A DIRECT SEARCH QUASI-NEWTON METHOD FOR NONSMOOTH UNCONSTRAINED OPTIMIZATION

A direct search quasi-Newton algorithm is presented for local minimization of Lipschitz continuous black-box functions. The method estimates the gradient via central differences using a maximal frame around each iterate. When nonsmoothness prevents progress, a global direction search is used to loca...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The ANZIAM journal Ročník 59; číslo 2; s. 215 - 231
Hlavní autor: PRICE, C. J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge, UK Cambridge University Press 01.10.2017
Témata:
ISSN:1446-1811, 1446-8735
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A direct search quasi-Newton algorithm is presented for local minimization of Lipschitz continuous black-box functions. The method estimates the gradient via central differences using a maximal frame around each iterate. When nonsmoothness prevents progress, a global direction search is used to locate a descent direction. Almost sure convergence to Clarke stationary point(s) is shown, where convergence is independent of the accuracy of the gradient estimates. Numerical results show that the method is effective in practice.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1446-1811
1446-8735
DOI:10.1017/S1446181117000323