Some results involving generalized associated Legendre functions
In this paper, a new generalization of the associated Legendre functions of the first and the second kinds is introduced using the r-generalized Gauss hypergeometric function. The basic properties of these functions, in particular, some recurrence relations and differential and integral representati...
Uloženo v:
| Vydáno v: | Integral transforms and special functions Ročník 23; číslo 2; s. 105 - 114 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
01.02.2012
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 1065-2469, 1476-8291 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, a new generalization of the associated Legendre functions of the first and the second kinds is introduced using the r-generalized Gauss hypergeometric function. The basic properties of these functions, in particular, some recurrence relations and differential and integral representations, are given. The Whipple formulae are established. A new generalization of the classical Mehler-Fock integral transform is constructed, and the inversion formula is proved. Some new integrals involving the functions
τ, β
r
P
ν
μ
(t) and
are evaluated. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 1065-2469 1476-8291 |
| DOI: | 10.1080/10652469.2011.564379 |