Classification of short single-lead electrocardiograms (ECGs) for atrial fibrillation detection using piecewise linear spline and XGBoost
Detection of atrial fibrillation is important for risk stratification of stroke. We developed a novel methodology to classify electrocardiograms (ECGs) to normal, atrial fibrillation and other cardiac dysrhythmias as defined by the PhysioNet Challenge 2017. More specifically, we used piecewise linea...
Gespeichert in:
| Veröffentlicht in: | Physiological measurement Jg. 39; H. 10; S. 104006 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
24.10.2018
|
| ISSN: | 1361-6579, 1361-6579 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Detection of atrial fibrillation is important for risk stratification of stroke. We developed a novel methodology to classify electrocardiograms (ECGs) to normal, atrial fibrillation and other cardiac dysrhythmias as defined by the PhysioNet Challenge 2017.
More specifically, we used piecewise linear splines for the feature selection and a gradient boosting algorithm for the classifier. In the algorithm, the ECG waveform is fitted by a piecewise linear spline, and morphological features relating to the piecewise linear spline coefficients are extracted. XGBoost is used to classify the morphological coefficients and heart rate variability features.
The performance of the algorithm was evaluated by the PhysioNet Challenge database (3658 ECGs classified by experts). Our algorithm achieved an average F
score of 81% for a 10-fold cross-validation and also achieved 81% for F
score on the independent testing set. This score is similar to the top 9th score (81%) in the official phase of the PhysioNet Challenge 2017.
Our algorithm presents a good performance on multi-label short ECG classification with selected morphological features. |
|---|---|
| AbstractList | Detection of atrial fibrillation is important for risk stratification of stroke. We developed a novel methodology to classify electrocardiograms (ECGs) to normal, atrial fibrillation and other cardiac dysrhythmias as defined by the PhysioNet Challenge 2017.OBJECTIVEDetection of atrial fibrillation is important for risk stratification of stroke. We developed a novel methodology to classify electrocardiograms (ECGs) to normal, atrial fibrillation and other cardiac dysrhythmias as defined by the PhysioNet Challenge 2017.More specifically, we used piecewise linear splines for the feature selection and a gradient boosting algorithm for the classifier. In the algorithm, the ECG waveform is fitted by a piecewise linear spline, and morphological features relating to the piecewise linear spline coefficients are extracted. XGBoost is used to classify the morphological coefficients and heart rate variability features.APPROACHMore specifically, we used piecewise linear splines for the feature selection and a gradient boosting algorithm for the classifier. In the algorithm, the ECG waveform is fitted by a piecewise linear spline, and morphological features relating to the piecewise linear spline coefficients are extracted. XGBoost is used to classify the morphological coefficients and heart rate variability features.The performance of the algorithm was evaluated by the PhysioNet Challenge database (3658 ECGs classified by experts). Our algorithm achieved an average F 1 score of 81% for a 10-fold cross-validation and also achieved 81% for F 1 score on the independent testing set. This score is similar to the top 9th score (81%) in the official phase of the PhysioNet Challenge 2017.MAIN RESULTSThe performance of the algorithm was evaluated by the PhysioNet Challenge database (3658 ECGs classified by experts). Our algorithm achieved an average F 1 score of 81% for a 10-fold cross-validation and also achieved 81% for F 1 score on the independent testing set. This score is similar to the top 9th score (81%) in the official phase of the PhysioNet Challenge 2017.Our algorithm presents a good performance on multi-label short ECG classification with selected morphological features.SIGNIFICANCEOur algorithm presents a good performance on multi-label short ECG classification with selected morphological features. Detection of atrial fibrillation is important for risk stratification of stroke. We developed a novel methodology to classify electrocardiograms (ECGs) to normal, atrial fibrillation and other cardiac dysrhythmias as defined by the PhysioNet Challenge 2017. More specifically, we used piecewise linear splines for the feature selection and a gradient boosting algorithm for the classifier. In the algorithm, the ECG waveform is fitted by a piecewise linear spline, and morphological features relating to the piecewise linear spline coefficients are extracted. XGBoost is used to classify the morphological coefficients and heart rate variability features. The performance of the algorithm was evaluated by the PhysioNet Challenge database (3658 ECGs classified by experts). Our algorithm achieved an average F score of 81% for a 10-fold cross-validation and also achieved 81% for F score on the independent testing set. This score is similar to the top 9th score (81%) in the official phase of the PhysioNet Challenge 2017. Our algorithm presents a good performance on multi-label short ECG classification with selected morphological features. |
| Author | Adibuzzaman, Mohammad Jung, Yonghan Zand, Ramin Chen, Yao Wang, Xiao Abedi, Vida Bikak, Marvi |
| Author_xml | – sequence: 1 givenname: Yao surname: Chen fullname: Chen, Yao organization: Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN, United States of America. Department of Statistics, Purdue University, West Lafayette, IN, United States of America – sequence: 2 givenname: Xiao surname: Wang fullname: Wang, Xiao – sequence: 3 givenname: Yonghan surname: Jung fullname: Jung, Yonghan – sequence: 4 givenname: Vida surname: Abedi fullname: Abedi, Vida – sequence: 5 givenname: Ramin surname: Zand fullname: Zand, Ramin – sequence: 6 givenname: Marvi surname: Bikak fullname: Bikak, Marvi – sequence: 7 givenname: Mohammad surname: Adibuzzaman fullname: Adibuzzaman, Mohammad |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30183685$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkE1LAzEQhoNU7IfePUmO9bA2H92PHLXUKhS8KHgrs8mkRtJNTXYRf4L_2pZW8TQPwzsPwzskvSY0SMglZzecVdWEy4JnRV6qCYCxzJ6Qwd-q94_7ZJjSO2OcVyI_I33JeCWLKh-Q75mHlJx1GloXGhosTW8htjS5Zu0x8wiGokfdxqAhGhfWETaJjuezRbqmNkQKbXTgqXV1dN4fNAbb3cmeur2Ibh1q_HQJqXcNQqRpuwcKjaGvi7sQUntOTi34hBfHOSIv9_Pn2UO2fFo8zm6XmZa8bDMJDJVWZSmUnNYFF6ClFFVutJE6t6CUldOcgeZYT2VhKlUyJWuUtlS1nVoxIuODdxvDR4epXW1c0rj7vMHQpZXgjEmhcpHvolfHaFdv0Ky20W0gfq1-6xM_LIt2tg |
| CitedBy_id | crossref_primary_10_1038_s41598_024_63378_0 crossref_primary_10_1136_heartjnl_2020_318726 crossref_primary_10_1088_1361_6579_ac08e6 crossref_primary_10_3390_electronics11030315 crossref_primary_10_1109_TIM_2023_3273648 crossref_primary_10_1007_s42835_023_01570_4 crossref_primary_10_1007_s11668_024_01894_x crossref_primary_10_3390_app8122339 crossref_primary_10_1038_s41598_022_22719_7 crossref_primary_10_1038_s41591_023_02482_6 crossref_primary_10_1016_j_engappai_2023_106892 crossref_primary_10_2196_66973 crossref_primary_10_62838_amset_2024_0013 crossref_primary_10_1088_1361_6579_ac70a4 crossref_primary_10_1186_s12955_023_02109_x crossref_primary_10_1016_j_procs_2024_04_155 crossref_primary_10_1109_TBME_2023_3321792 crossref_primary_10_3390_s25010145 crossref_primary_10_1109_TIM_2020_3044718 crossref_primary_10_1016_j_anaerobe_2022_102628 crossref_primary_10_1093_cvr_cvz321 crossref_primary_10_1016_j_cmpb_2022_106901 crossref_primary_10_1016_j_compbiomed_2021_104404 crossref_primary_10_1109_TIM_2024_3387504 crossref_primary_10_1155_2023_3269144 crossref_primary_10_3390_app10186593 crossref_primary_10_1016_j_compbiomed_2022_105331 crossref_primary_10_1016_j_amjmed_2019_01_017 crossref_primary_10_3390_s21206848 crossref_primary_10_1088_1361_6579_ac72f5 crossref_primary_10_1109_JSEN_2020_3043193 crossref_primary_10_3390_pr10061078 crossref_primary_10_1038_s41598_021_85223_4 crossref_primary_10_1186_s12911_021_01453_6 crossref_primary_10_1016_j_compbiomed_2022_105270 crossref_primary_10_1111_jch_14774 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1088/1361-6579/aadf0f |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Engineering Physics |
| EISSN | 1361-6579 |
| ExternalDocumentID | 30183685 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X 123 1JI 4.4 53G 5B3 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NPM NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 UCJ W28 XPP ZMT 7X8 ADEQX AEINN |
| ID | FETCH-LOGICAL-c317t-3a0e9c9772934b612ac33285dcd3c5fa99f3450ac1eb436d897093be3f79bf4f2 |
| IEDL.DBID | 7X8 |
| ISSN | 1361-6579 |
| IngestDate | Fri Sep 05 07:37:46 EDT 2025 Wed Feb 19 02:36:21 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c317t-3a0e9c9772934b612ac33285dcd3c5fa99f3450ac1eb436d897093be3f79bf4f2 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
| PMID | 30183685 |
| PQID | 2100329525 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2100329525 pubmed_primary_30183685 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-24 20181024 |
| PublicationDateYYYYMMDD | 2018-10-24 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-24 day: 24 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Physiological measurement |
| PublicationTitleAlternate | Physiol Meas |
| PublicationYear | 2018 |
| SSID | ssj0011825 |
| Score | 2.441532 |
| Snippet | Detection of atrial fibrillation is important for risk stratification of stroke. We developed a novel methodology to classify electrocardiograms (ECGs) to... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 104006 |
| Title | Classification of short single-lead electrocardiograms (ECGs) for atrial fibrillation detection using piecewise linear spline and XGBoost |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30183685 https://www.proquest.com/docview/2100329525 |
| Volume | 39 |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VFlA5FFgoLS1okDjAwVqv7WziE4KqHwe66gHQ3laOP8pKq2Rbb-E39F937KSUCxJSLzkkshTZ4_HzzJt5AO81N7q0wrOxto6pMQ-slqVjwpmqlo6bkEMDP76Wk0k1neqzPuAWe1rlrU_Mjtq1NsXIh3Q14VLoQhSflhcsqUal7GovofEANiRBmWTV5fQui0DYuejqrkaJ4qH7NCVtrOGfd0NjXODh3wAzHzRHT-_7i89gq4eY-Lmzieew5psBPPmr8eAAHp_2KfUBPMocUBtfwHUWyEzUobxa2AaMPwmdYwonLDxbkDlgL5tjM401Mbsifjg8OI4fkdAvmiwCgiHVESw6lh06v8p0rwYTx_4cl3Nv_e959JgQrrnEmIqCPZrG4fT4S9vG1Uv4fnT47eCE9UoNzBL-WDFpuNdWJ6QuVU2gyVgpRVU466QtgtE6SFVwY0e-VnLsKl1yLWsvQ6nroILYhvWmbfwOoHCCTkj6rrxTRo1qxau6GDm6S0sCM34X3t1O_ox2QkpvmMa3V3F2N_278Kpbwdmya9kxIzdWpVb7r_9j9B5sEirKTW-F2oeNQH7Av4GH9tdqHi_fZhOj5-Ts9Ab8xty- |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+short+single-lead+electrocardiograms+%28ECGs%29+for+atrial+fibrillation+detection+using+piecewise+linear+spline+and+XGBoost&rft.jtitle=Physiological+measurement&rft.au=Chen%2C+Yao&rft.au=Wang%2C+Xiao&rft.au=Jung%2C+Yonghan&rft.au=Abedi%2C+Vida&rft.date=2018-10-24&rft.eissn=1361-6579&rft.volume=39&rft.issue=10&rft.spage=104006&rft_id=info:doi/10.1088%2F1361-6579%2Faadf0f&rft_id=info%3Apmid%2F30183685&rft_id=info%3Apmid%2F30183685&rft.externalDocID=30183685 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-6579&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-6579&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-6579&client=summon |