Classification of short single-lead electrocardiograms (ECGs) for atrial fibrillation detection using piecewise linear spline and XGBoost

Detection of atrial fibrillation is important for risk stratification of stroke. We developed a novel methodology to classify electrocardiograms (ECGs) to normal, atrial fibrillation and other cardiac dysrhythmias as defined by the PhysioNet Challenge 2017. More specifically, we used piecewise linea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological measurement Jg. 39; H. 10; S. 104006
Hauptverfasser: Chen, Yao, Wang, Xiao, Jung, Yonghan, Abedi, Vida, Zand, Ramin, Bikak, Marvi, Adibuzzaman, Mohammad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 24.10.2018
ISSN:1361-6579, 1361-6579
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Detection of atrial fibrillation is important for risk stratification of stroke. We developed a novel methodology to classify electrocardiograms (ECGs) to normal, atrial fibrillation and other cardiac dysrhythmias as defined by the PhysioNet Challenge 2017. More specifically, we used piecewise linear splines for the feature selection and a gradient boosting algorithm for the classifier. In the algorithm, the ECG waveform is fitted by a piecewise linear spline, and morphological features relating to the piecewise linear spline coefficients are extracted. XGBoost is used to classify the morphological coefficients and heart rate variability features. The performance of the algorithm was evaluated by the PhysioNet Challenge database (3658 ECGs classified by experts). Our algorithm achieved an average F score of 81% for a 10-fold cross-validation and also achieved 81% for F score on the independent testing set. This score is similar to the top 9th score (81%) in the official phase of the PhysioNet Challenge 2017. Our algorithm presents a good performance on multi-label short ECG classification with selected morphological features.
AbstractList Detection of atrial fibrillation is important for risk stratification of stroke. We developed a novel methodology to classify electrocardiograms (ECGs) to normal, atrial fibrillation and other cardiac dysrhythmias as defined by the PhysioNet Challenge 2017.OBJECTIVEDetection of atrial fibrillation is important for risk stratification of stroke. We developed a novel methodology to classify electrocardiograms (ECGs) to normal, atrial fibrillation and other cardiac dysrhythmias as defined by the PhysioNet Challenge 2017.More specifically, we used piecewise linear splines for the feature selection and a gradient boosting algorithm for the classifier. In the algorithm, the ECG waveform is fitted by a piecewise linear spline, and morphological features relating to the piecewise linear spline coefficients are extracted. XGBoost is used to classify the morphological coefficients and heart rate variability features.APPROACHMore specifically, we used piecewise linear splines for the feature selection and a gradient boosting algorithm for the classifier. In the algorithm, the ECG waveform is fitted by a piecewise linear spline, and morphological features relating to the piecewise linear spline coefficients are extracted. XGBoost is used to classify the morphological coefficients and heart rate variability features.The performance of the algorithm was evaluated by the PhysioNet Challenge database (3658 ECGs classified by experts). Our algorithm achieved an average F 1 score of 81% for a 10-fold cross-validation and also achieved 81% for F 1 score on the independent testing set. This score is similar to the top 9th score (81%) in the official phase of the PhysioNet Challenge 2017.MAIN RESULTSThe performance of the algorithm was evaluated by the PhysioNet Challenge database (3658 ECGs classified by experts). Our algorithm achieved an average F 1 score of 81% for a 10-fold cross-validation and also achieved 81% for F 1 score on the independent testing set. This score is similar to the top 9th score (81%) in the official phase of the PhysioNet Challenge 2017.Our algorithm presents a good performance on multi-label short ECG classification with selected morphological features.SIGNIFICANCEOur algorithm presents a good performance on multi-label short ECG classification with selected morphological features.
Detection of atrial fibrillation is important for risk stratification of stroke. We developed a novel methodology to classify electrocardiograms (ECGs) to normal, atrial fibrillation and other cardiac dysrhythmias as defined by the PhysioNet Challenge 2017. More specifically, we used piecewise linear splines for the feature selection and a gradient boosting algorithm for the classifier. In the algorithm, the ECG waveform is fitted by a piecewise linear spline, and morphological features relating to the piecewise linear spline coefficients are extracted. XGBoost is used to classify the morphological coefficients and heart rate variability features. The performance of the algorithm was evaluated by the PhysioNet Challenge database (3658 ECGs classified by experts). Our algorithm achieved an average F score of 81% for a 10-fold cross-validation and also achieved 81% for F score on the independent testing set. This score is similar to the top 9th score (81%) in the official phase of the PhysioNet Challenge 2017. Our algorithm presents a good performance on multi-label short ECG classification with selected morphological features.
Author Adibuzzaman, Mohammad
Jung, Yonghan
Zand, Ramin
Chen, Yao
Wang, Xiao
Abedi, Vida
Bikak, Marvi
Author_xml – sequence: 1
  givenname: Yao
  surname: Chen
  fullname: Chen, Yao
  organization: Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN, United States of America. Department of Statistics, Purdue University, West Lafayette, IN, United States of America
– sequence: 2
  givenname: Xiao
  surname: Wang
  fullname: Wang, Xiao
– sequence: 3
  givenname: Yonghan
  surname: Jung
  fullname: Jung, Yonghan
– sequence: 4
  givenname: Vida
  surname: Abedi
  fullname: Abedi, Vida
– sequence: 5
  givenname: Ramin
  surname: Zand
  fullname: Zand, Ramin
– sequence: 6
  givenname: Marvi
  surname: Bikak
  fullname: Bikak, Marvi
– sequence: 7
  givenname: Mohammad
  surname: Adibuzzaman
  fullname: Adibuzzaman, Mohammad
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30183685$$D View this record in MEDLINE/PubMed
BookMark eNpNkE1LAzEQhoNU7IfePUmO9bA2H92PHLXUKhS8KHgrs8mkRtJNTXYRf4L_2pZW8TQPwzsPwzskvSY0SMglZzecVdWEy4JnRV6qCYCxzJ6Qwd-q94_7ZJjSO2OcVyI_I33JeCWLKh-Q75mHlJx1GloXGhosTW8htjS5Zu0x8wiGokfdxqAhGhfWETaJjuezRbqmNkQKbXTgqXV1dN4fNAbb3cmeur2Ibh1q_HQJqXcNQqRpuwcKjaGvi7sQUntOTi34hBfHOSIv9_Pn2UO2fFo8zm6XmZa8bDMJDJVWZSmUnNYFF6ClFFVutJE6t6CUldOcgeZYT2VhKlUyJWuUtlS1nVoxIuODdxvDR4epXW1c0rj7vMHQpZXgjEmhcpHvolfHaFdv0Ky20W0gfq1-6xM_LIt2tg
CitedBy_id crossref_primary_10_1038_s41598_024_63378_0
crossref_primary_10_1136_heartjnl_2020_318726
crossref_primary_10_1088_1361_6579_ac08e6
crossref_primary_10_3390_electronics11030315
crossref_primary_10_1109_TIM_2023_3273648
crossref_primary_10_1007_s42835_023_01570_4
crossref_primary_10_1007_s11668_024_01894_x
crossref_primary_10_3390_app8122339
crossref_primary_10_1038_s41598_022_22719_7
crossref_primary_10_1038_s41591_023_02482_6
crossref_primary_10_1016_j_engappai_2023_106892
crossref_primary_10_2196_66973
crossref_primary_10_62838_amset_2024_0013
crossref_primary_10_1088_1361_6579_ac70a4
crossref_primary_10_1186_s12955_023_02109_x
crossref_primary_10_1016_j_procs_2024_04_155
crossref_primary_10_1109_TBME_2023_3321792
crossref_primary_10_3390_s25010145
crossref_primary_10_1109_TIM_2020_3044718
crossref_primary_10_1016_j_anaerobe_2022_102628
crossref_primary_10_1093_cvr_cvz321
crossref_primary_10_1016_j_cmpb_2022_106901
crossref_primary_10_1016_j_compbiomed_2021_104404
crossref_primary_10_1109_TIM_2024_3387504
crossref_primary_10_1155_2023_3269144
crossref_primary_10_3390_app10186593
crossref_primary_10_1016_j_compbiomed_2022_105331
crossref_primary_10_1016_j_amjmed_2019_01_017
crossref_primary_10_3390_s21206848
crossref_primary_10_1088_1361_6579_ac72f5
crossref_primary_10_1109_JSEN_2020_3043193
crossref_primary_10_3390_pr10061078
crossref_primary_10_1038_s41598_021_85223_4
crossref_primary_10_1186_s12911_021_01453_6
crossref_primary_10_1016_j_compbiomed_2022_105270
crossref_primary_10_1111_jch_14774
ContentType Journal Article
DBID NPM
7X8
DOI 10.1088/1361-6579/aadf0f
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Engineering
Physics
EISSN 1361-6579
ExternalDocumentID 30183685
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
123
1JI
4.4
53G
5B3
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NPM
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
UCJ
W28
XPP
ZMT
7X8
ADEQX
AEINN
ID FETCH-LOGICAL-c317t-3a0e9c9772934b612ac33285dcd3c5fa99f3450ac1eb436d897093be3f79bf4f2
IEDL.DBID 7X8
ISSN 1361-6579
IngestDate Fri Sep 05 07:37:46 EDT 2025
Wed Feb 19 02:36:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-3a0e9c9772934b612ac33285dcd3c5fa99f3450ac1eb436d897093be3f79bf4f2
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
PMID 30183685
PQID 2100329525
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2100329525
pubmed_primary_30183685
PublicationCentury 2000
PublicationDate 2018-10-24
20181024
PublicationDateYYYYMMDD 2018-10-24
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-24
  day: 24
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physiological measurement
PublicationTitleAlternate Physiol Meas
PublicationYear 2018
SSID ssj0011825
Score 2.441532
Snippet Detection of atrial fibrillation is important for risk stratification of stroke. We developed a novel methodology to classify electrocardiograms (ECGs) to...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 104006
Title Classification of short single-lead electrocardiograms (ECGs) for atrial fibrillation detection using piecewise linear spline and XGBoost
URI https://www.ncbi.nlm.nih.gov/pubmed/30183685
https://www.proquest.com/docview/2100329525
Volume 39
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VFlA5FFgoLS1okDjAwVqv7WziE4KqHwe66gHQ3laOP8pKq2Rbb-E39F937KSUCxJSLzkkshTZ4_HzzJt5AO81N7q0wrOxto6pMQ-slqVjwpmqlo6bkEMDP76Wk0k1neqzPuAWe1rlrU_Mjtq1NsXIh3Q14VLoQhSflhcsqUal7GovofEANiRBmWTV5fQui0DYuejqrkaJ4qH7NCVtrOGfd0NjXODh3wAzHzRHT-_7i89gq4eY-Lmzieew5psBPPmr8eAAHp_2KfUBPMocUBtfwHUWyEzUobxa2AaMPwmdYwonLDxbkDlgL5tjM401Mbsifjg8OI4fkdAvmiwCgiHVESw6lh06v8p0rwYTx_4cl3Nv_e959JgQrrnEmIqCPZrG4fT4S9vG1Uv4fnT47eCE9UoNzBL-WDFpuNdWJ6QuVU2gyVgpRVU466QtgtE6SFVwY0e-VnLsKl1yLWsvQ6nroILYhvWmbfwOoHCCTkj6rrxTRo1qxau6GDm6S0sCM34X3t1O_ox2QkpvmMa3V3F2N_278Kpbwdmya9kxIzdWpVb7r_9j9B5sEirKTW-F2oeNQH7Av4GH9tdqHi_fZhOj5-Ts9Ab8xty-
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+short+single-lead+electrocardiograms+%28ECGs%29+for+atrial+fibrillation+detection+using+piecewise+linear+spline+and+XGBoost&rft.jtitle=Physiological+measurement&rft.au=Chen%2C+Yao&rft.au=Wang%2C+Xiao&rft.au=Jung%2C+Yonghan&rft.au=Abedi%2C+Vida&rft.date=2018-10-24&rft.eissn=1361-6579&rft.volume=39&rft.issue=10&rft.spage=104006&rft_id=info:doi/10.1088%2F1361-6579%2Faadf0f&rft_id=info%3Apmid%2F30183685&rft_id=info%3Apmid%2F30183685&rft.externalDocID=30183685
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-6579&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-6579&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-6579&client=summon