publication-title: Abstract Appl. Anal.
– volume: 122
  start-page: 170
  year: 2019
  ident: 10.1016/j.measurement.2022.111739_b0070
  article-title: High-accuracy multi-camera reconstruction enhanced by adaptive point cloud correction algorithm
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2019.06.011
– volume: 09
  start-page: 54
  year: 2009
  ident: 10.1016/j.measurement.2022.111739_b0135
  article-title: The basic principles of genetic algorithm and its application research
  publication-title: Software Guide
– volume: 11
  start-page: 279
  issue: 3
  year: 2016
  ident: 10.1016/j.measurement.2022.111739_b0100
  article-title: Narrow density fraction prediction of coarse coal by image analysis and MIV-SVM
  publication-title: Int. J. Oil Gas Coal Technol.
  doi: 10.1504/IJOGCT.2016.074768
– volume: 5
  start-page: 219
  issue: 2
  year: 2020
  ident: 10.1016/j.measurement.2022.111739_b0080
  article-title: Binocular vision vehicle environment collision early warning method based on machine learning
  publication-title: Int. J. Vehicle Informat. Commun. Syst.
– volume: 173
  start-page: 108663
  year: 2021
  ident: 10.1016/j.measurement.2022.111739_b0005
  article-title: On-line prediction of clean coal ash content based on image analysis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108663
– volume: 130
  start-page: 372
  year: 2018
  ident: 10.1016/j.measurement.2022.111739_b0075
  article-title: Binocular vision measurement and its application in full-field convex deformation of concrete-filled steel tubular columns
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.08.026
– ident: 10.1016/j.measurement.2022.111739_b0015
  doi: 10.1109/RCAR.2018.8621725
– volume: 59
  start-page: 36
  year: 2019
  ident: 10.1016/j.measurement.2022.111739_b0065
  article-title: Real-time detection of surface deformation and strain in recycled aggregate concrete-filled steel tubular columns via four-ocular vision
  publication-title: Robotics Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2019.03.001
– volume: 8
  start-page: 55204
  year: 2020
  ident: 10.1016/j.measurement.2022.111739_b0010
  article-title: Separation between coal and gangue based on infrared radiation and visual extraction of the YCbCr color space
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981534
– volume: 165
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.measurement.2022.111739_b0095
  article-title: Image analysis of particles by modified Ferret method—best-fit rectangle
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2006.03.017
– volume: 08
  start-page: 164
  year: 2021
  ident: 10.1016/j.measurement.2022.111739_b0055
  article-title: Binocular vision measurement of coal flow on belt conveyor based on deep learning
  publication-title: Chin. J. Scientific Instrum.
– volume: 407
  start-page: 117669
  year: 2022
  ident: 10.1016/j.measurement.2022.111739_b0140
  article-title: Prediction of density and sulfur content level of high-sulfur coal based on image processing
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2022.117669
– ident: 10.1016/j.measurement.2022.111739_b0020
  doi: 10.1109/ICICTA.2009.142
– volume: 37
  start-page: 181
  issue: 2
  year: 2015
  ident: 10.1016/j.measurement.2022.111739_b0090
  article-title: The density fraction estimation of coarse coal by use of the kernel method and machine vision
  publication-title: Energy Sources Part A
  doi: 10.1080/15567036.2013.872718
– volume: 79
  start-page: 14539
  issue: 21-22
  year: 2020
  ident: 10.1016/j.measurement.2022.111739_b0040
  article-title: Identification of grape diseases using image analysis and BP neural networks
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-018-7092-0
– ident: 10.1016/j.measurement.2022.111739_b0120
  doi: 10.1109/CVPR.2005.56
– ident: 10.1016/j.measurement.2022.111739_b0085
  doi: 10.3788/LOP202158.0215004
– volume: 101
  start-page: 28
  issue: 1–4
  year: 2011
  ident: 10.1016/j.measurement.2022.111739_b0105
  article-title: Ore grade estimation by feature selection and voting using boundary detection in digital image analysis
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2011.07.008
– ident: 10.1016/j.measurement.2022.111739_b0110
  doi: 10.1109/ICINFA.2010.5512011
SSID ssj0006396
Score 2.3723612
Snippet •Three-dimensional (3D) features were extracted to predict coal content in gangue.•Eight optimal features were selected according to Spearman correlation...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111739
SubjectTerms Binocular Stereo Vision
BP neural network
Coal content in gangue
Machine vision
Title Detecting coal content in gangue via machine vision and genetic algorithm-backpropagation neural network
URI https://dx.doi.org/10.1016/j.measurement.2022.111739
Volume 201
WOSCitedRecordID wos000847979200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKB2g8IBigjZuMxNuUKU6c2JF4mcYQIJiQNqSKlyhOnDaldae2qcrf4hdyfMlFwMQQ4iWKrNpOfb7Yn0_O-YzQy8LQ9kh4kaCBRwmLPQHbFC9JaBlHCZVEGJ3ZD-zsjI9GyafB4HuTC7OZMaX4dptc_ldTQxkYW6fO_oW520ahAO7B6HAFs8P1WoZ_LfV3AZtLa8Q_dJC6OQhgrH2T8nBTZYdzE0Op71dNPDI0KI1662y8WFbrydwTWf4VJliYcixKtPYltKhs5Hif1n7sPI3Gx9DTo-iiMxu3Y__HJuFQi3_24wFaJ_bJpFazhVtbNdte1Jb0q_G3rCs-ry0Hl2o8rXpAda18qba1ewecewN2xi4Wo_G5NXk3XZDTysjFhp4mH3YVs1M3ZyGAzRzO3s7tgfWU_LJOWJfF9Gje_eMj3bteQZhVV_pJhvtc96m7DPT3JErZDbQTsCjhQ7Rz_O509L5d_4HzxdazZ5_xNnrRRRVe0eHvWVGP6VzcQ3fdFgUfW2jdRwOp9tCdnnDlHrplAofz1QM0aeGGNdywgxuuFLZwwwA37OCGLdwwwA07uOEr4YYt3LCD20P0-c3pxclbz53e4eXASdcej3nkl5zk3C-EX8ac81CSsIyISIiEXW1BEiLCmMg8I4wlggL3zHwBoxfFrMzCR2ioFkruI0yIICGJBLSX0SKgQpDMz3K_CKUARkwPEG9GL82dtL0-YWWWNjGM07Q38Kke-NQO_AEK2qqXVt_lOpVeNSZKHVG1BDQFfP25-uN_q_4E7XYvylM0XC9r-QzdzDfrarV87tD4A2pwxDI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+coal+content+in+gangue+via+machine+vision+and+genetic+algorithm-backpropagation+neural+network&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Zhang%2C+Chunlong&rft.au=Dou%2C+Dongyang&rft.au=Sun%2C+Fengjie&rft.au=Huang%2C+Zixuan&rft.date=2022-09-30&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=201&rft_id=info:doi/10.1016%2Fj.measurement.2022.111739&rft.externalDocID=S0263224122009447
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon