Tabular generative modeling framework for multi-property data synthesis of pyrolyzed biochar

[Display omitted] •Generation framework for synthesizing biochar property data was established.•Missing records in reference dataset were imputed by MultipleMICE and MissForest.•Synthpop accurately captured multimodal, normal, and skewed distribution patterns.•Synthpop and TVAE preserved inter-featu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bioresource technology Ročník 438; s. 133207
Hlavní autoři: Yang, Yang, Li, Weishuai, Huang, Jingang, Wang, Ruilin, Han, Wei, Zhou, Rongbing, Qiu, Shanshan, Xu, Xiaobin
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 01.12.2025
Témata:
ISSN:0960-8524, 1873-2976, 1873-2976
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] •Generation framework for synthesizing biochar property data was established.•Missing records in reference dataset were imputed by MultipleMICE and MissForest.•Synthpop accurately captured multimodal, normal, and skewed distribution patterns.•Synthpop and TVAE preserved inter-feature correlations within synthetic data.•Synthpop was a reliable model to generate high fidelity data for biochar property. Biochar properties are governed by trade-offs among feedstock types, modification methods, and pyrolysis conditions, complicating the design of engineered biochar for specific applications. In this study, four data generative models, including Tabular Generative Adversarial Network (TGAN), Conditional Tabular Generative Adversarial Network (CTGAN), Tabular Variational Autoencoder (TVAE), and statistical Synthpop, were developed to predict biochar properties using MultipleMICE- and MissForest-imputed reference datasets (n = 461). The Synthpop model outperformed others in synthetic data quality, achieving high distribution similarity score (0.97) by accurately capturing multimodal, normal, and skewed distribution patterns for both continuous features (KSComplement = 0.98) and categorical variables (TVComplement = 0.95). Correlation trends evaluation indicated that TVAE and Synthpop models effectively preserved inter-feature dependencies between synthetic and original real data. Experimental validation with bagasse- and bamboo-derived biochar confirmed the reliability of Synthpop model in generating high fidelity data for biochar properties such as surface morphology, elemental composition, and surface functional groups. Specifically, up to 70.8 % of features for bagasse biochar and 66.7 % of features for bamboo biochar exhibited low relative errors (<5 %). Overall, this work introduced an applicable framework and a reliable Synthpop model for synthesizing pyrolyzed biochar properties, providing insights into rapid screening of application-specific biochar.
AbstractList Biochar properties are governed by trade-offs among feedstock types, modification methods, and pyrolysis conditions, complicating the design of engineered biochar for specific applications. In this study, four data generative models, including Tabular Generative Adversarial Network (TGAN), Conditional Tabular Generative Adversarial Network (CTGAN), Tabular Variational Autoencoder (TVAE), and statistical Synthpop, were developed to predict biochar properties using MultipleMICE- and MissForest-imputed reference datasets (n = 461). The Synthpop model outperformed others in synthetic data quality, achieving high distribution similarity score (0.97) by accurately capturing multimodal, normal, and skewed distribution patterns for both continuous features (KSComplement = 0.98) and categorical variables (TVComplement = 0.95). Correlation trends evaluation indicated that TVAE and Synthpop models effectively preserved inter-feature dependencies between synthetic and original real data. Experimental validation with bagasse- and bamboo-derived biochar confirmed the reliability of Synthpop model in generating high fidelity data for biochar properties such as surface morphology, elemental composition, and surface functional groups. Specifically, up to 70.8 % of features for bagasse biochar and 66.7 % of features for bamboo biochar exhibited low relative errors (<5 %). Overall, this work introduced an applicable framework and a reliable Synthpop model for synthesizing pyrolyzed biochar properties, providing insights into rapid screening of application-specific biochar.
Biochar properties are governed by trade-offs among feedstock types, modification methods, and pyrolysis conditions, complicating the design of engineered biochar for specific applications. In this study, four data generative models, including Tabular Generative Adversarial Network (TGAN), Conditional Tabular Generative Adversarial Network (CTGAN), Tabular Variational Autoencoder (TVAE), and statistical Synthpop, were developed to predict biochar properties using MultipleMICE- and MissForest-imputed reference datasets (n = 461). The Synthpop model outperformed others in synthetic data quality, achieving high distribution similarity score (0.97) by accurately capturing multimodal, normal, and skewed distribution patterns for both continuous features (KSComplement = 0.98) and categorical variables (TVComplement = 0.95). Correlation trends evaluation indicated that TVAE and Synthpop models effectively preserved inter-feature dependencies between synthetic and original real data. Experimental validation with bagasse- and bamboo-derived biochar confirmed the reliability of Synthpop model in generating high fidelity data for biochar properties such as surface morphology, elemental composition, and surface functional groups. Specifically, up to 70.8 % of features for bagasse biochar and 66.7 % of features for bamboo biochar exhibited low relative errors (<5 %). Overall, this work introduced an applicable framework and a reliable Synthpop model for synthesizing pyrolyzed biochar properties, providing insights into rapid screening of application-specific biochar.Biochar properties are governed by trade-offs among feedstock types, modification methods, and pyrolysis conditions, complicating the design of engineered biochar for specific applications. In this study, four data generative models, including Tabular Generative Adversarial Network (TGAN), Conditional Tabular Generative Adversarial Network (CTGAN), Tabular Variational Autoencoder (TVAE), and statistical Synthpop, were developed to predict biochar properties using MultipleMICE- and MissForest-imputed reference datasets (n = 461). The Synthpop model outperformed others in synthetic data quality, achieving high distribution similarity score (0.97) by accurately capturing multimodal, normal, and skewed distribution patterns for both continuous features (KSComplement = 0.98) and categorical variables (TVComplement = 0.95). Correlation trends evaluation indicated that TVAE and Synthpop models effectively preserved inter-feature dependencies between synthetic and original real data. Experimental validation with bagasse- and bamboo-derived biochar confirmed the reliability of Synthpop model in generating high fidelity data for biochar properties such as surface morphology, elemental composition, and surface functional groups. Specifically, up to 70.8 % of features for bagasse biochar and 66.7 % of features for bamboo biochar exhibited low relative errors (<5 %). Overall, this work introduced an applicable framework and a reliable Synthpop model for synthesizing pyrolyzed biochar properties, providing insights into rapid screening of application-specific biochar.
[Display omitted] •Generation framework for synthesizing biochar property data was established.•Missing records in reference dataset were imputed by MultipleMICE and MissForest.•Synthpop accurately captured multimodal, normal, and skewed distribution patterns.•Synthpop and TVAE preserved inter-feature correlations within synthetic data.•Synthpop was a reliable model to generate high fidelity data for biochar property. Biochar properties are governed by trade-offs among feedstock types, modification methods, and pyrolysis conditions, complicating the design of engineered biochar for specific applications. In this study, four data generative models, including Tabular Generative Adversarial Network (TGAN), Conditional Tabular Generative Adversarial Network (CTGAN), Tabular Variational Autoencoder (TVAE), and statistical Synthpop, were developed to predict biochar properties using MultipleMICE- and MissForest-imputed reference datasets (n = 461). The Synthpop model outperformed others in synthetic data quality, achieving high distribution similarity score (0.97) by accurately capturing multimodal, normal, and skewed distribution patterns for both continuous features (KSComplement = 0.98) and categorical variables (TVComplement = 0.95). Correlation trends evaluation indicated that TVAE and Synthpop models effectively preserved inter-feature dependencies between synthetic and original real data. Experimental validation with bagasse- and bamboo-derived biochar confirmed the reliability of Synthpop model in generating high fidelity data for biochar properties such as surface morphology, elemental composition, and surface functional groups. Specifically, up to 70.8 % of features for bagasse biochar and 66.7 % of features for bamboo biochar exhibited low relative errors (<5 %). Overall, this work introduced an applicable framework and a reliable Synthpop model for synthesizing pyrolyzed biochar properties, providing insights into rapid screening of application-specific biochar.
ArticleNumber 133207
Author Han, Wei
Zhou, Rongbing
Huang, Jingang
Xu, Xiaobin
Wang, Ruilin
Li, Weishuai
Yang, Yang
Qiu, Shanshan
Author_xml – sequence: 1
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
  organization: College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
– sequence: 2
  givenname: Weishuai
  surname: Li
  fullname: Li, Weishuai
  organization: College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
– sequence: 3
  givenname: Jingang
  orcidid: 0000-0002-5736-6148
  surname: Huang
  fullname: Huang, Jingang
  email: hjg@hdu.edu.cn
  organization: College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
– sequence: 4
  givenname: Ruilin
  surname: Wang
  fullname: Wang, Ruilin
  organization: College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
– sequence: 5
  givenname: Wei
  surname: Han
  fullname: Han, Wei
  organization: College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
– sequence: 6
  givenname: Rongbing
  surname: Zhou
  fullname: Zhou, Rongbing
  organization: College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
– sequence: 7
  givenname: Shanshan
  surname: Qiu
  fullname: Qiu, Shanshan
  organization: College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
– sequence: 8
  givenname: Xiaobin
  surname: Xu
  fullname: Xu, Xiaobin
  organization: China-Austria Belt and Road Joint Laboratory on Artificial Intelligence and Advanced Manufacturing, Hangzhou Dianzi University, Hangzhou 310018, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40865582$$D View this record in MEDLINE/PubMed
BookMark eNqFkDtPwzAUhS0Eghb4C8gjS4ofsZNsIMRLQmLpiGS59jV1SeJiO6Dw6wkqsDLd5TtH535ztN-HHhA6o2RBCZUXm8XKh5jBrBeMMLGgnDNS7aEZrStesKaS-2hGGkmKWrDyCM1T2hBCOK3YIToqSS2FqNkMPS_1amh1xC_QQ9TZvwPugoXW9y_YRd3BR4iv2IWIu6HNvtjGsIWYR2x11jiNfV5D8gkHh7djDO34CRZP28xaxxN04HSb4PTnHqPl7c3y-r54fLp7uL56LMy0JxeScitoBbyGGsqm5KwyjZaCuUYaQ50B7kCsXFkZIRohCamY5c4KonljDD9G57vaadvbACmrzicDbat7CENSnJWyJILyekLPftBh1YFV2-g7HUf1K2QC5A4wMaQUwf0hlKhv82qjfs2rb_NqZ34KXu6CMD367iGqZDz0BqyPYLKywf9X8QXGTpCD
Cites_doi 10.1016/j.biortech.2019.02.037
10.1186/s12874-024-02173-x
10.1016/j.biortech.2022.127511
10.1016/j.chemosphere.2017.03.072
10.1016/j.joei.2024.101660
10.1186/s40537-023-00792-7
10.1016/j.jmsy.2022.04.004
10.1186/s40537-024-00982-x
10.1016/j.biortech.2017.08.122
10.1177/1094428114548590
10.1016/j.jaap.2024.106596
10.1016/j.cie.2025.111246
10.1016/j.biortech.2022.128226
10.1016/j.jaap.2021.105174
10.1016/j.asoc.2024.112223
10.1007/s11157-020-09523-3
10.1016/j.envres.2020.109976
10.1016/j.jece.2022.107640
10.1186/s12955-019-1181-2
10.1021/acs.nanolett.2c00902
10.1016/j.chemosphere.2020.129062
10.1145/3657294
10.1016/j.ecoenv.2014.04.042
10.1186/s40537-022-00648-6
10.1016/j.cej.2020.126782
10.1109/ACCESS.2024.3524620
10.18637/jss.v074.i11
10.1016/j.cej.2021.130011
10.1186/s12874-024-02392-2
10.1007/s42773-024-00303-8
10.3390/app14145975
10.1016/j.biortech.2023.130291
10.1016/j.biortech.2011.11.084
10.1021/acs.est.4c10638
10.1016/j.scitotenv.2020.144204
10.1007/s42773-025-00446-2
10.3390/w15091796
10.1016/j.biortech.2019.122408
10.1016/j.jclepro.2019.04.282
10.1016/j.jhazmat.2019.06.004
10.1016/j.scitotenv.2021.149354
10.1016/j.envres.2022.113953
10.1016/j.autcon.2024.105844
10.1007/s12206-024-0835-0
10.1016/j.cej.2021.132313
10.1007/s44246-025-00213-9
10.1016/j.gltp.2022.04.020
10.1016/j.rcim.2025.102963
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.biortech.2025.133207
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
ExternalDocumentID 40865582
10_1016_j_biortech_2025_133207
S0960852425011745
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADQTV
ADUVX
AEBSH
AEGFY
AEHWI
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGEKW
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CJTIS
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~HD
~KM
9DU
AAYXX
CITATION
AGCQF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c317t-613d517e38e8e494327c9a652f96cc1fce3fe5bf47c559560072d3fd50a39cc3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001562315100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-8524
1873-2976
IngestDate Thu Oct 02 21:41:12 EDT 2025
Wed Sep 17 01:49:35 EDT 2025
Sat Nov 29 06:52:00 EST 2025
Sat Oct 11 16:50:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Pyrolysis
Synthpop
Biochar
Generative models
Synthetic data
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c317t-613d517e38e8e494327c9a652f96cc1fce3fe5bf47c559560072d3fd50a39cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5736-6148
PMID 40865582
PQID 3246405138
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3246405138
pubmed_primary_40865582
crossref_primary_10_1016_j_biortech_2025_133207
elsevier_sciencedirect_doi_10_1016_j_biortech_2025_133207
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cantrell, Hunt, Uchimiya, Novak, Ro (b0025) 2012; 107
Nzediegwu, Naeth, Chang (b0125) 2021; 156
Sauber-Cole, Khoshgoftaar (b0140) 2022; 9
Ayilara, Zhang, Sajobi, Sawatzky, Bohm, Lix (b0020) 2019; 17
Tee, Selvarajoo, Arumugasamy (b0155) 2022; 10
Hu, Wu, Lin, Lin (b0055) 2024; 24
Alam, Ihsanullah, Naushad, Sillanpää (b0010) 2022; 427
Zhang, Lei, Mahdaviarab, Wang, Liu (b0235) 2025; 7
Yu, An, Zhou, Deng, Miao, Zhao, Yang (b0215) 2019; 280
Wang, Wang (b0185) 2019; 227
Wang, Li, Gao, Zhang (b0180) 2022; 63
Kim, Ryu, Lee, Choi (b0065) 2024; 38
Wulandari, Chen, Hermosa, Hossain, Yamauchi, Ahamad, Alshehri, Wu, Wu (b0195) 2020; 190
Li, Hu, Dong, Ma (b0080) 2025; 94
Lan, Zhao (b0070) 2022; 22
Zhou, Zhou, Li (b0240) 2025; 13
Li, Guo, Ma, He, Zhang, Rui, Ding, Li, Jian, Cheng, Guo (b0090) 2024; 24
Maharana, Mondal, Nemade (b0105) 2022; 3
Tomczyk, Sokołowska, Boguta (b0160) 2020; 19
Yuan, Wen, Dionysiou, Sharma, Ma (b0220) 2022; 429
Fan, Li, Sun, Zhang, Zhang, Hu (b0035) 2021; 799
Zhang, Zhou, Liu, Xu, Peng, Leng, Li (b0230) 2024; 6
Yang, Nguyen, Tran, Nguyen, Ge, Nguyen, Nguyen, Le, Rene, Singh, Raizada, Ahamad, Alshehri, Xia, Kim, Le (b0205) 2022; 214
Wang, Chang, Lee (b0190) 2024; 394
Newman (b0115) 2014; 17
Fakayode, Aboagarib, Zhou, Ma (b0040) 2020; 297
Zhu, Wang, Ok (b0250) 2019; 378
Wang, Lin, Chen, Wang, Hung (b0175) 2025; 206
Xu, Hei, Fu, Zhang, Liang, Pan, Huang (b0200) 2025; 59
Deng, Wei, Chen, Li, Liu, Lu (b0030) 2023; 15
Zhu, Wan, Tsang, He, Hou, Su, Shang (b0245) 2021; 406
Wang, Chukova, Simpson, Nguyen (b0170) 2024; 166
Leng, Xiong, Yang, Li, Zhou, Zhang, Jiang, Li, Huang (b0075) 2021; 763
Pham, Nguyen, Le, Nguyen, Pham, Le, Vu (b0135) 2021; 265
Yu, Bai, Fan, He, Zou, Dilixiati, Wei, Pidamaimaiti, Pan (b0210) 2024; 115
Fonseca, Bacao (b0045) 2023; 10
Nowok, Raab, Dibben (b0120) 2016; 74
Sun, Lian, Liu, Zhu, Song (b0150) 2014; 106
Vaz, Figueira (b0165) 2024; 21
Liu, Balasubramanian, Nguyen, An, Praneeth, Zhang, Huang (b0100) 2025; 4
Janu, Mrlik, Ribitsch, Hofman, Sedláček, Bielská, Soja (b0060) 2021; 4
Li, Dong, da Silva, de Oliveira, Chen, Ma (b0085) 2017; 178
Alam, Ayub, Arora, Khan (b0015) 2023; 9
Golazad, Mohammadi, Rashidi, Ilbeigi (b0050) 2024; 168
Oliveira, Patel, Jaisi, Adhikari, Lu, Khanal (b0130) 2017; 246
Song, Huang, Jin, Liu, Wang, Hou, Zhang, Shen, Zhang (b0145) 2024; 181
Adiputra, Wanchai (b0005) 2024; 11
Miletic, Sariyar (b0110) 2024; 14
Li, Gupta, You (b0095) 2022; 359
Zhang, Chen, Zhu, Li, Wei (b0225) 2023; 367
Xu (10.1016/j.biortech.2025.133207_b0200) 2025; 59
Fan (10.1016/j.biortech.2025.133207_b0035) 2021; 799
Zhu (10.1016/j.biortech.2025.133207_b0250) 2019; 378
Hu (10.1016/j.biortech.2025.133207_b0055) 2024; 24
Zhang (10.1016/j.biortech.2025.133207_b0225) 2023; 367
Fonseca (10.1016/j.biortech.2025.133207_b0045) 2023; 10
Zhang (10.1016/j.biortech.2025.133207_b0230) 2024; 6
Zhou (10.1016/j.biortech.2025.133207_b0240) 2025; 13
Vaz (10.1016/j.biortech.2025.133207_b0165) 2024; 21
Lan (10.1016/j.biortech.2025.133207_b0070) 2022; 22
Maharana (10.1016/j.biortech.2025.133207_b0105) 2022; 3
Yu (10.1016/j.biortech.2025.133207_b0215) 2019; 280
Li (10.1016/j.biortech.2025.133207_b0085) 2017; 178
Miletic (10.1016/j.biortech.2025.133207_b0110) 2024; 14
Oliveira (10.1016/j.biortech.2025.133207_b0130) 2017; 246
Alam (10.1016/j.biortech.2025.133207_b0015) 2023; 9
Sauber-Cole (10.1016/j.biortech.2025.133207_b0140) 2022; 9
Wang (10.1016/j.biortech.2025.133207_b0170) 2024; 166
Cantrell (10.1016/j.biortech.2025.133207_b0025) 2012; 107
Kim (10.1016/j.biortech.2025.133207_b0065) 2024; 38
Yuan (10.1016/j.biortech.2025.133207_b0220) 2022; 429
Tomczyk (10.1016/j.biortech.2025.133207_b0160) 2020; 19
Nowok (10.1016/j.biortech.2025.133207_b0120) 2016; 74
Janu (10.1016/j.biortech.2025.133207_b0060) 2021; 4
Nzediegwu (10.1016/j.biortech.2025.133207_b0125) 2021; 156
Leng (10.1016/j.biortech.2025.133207_b0075) 2021; 763
Adiputra (10.1016/j.biortech.2025.133207_b0005) 2024; 11
Li (10.1016/j.biortech.2025.133207_b0080) 2025; 94
Newman (10.1016/j.biortech.2025.133207_b0115) 2014; 17
Li (10.1016/j.biortech.2025.133207_b0090) 2024; 24
Song (10.1016/j.biortech.2025.133207_b0145) 2024; 181
Sun (10.1016/j.biortech.2025.133207_b0150) 2014; 106
Deng (10.1016/j.biortech.2025.133207_b0030) 2023; 15
Yu (10.1016/j.biortech.2025.133207_b0210) 2024; 115
Wang (10.1016/j.biortech.2025.133207_b0185) 2019; 227
Wang (10.1016/j.biortech.2025.133207_b0190) 2024; 394
Golazad (10.1016/j.biortech.2025.133207_b0050) 2024; 168
Liu (10.1016/j.biortech.2025.133207_b0100) 2025; 4
Wulandari (10.1016/j.biortech.2025.133207_b0195) 2020; 190
Fakayode (10.1016/j.biortech.2025.133207_b0040) 2020; 297
Alam (10.1016/j.biortech.2025.133207_b0010) 2022; 427
Wang (10.1016/j.biortech.2025.133207_b0175) 2025; 206
Yang (10.1016/j.biortech.2025.133207_b0205) 2022; 214
Zhu (10.1016/j.biortech.2025.133207_b0245) 2021; 406
Zhang (10.1016/j.biortech.2025.133207_b0235) 2025; 7
Li (10.1016/j.biortech.2025.133207_b0095) 2022; 359
Ayilara (10.1016/j.biortech.2025.133207_b0020) 2019; 17
Wang (10.1016/j.biortech.2025.133207_b0180) 2022; 63
Tee (10.1016/j.biortech.2025.133207_b0155) 2022; 10
Pham (10.1016/j.biortech.2025.133207_b0135) 2021; 265
References_xml – volume: 4
  start-page: 36
  year: 2021
  end-page: 46
  ident: b0060
  article-title: Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature
  publication-title: Carbon Resour. Convers.
– volume: 378
  year: 2019
  ident: b0250
  article-title: The application of machine learning methods for prediction of metal sorption onto biochars
  publication-title: J. Hazard. Mater.
– volume: 10
  year: 2022
  ident: b0155
  article-title: Prediction of carbon sequestration of biochar produced from biomass pyrolysis by artificial neural network
  publication-title: J. Environ. Chem. Eng.
– volume: 429
  year: 2022
  ident: b0220
  article-title: Biochar as a novel carbon-negative electron source and mediator: electron exchange capacity (EEC) and environmentally persistent free radicals (EPFRs): a review
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 19
  year: 2024
  ident: b0230
  article-title: A novel intelligent system based on machine learning for hydrochar multi-target prediction from the hydrothermal carbonization of biomass
  publication-title: Biochar
– volume: 17
  start-page: 372
  year: 2014
  end-page: 411
  ident: b0115
  article-title: Missing data: five practical guidelines
  publication-title: Organ. Res. Methods
– volume: 406
  year: 2021
  ident: b0245
  article-title: Machine learning for the selection of carbon-based materials for tetracycline and sulfamethoxazole adsorption
  publication-title: Chem. Eng. J.
– volume: 3
  start-page: 91
  year: 2022
  end-page: 99
  ident: b0105
  article-title: A review: data pre-processing and data augmentation techniques
  publication-title: Glob. Transitions Proc.
– volume: 74
  start-page: 1
  year: 2016
  end-page: 26
  ident: b0120
  article-title: Synthpop: Bespoke creation of synthetic data in R
  publication-title: J. Stat. Softw.
– volume: 297
  year: 2020
  ident: b0040
  article-title: Co-pyrolysis of lignocellulosic and macroalgae biomasses for the production of biochar – a review
  publication-title: Bioresour. Technol.
– volume: 246
  start-page: 110
  year: 2017
  end-page: 122
  ident: b0130
  article-title: Environmental application of biochar: current status and perspectives
  publication-title: Bioresour. Technol.
– volume: 9
  year: 2023
  ident: b0015
  article-title: An investigation of the imputation techniques for missing values in ordinal data enhancing clustering and classification analysis validity
  publication-title: Decis. Anal. J.
– volume: 17
  start-page: 106
  year: 2019
  ident: b0020
  article-title: Impact of missing data on bias and precision when estimating change in patient-reported outcomes from a clinical registry
  publication-title: Health Qual. Life Outcomes
– volume: 763
  year: 2021
  ident: b0075
  article-title: An overview on engineering the surface area and porosity of biochar
  publication-title: Sci. Total Environ.
– volume: 11
  start-page: 121
  year: 2024
  ident: b0005
  article-title: CTGAN-ENN: a tabular GAN-based hybrid sampling method for imbalanced and overlapped data in customer churn prediction
  publication-title: J. Big Data
– volume: 38
  start-page: 4989
  year: 2024
  end-page: 5005
  ident: b0065
  article-title: Generative models for tabular data: a review
  publication-title: J. Mech. Sci. Technol.
– volume: 359
  year: 2022
  ident: b0095
  article-title: Machine learning assisted prediction of biochar yield and composition via pyrolysis of biomass
  publication-title: Bioresour. Technol.
– volume: 24
  start-page: 41
  year: 2024
  ident: b0090
  article-title: Comparison of the effects of imputation methods for missing data in predictive modelling of cohort study datasets
  publication-title: BMC Med. Res. Methodol.
– volume: 13
  start-page: 2929
  year: 2025
  end-page: 2944
  ident: b0240
  article-title: Addressing data imbalance in crash data: evaluating generative adversarial network’s efficacy against conventional methods
  publication-title: IEEE Access
– volume: 214
  year: 2022
  ident: b0205
  article-title: Machine learning-assisted evaluation of potential biochars for pharmaceutical removal from water
  publication-title: Environ. Res.
– volume: 178
  start-page: 466
  year: 2017
  end-page: 478
  ident: b0085
  article-title: Mechanisms of metal sorption by biochars: biochar characteristics and modifications
  publication-title: Chemosphere
– volume: 166
  year: 2024
  ident: b0170
  article-title: Challenges and opportunities of generative models on tabular data
  publication-title: Appl. Soft Comput.
– volume: 94
  year: 2025
  ident: b0080
  article-title: A generalized generation and evaluation method for cutting process parameter knowledge based on CTGAN
  publication-title: Robot. Cim-Int. Manuf.
– volume: 190
  year: 2020
  ident: b0195
  article-title: Effect of N
  publication-title: Environ. Res.
– volume: 24
  start-page: 269
  year: 2024
  ident: b0055
  article-title: A novel MissForest-based missing values imputation approach with recursive feature elimination in medical applications
  publication-title: BMC Med. Res. Methodol.
– volume: 22
  start-page: 3177
  year: 2022
  end-page: 3179
  ident: b0070
  article-title: Functional ordered mesoporous materials: present and future
  publication-title: Nano Lett.
– volume: 280
  start-page: 239
  year: 2019
  end-page: 246
  ident: b0215
  article-title: Highly synergistic effects on ammonium removal by the co-system of
  publication-title: Bioresour. Technol.
– volume: 206
  year: 2025
  ident: b0175
  article-title: Optimizing warpage in semiconductor packaging using GA-NN and conditional GAN with explainable AI
  publication-title: Comput. Ind. Eng.
– volume: 168
  year: 2024
  ident: b0050
  article-title: From raw to refined: data preprocessing for construction machine learning (ML), deep learning (DL), and reinforcement learning (RL) models
  publication-title: Automat. Constr.
– volume: 115
  year: 2024
  ident: b0210
  article-title: In-situ evaluation of volatile products released during pyrolysis of coals with different ranks
  publication-title: J. Energy Inst.
– volume: 21
  start-page: 1
  year: 2024
  end-page: 28
  ident: b0165
  article-title: GANs in the panorama of synthetic data generation methods
  publication-title: ACM Trans. Multim. Comput. Commun. Appl.
– volume: 156
  year: 2021
  ident: b0125
  article-title: Elemental composition of biochars is affected by methods used for its determination
  publication-title: J. Anal. Appl. Pyrol.
– volume: 9
  start-page: 98
  year: 2022
  ident: b0140
  article-title: The use of generative adversarial networks to alleviate class imbalance in tabular data: a survey
  publication-title: J. Big Data
– volume: 427
  year: 2022
  ident: b0010
  article-title: Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes: recent advances and prospects
  publication-title: Chem. Eng. J.
– volume: 106
  start-page: 226
  year: 2014
  end-page: 231
  ident: b0150
  article-title: Biochars derived from various crop straws: characterization and Cd (II) removal potential
  publication-title: Ecotox. Environ. Saf.
– volume: 394
  year: 2024
  ident: b0190
  article-title: Machine learning applications for biochar studies: a mini-review
  publication-title: Bioresour. Technol.
– volume: 15
  start-page: 1796
  year: 2023
  ident: b0030
  article-title: Preparation, properties, and application of biochar for improving sewage sludge dewatering performance: a review
  publication-title: Water
– volume: 14
  start-page: 5975
  year: 2024
  ident: b0110
  article-title: Challenges of using synthetic data generation methods for tabular microdata
  publication-title: Appl. Sci.
– volume: 107
  start-page: 419
  year: 2012
  end-page: 428
  ident: b0025
  article-title: Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar
  publication-title: Bioresour. Technol.
– volume: 181
  year: 2024
  ident: b0145
  article-title: Machine learning prediction of biochar physicochemical properties based on biomass characteristics and pyrolysis conditions
  publication-title: J. Anal. Appl. Pyrol.
– volume: 19
  start-page: 191
  year: 2020
  end-page: 215
  ident: b0160
  article-title: Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects
  publication-title: Rev. Environ. Sci. Bio.
– volume: 59
  start-page: 2861
  year: 2025
  end-page: 2874
  ident: b0200
  article-title: Unraveling the trade-off effect of pyrogenic carbons between biopseudocapacitors and bioconductors during anaerobic methanogenesis
  publication-title: Environ. Sci. Technol.
– volume: 4
  start-page: 46
  year: 2025
  ident: b0100
  article-title: Enhanced machine learning prediction of biochar adsorption for dyes: parameter optimization and experimental validation
  publication-title: Carbon Res.
– volume: 10
  start-page: 115
  year: 2023
  ident: b0045
  article-title: Tabular and latent space synthetic data generation: a literature review
  publication-title: J. Big Data
– volume: 63
  start-page: 381
  year: 2022
  end-page: 391
  ident: b0180
  article-title: Hybrid physics-based and data-driven models for smart manufacturing: modelling, simulation, and explainability
  publication-title: J. Manuf. Syst.
– volume: 7
  start-page: 61
  year: 2025
  ident: b0235
  article-title: Robust biochar yield and composition prediction via uncertainty-aware ResNet-based autoencoder
  publication-title: Biochar
– volume: 799
  year: 2021
  ident: b0035
  article-title: In situ characterization of functional groups of biochar in pyrolysis of cellulose
  publication-title: Sci. Total Environ.
– volume: 227
  start-page: 1002
  year: 2019
  end-page: 1022
  ident: b0185
  article-title: Preparation, modification and environmental application of biochar: a review
  publication-title: J. Clean. Prod.
– volume: 367
  year: 2023
  ident: b0225
  article-title: Effects of biochar on anaerobic treatment systems: some perspectives
  publication-title: Bioresour. Technol.
– volume: 265
  year: 2021
  ident: b0135
  article-title: Influence of Brønsted and Lewis acidity of the modified Al-MCM-41 solid acid on cellulose conversion and 5-hydroxylmethylfurfuran selectivity
  publication-title: Chemosphere
– volume: 280
  start-page: 239
  year: 2019
  ident: 10.1016/j.biortech.2025.133207_b0215
  article-title: Highly synergistic effects on ammonium removal by the co-system of Pseudomonas stutzeri XL-2 and modified walnut shell biochar
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.02.037
– volume: 24
  start-page: 41
  issue: 1
  year: 2024
  ident: 10.1016/j.biortech.2025.133207_b0090
  article-title: Comparison of the effects of imputation methods for missing data in predictive modelling of cohort study datasets
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-024-02173-x
– volume: 359
  year: 2022
  ident: 10.1016/j.biortech.2025.133207_b0095
  article-title: Machine learning assisted prediction of biochar yield and composition via pyrolysis of biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.127511
– volume: 178
  start-page: 466
  year: 2017
  ident: 10.1016/j.biortech.2025.133207_b0085
  article-title: Mechanisms of metal sorption by biochars: biochar characteristics and modifications
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.03.072
– volume: 115
  year: 2024
  ident: 10.1016/j.biortech.2025.133207_b0210
  article-title: In-situ evaluation of volatile products released during pyrolysis of coals with different ranks
  publication-title: J. Energy Inst.
  doi: 10.1016/j.joei.2024.101660
– volume: 9
  year: 2023
  ident: 10.1016/j.biortech.2025.133207_b0015
  article-title: An investigation of the imputation techniques for missing values in ordinal data enhancing clustering and classification analysis validity
  publication-title: Decis. Anal. J.
– volume: 10
  start-page: 115
  issue: 1
  year: 2023
  ident: 10.1016/j.biortech.2025.133207_b0045
  article-title: Tabular and latent space synthetic data generation: a literature review
  publication-title: J. Big Data
  doi: 10.1186/s40537-023-00792-7
– volume: 63
  start-page: 381
  year: 2022
  ident: 10.1016/j.biortech.2025.133207_b0180
  article-title: Hybrid physics-based and data-driven models for smart manufacturing: modelling, simulation, and explainability
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2022.04.004
– volume: 11
  start-page: 121
  issue: 1
  year: 2024
  ident: 10.1016/j.biortech.2025.133207_b0005
  article-title: CTGAN-ENN: a tabular GAN-based hybrid sampling method for imbalanced and overlapped data in customer churn prediction
  publication-title: J. Big Data
  doi: 10.1186/s40537-024-00982-x
– volume: 246
  start-page: 110
  year: 2017
  ident: 10.1016/j.biortech.2025.133207_b0130
  article-title: Environmental application of biochar: current status and perspectives
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.08.122
– volume: 17
  start-page: 372
  issue: 4
  year: 2014
  ident: 10.1016/j.biortech.2025.133207_b0115
  article-title: Missing data: five practical guidelines
  publication-title: Organ. Res. Methods
  doi: 10.1177/1094428114548590
– volume: 181
  year: 2024
  ident: 10.1016/j.biortech.2025.133207_b0145
  article-title: Machine learning prediction of biochar physicochemical properties based on biomass characteristics and pyrolysis conditions
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2024.106596
– volume: 206
  year: 2025
  ident: 10.1016/j.biortech.2025.133207_b0175
  article-title: Optimizing warpage in semiconductor packaging using GA-NN and conditional GAN with explainable AI
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2025.111246
– volume: 367
  year: 2023
  ident: 10.1016/j.biortech.2025.133207_b0225
  article-title: Effects of biochar on anaerobic treatment systems: some perspectives
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.128226
– volume: 156
  year: 2021
  ident: 10.1016/j.biortech.2025.133207_b0125
  article-title: Elemental composition of biochars is affected by methods used for its determination
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2021.105174
– volume: 166
  year: 2024
  ident: 10.1016/j.biortech.2025.133207_b0170
  article-title: Challenges and opportunities of generative models on tabular data
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.112223
– volume: 19
  start-page: 191
  issue: 1
  year: 2020
  ident: 10.1016/j.biortech.2025.133207_b0160
  article-title: Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects
  publication-title: Rev. Environ. Sci. Bio.
  doi: 10.1007/s11157-020-09523-3
– volume: 190
  year: 2020
  ident: 10.1016/j.biortech.2025.133207_b0195
  article-title: Effect of N2 flow rate on kinetic investigation of lignin pyrolysis
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.109976
– volume: 10
  issue: 3
  year: 2022
  ident: 10.1016/j.biortech.2025.133207_b0155
  article-title: Prediction of carbon sequestration of biochar produced from biomass pyrolysis by artificial neural network
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2022.107640
– volume: 17
  start-page: 106
  issue: 1
  year: 2019
  ident: 10.1016/j.biortech.2025.133207_b0020
  article-title: Impact of missing data on bias and precision when estimating change in patient-reported outcomes from a clinical registry
  publication-title: Health Qual. Life Outcomes
  doi: 10.1186/s12955-019-1181-2
– volume: 22
  start-page: 3177
  issue: 8
  year: 2022
  ident: 10.1016/j.biortech.2025.133207_b0070
  article-title: Functional ordered mesoporous materials: present and future
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c00902
– volume: 265
  year: 2021
  ident: 10.1016/j.biortech.2025.133207_b0135
  article-title: Influence of Brønsted and Lewis acidity of the modified Al-MCM-41 solid acid on cellulose conversion and 5-hydroxylmethylfurfuran selectivity
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.129062
– volume: 21
  start-page: 1
  issue: 1
  year: 2024
  ident: 10.1016/j.biortech.2025.133207_b0165
  article-title: GANs in the panorama of synthetic data generation methods
  publication-title: ACM Trans. Multim. Comput. Commun. Appl.
  doi: 10.1145/3657294
– volume: 106
  start-page: 226
  year: 2014
  ident: 10.1016/j.biortech.2025.133207_b0150
  article-title: Biochars derived from various crop straws: characterization and Cd (II) removal potential
  publication-title: Ecotox. Environ. Saf.
  doi: 10.1016/j.ecoenv.2014.04.042
– volume: 9
  start-page: 98
  issue: 1
  year: 2022
  ident: 10.1016/j.biortech.2025.133207_b0140
  article-title: The use of generative adversarial networks to alleviate class imbalance in tabular data: a survey
  publication-title: J. Big Data
  doi: 10.1186/s40537-022-00648-6
– volume: 406
  year: 2021
  ident: 10.1016/j.biortech.2025.133207_b0245
  article-title: Machine learning for the selection of carbon-based materials for tetracycline and sulfamethoxazole adsorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126782
– volume: 13
  start-page: 2929
  year: 2025
  ident: 10.1016/j.biortech.2025.133207_b0240
  article-title: Addressing data imbalance in crash data: evaluating generative adversarial network’s efficacy against conventional methods
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3524620
– volume: 74
  start-page: 1
  year: 2016
  ident: 10.1016/j.biortech.2025.133207_b0120
  article-title: Synthpop: Bespoke creation of synthetic data in R
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v074.i11
– volume: 427
  year: 2022
  ident: 10.1016/j.biortech.2025.133207_b0010
  article-title: Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes: recent advances and prospects
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130011
– volume: 24
  start-page: 269
  issue: 1
  year: 2024
  ident: 10.1016/j.biortech.2025.133207_b0055
  article-title: A novel MissForest-based missing values imputation approach with recursive feature elimination in medical applications
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-024-02392-2
– volume: 6
  start-page: 19
  year: 2024
  ident: 10.1016/j.biortech.2025.133207_b0230
  article-title: A novel intelligent system based on machine learning for hydrochar multi-target prediction from the hydrothermal carbonization of biomass
  publication-title: Biochar
  doi: 10.1007/s42773-024-00303-8
– volume: 14
  start-page: 5975
  issue: 14
  year: 2024
  ident: 10.1016/j.biortech.2025.133207_b0110
  article-title: Challenges of using synthetic data generation methods for tabular microdata
  publication-title: Appl. Sci.
  doi: 10.3390/app14145975
– volume: 394
  year: 2024
  ident: 10.1016/j.biortech.2025.133207_b0190
  article-title: Machine learning applications for biochar studies: a mini-review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2023.130291
– volume: 107
  start-page: 419
  year: 2012
  ident: 10.1016/j.biortech.2025.133207_b0025
  article-title: Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.11.084
– volume: 59
  start-page: 2861
  issue: 5
  year: 2025
  ident: 10.1016/j.biortech.2025.133207_b0200
  article-title: Unraveling the trade-off effect of pyrogenic carbons between biopseudocapacitors and bioconductors during anaerobic methanogenesis
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.4c10638
– volume: 763
  year: 2021
  ident: 10.1016/j.biortech.2025.133207_b0075
  article-title: An overview on engineering the surface area and porosity of biochar
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.144204
– volume: 7
  start-page: 61
  year: 2025
  ident: 10.1016/j.biortech.2025.133207_b0235
  article-title: Robust biochar yield and composition prediction via uncertainty-aware ResNet-based autoencoder
  publication-title: Biochar
  doi: 10.1007/s42773-025-00446-2
– volume: 15
  start-page: 1796
  issue: 9
  year: 2023
  ident: 10.1016/j.biortech.2025.133207_b0030
  article-title: Preparation, properties, and application of biochar for improving sewage sludge dewatering performance: a review
  publication-title: Water
  doi: 10.3390/w15091796
– volume: 297
  year: 2020
  ident: 10.1016/j.biortech.2025.133207_b0040
  article-title: Co-pyrolysis of lignocellulosic and macroalgae biomasses for the production of biochar – a review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.122408
– volume: 227
  start-page: 1002
  year: 2019
  ident: 10.1016/j.biortech.2025.133207_b0185
  article-title: Preparation, modification and environmental application of biochar: a review
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.04.282
– volume: 378
  year: 2019
  ident: 10.1016/j.biortech.2025.133207_b0250
  article-title: The application of machine learning methods for prediction of metal sorption onto biochars
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.06.004
– volume: 799
  year: 2021
  ident: 10.1016/j.biortech.2025.133207_b0035
  article-title: In situ characterization of functional groups of biochar in pyrolysis of cellulose
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.149354
– volume: 214
  year: 2022
  ident: 10.1016/j.biortech.2025.133207_b0205
  article-title: Machine learning-assisted evaluation of potential biochars for pharmaceutical removal from water
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2022.113953
– volume: 168
  year: 2024
  ident: 10.1016/j.biortech.2025.133207_b0050
  article-title: From raw to refined: data preprocessing for construction machine learning (ML), deep learning (DL), and reinforcement learning (RL) models
  publication-title: Automat. Constr.
  doi: 10.1016/j.autcon.2024.105844
– volume: 38
  start-page: 4989
  issue: 9
  year: 2024
  ident: 10.1016/j.biortech.2025.133207_b0065
  article-title: Generative models for tabular data: a review
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-024-0835-0
– volume: 429
  year: 2022
  ident: 10.1016/j.biortech.2025.133207_b0220
  article-title: Biochar as a novel carbon-negative electron source and mediator: electron exchange capacity (EEC) and environmentally persistent free radicals (EPFRs): a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132313
– volume: 4
  start-page: 46
  issue: 1
  year: 2025
  ident: 10.1016/j.biortech.2025.133207_b0100
  article-title: Enhanced machine learning prediction of biochar adsorption for dyes: parameter optimization and experimental validation
  publication-title: Carbon Res.
  doi: 10.1007/s44246-025-00213-9
– volume: 3
  start-page: 91
  issue: 1
  year: 2022
  ident: 10.1016/j.biortech.2025.133207_b0105
  article-title: A review: data pre-processing and data augmentation techniques
  publication-title: Glob. Transitions Proc.
  doi: 10.1016/j.gltp.2022.04.020
– volume: 94
  year: 2025
  ident: 10.1016/j.biortech.2025.133207_b0080
  article-title: A generalized generation and evaluation method for cutting process parameter knowledge based on CTGAN
  publication-title: Robot. Cim-Int. Manuf.
  doi: 10.1016/j.rcim.2025.102963
– volume: 4
  start-page: 36
  year: 2021
  ident: 10.1016/j.biortech.2025.133207_b0060
  article-title: Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature
  publication-title: Carbon Resour. Convers.
SSID ssj0003172
Score 2.4933398
Snippet [Display omitted] •Generation framework for synthesizing biochar property data was established.•Missing records in reference dataset were imputed by...
Biochar properties are governed by trade-offs among feedstock types, modification methods, and pyrolysis conditions, complicating the design of engineered...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 133207
SubjectTerms Biochar
Cellulose - chemistry
Charcoal - chemistry
Generative models
Models, Theoretical
Pyrolysis
Synthetic data
Synthpop
Title Tabular generative modeling framework for multi-property data synthesis of pyrolyzed biochar
URI https://dx.doi.org/10.1016/j.biortech.2025.133207
https://www.ncbi.nlm.nih.gov/pubmed/40865582
https://www.proquest.com/docview/3246405138
Volume 438
WOSCitedRecordID wos001562315100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB7RFtFyQFCghEe1SNyQ03j92PUxqoqghwqhSA0SkmWv18VVsS0nQS2_ntmXkxIi4MAhTrT22vF-XybfrGdnAN7kVCRc-rGXcSHQQclDj0cR9Uoe8DzO0RoWhS42wc7O-HSafLRhRTNdToDVNb--Ttr_CjW2Idhq6ew_wN2fFBvwM4KOW4Qdt38HfJbr0NILnVBaRwbpcjc6ZNKFYunoQh1M6LVqOr5DLa6CRVUGA5SENktJe9M1Vzc_lEitGrU-69Yj4Krp7Nz_2_naBP1nOw-t3vugHx05cC6r2ddFVi0JZQ89VdW5l0ef2-ZPi-rKpge3sxM0Won0kMaicqaKxZkiL87khiajizWa6CZTU_p2zZ6bqYXLId5lp25lqK4xXO-AELTfNKDhSC21NQWNfsmk7XZtwQ5lUYI2cGf84WR62v9zo5aiK6vIf3_ZPbjnTrRJy2zyVbRmmTyEB9bZIGNDkkdwR9b7cH980dmEK3Ifdo9dxT_cs5Kc8jF8sUQiSyIRRyTSE4kgkchtIhFFJNITiTQl6YlELJGewOTdyeT4vWdrcXgCR2XuoeorIp_JgEsuwyQMKBNJFke0TGIh_FLIoJRRXoZMoI-qZDSjRVAW0SgLEiGCp7BdN7V8BkSyMNY6tJQ8HJUhj_DFKHaUfo46agBHblDT1mRcSV0o4mXqEEkVIqlBZACJG_vU6kajB1Ok0R_7vnZgpTja6mlZVstmMUvR04jRm_EDPoADg2L_fRwBnm_c8wL2lj-Hl7A97xbyFdwV3-fVrDuELTblh5Z-PwEFeaH5
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tabular+generative+modeling+framework+for+multi-property+data+synthesis+of+pyrolyzed+biochar&rft.jtitle=Bioresource+technology&rft.au=Yang%2C+Yang&rft.au=Li%2C+Weishuai&rft.au=Huang%2C+Jingang&rft.au=Wang%2C+Ruilin&rft.date=2025-12-01&rft.eissn=1873-2976&rft.volume=438&rft.spage=133207&rft_id=info:doi/10.1016%2Fj.biortech.2025.133207&rft_id=info%3Apmid%2F40865582&rft.externalDocID=40865582
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon