A DIRECT SEARCH QUASI-NEWTON METHOD FOR NONSMOOTH UNCONSTRAINED OPTIMIZATION

A direct search quasi-Newton algorithm is presented for local minimization of Lipschitz continuous black-box functions. The method estimates the gradient via central differences using a maximal frame around each iterate. When nonsmoothness prevents progress, a global direction search is used to loca...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The ANZIAM journal Ročník 59; číslo 2; s. 215 - 231
Hlavný autor: PRICE, C. J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cambridge, UK Cambridge University Press 01.10.2017
Predmet:
ISSN:1446-1811, 1446-8735
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A direct search quasi-Newton algorithm is presented for local minimization of Lipschitz continuous black-box functions. The method estimates the gradient via central differences using a maximal frame around each iterate. When nonsmoothness prevents progress, a global direction search is used to locate a descent direction. Almost sure convergence to Clarke stationary point(s) is shown, where convergence is independent of the accuracy of the gradient estimates. Numerical results show that the method is effective in practice.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1446-1811
1446-8735
DOI:10.1017/S1446181117000323