Metal Halide Perovskite Single Crystals toward Electroluminescent Applications
Metal halide perovskite single crystals (MHP SCs) have attracted extensive attention due to their superior properties, such as higher carrier mobility, longer carrier diffusion length, and better stability than their polycrystalline counterparts. In particular, the suppression of ion migration and A...
Uloženo v:
| Vydáno v: | Advanced functional materials Ročník 35; číslo 21 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
Wiley Subscription Services, Inc
01.05.2025
|
| Témata: | |
| ISSN: | 1616-301X, 1616-3028 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Metal halide perovskite single crystals (MHP SCs) have attracted extensive attention due to their superior properties, such as higher carrier mobility, longer carrier diffusion length, and better stability than their polycrystalline counterparts. In particular, the suppression of ion migration and Auger recombination endows MHP SCs with excellent electroluminescence (EL) properties, thus holding great potential for highly efficient and stable light‐emitting devices. In this review, general overview of MHP crystal structures are begin, and highlight the merits of MHP SCs in terms of outstanding optoelectronic properties and high stability. Then, appropriate growth methods of high‐quality, thickness‐controlled MHP SCs for EL device applications are systematically summarized. Subsequently, recent advancements in developing MHP SC‐based perovskite light‐emitting diodes (PeLEDs) are discussed, and the effective strategies to further enhance the device performance are reviewed. Moreover, the potential application of MHP SCs for electrically pumped lasers is highlighted. Finally, the review is concluded with a detailed account of the current challenges and a perspective on the key approaches and opportunities on the optimization of SC growth, the improvement of device performance and the integration of SC‐based optoelectronic devices.
Metal halide perovskite single crystals (MHP SCs) have attracted much attention due to their dramatically enhanced optoelectronic properties and improved stability compared with their polycrystalline counterparts. The recent advancements in MHP SC‐based light‐emitting diodes, potential strategies for further device performance improvement and future application prospects in electrically pumped lasers are discussed in this review. |
|---|---|
| AbstractList | Metal halide perovskite single crystals (MHP SCs) have attracted extensive attention due to their superior properties, such as higher carrier mobility, longer carrier diffusion length, and better stability than their polycrystalline counterparts. In particular, the suppression of ion migration and Auger recombination endows MHP SCs with excellent electroluminescence (EL) properties, thus holding great potential for highly efficient and stable light‐emitting devices. In this review, general overview of MHP crystal structures are begin, and highlight the merits of MHP SCs in terms of outstanding optoelectronic properties and high stability. Then, appropriate growth methods of high‐quality, thickness‐controlled MHP SCs for EL device applications are systematically summarized. Subsequently, recent advancements in developing MHP SC‐based perovskite light‐emitting diodes (PeLEDs) are discussed, and the effective strategies to further enhance the device performance are reviewed. Moreover, the potential application of MHP SCs for electrically pumped lasers is highlighted. Finally, the review is concluded with a detailed account of the current challenges and a perspective on the key approaches and opportunities on the optimization of SC growth, the improvement of device performance and the integration of SC‐based optoelectronic devices. Metal halide perovskite single crystals (MHP SCs) have attracted extensive attention due to their superior properties, such as higher carrier mobility, longer carrier diffusion length, and better stability than their polycrystalline counterparts. In particular, the suppression of ion migration and Auger recombination endows MHP SCs with excellent electroluminescence (EL) properties, thus holding great potential for highly efficient and stable light‐emitting devices. In this review, general overview of MHP crystal structures are begin, and highlight the merits of MHP SCs in terms of outstanding optoelectronic properties and high stability. Then, appropriate growth methods of high‐quality, thickness‐controlled MHP SCs for EL device applications are systematically summarized. Subsequently, recent advancements in developing MHP SC‐based perovskite light‐emitting diodes (PeLEDs) are discussed, and the effective strategies to further enhance the device performance are reviewed. Moreover, the potential application of MHP SCs for electrically pumped lasers is highlighted. Finally, the review is concluded with a detailed account of the current challenges and a perspective on the key approaches and opportunities on the optimization of SC growth, the improvement of device performance and the integration of SC‐based optoelectronic devices. Metal halide perovskite single crystals (MHP SCs) have attracted much attention due to their dramatically enhanced optoelectronic properties and improved stability compared with their polycrystalline counterparts. The recent advancements in MHP SC‐based light‐emitting diodes, potential strategies for further device performance improvement and future application prospects in electrically pumped lasers are discussed in this review. |
| Author | Jia, Ruofei Wu, Xiaofeng Jie, Jiansheng Chen, Shuai Wang, Chaoqiang Tian, Chao Zhang, Xiujuan Zhang, Xiaohong |
| Author_xml | – sequence: 1 givenname: Chaoqiang surname: Wang fullname: Wang, Chaoqiang organization: Soochow University – sequence: 2 givenname: Shuai surname: Chen fullname: Chen, Shuai organization: Soochow University – sequence: 3 givenname: Jiansheng surname: Jie fullname: Jie, Jiansheng email: jsjie@suda.edu.cn organization: Soochow University – sequence: 4 givenname: Chao surname: Tian fullname: Tian, Chao organization: Soochow University – sequence: 5 givenname: Ruofei surname: Jia fullname: Jia, Ruofei organization: Soochow University – sequence: 6 givenname: Xiaofeng surname: Wu fullname: Wu, Xiaofeng organization: Academy of Advanced Semiconductors and Intelligence Technologies – sequence: 7 givenname: Xiaohong surname: Zhang fullname: Zhang, Xiaohong email: xiaohong_zhang@suda.edu.cn organization: Soochow University – sequence: 8 givenname: Xiujuan orcidid: 0000-0002-3244-9449 surname: Zhang fullname: Zhang, Xiujuan email: xjzhang@suda.edu.cn organization: Soochow University |
| BookMark | eNqFkMFLwzAUh4NMcE6vngueO5MmbdrjmJsTNhVU8BbS5FUys7YmmWP_vZ2TCYJ4eu_w-96P952iXt3UgNAFwUOCcXIldbUaJjhhmJC8OEJ9kpEspjjJe4edvJygU--XGBPOKeujuwUEaaOZtEZD9ACu-fBvJkD0aOpXC9HYbX0X8FFoNtLpaGJBBdfY9crU4BXUIRq1rTVKBtPU_gwdV10azr_nAD1PJ0_jWTy_v7kdj-axooQXMdVAGE0loyUrCehcMcgZ55lipS5pWWRc5qlOU1BpSRJOINOkKnUFWa6UonSALvd3W9e8r8EHsWzWru4qBU2SvNhJ4F1quE8p13jvoBKtMyvptoJgsXMmds7EwVkHsF-AMuHrs-CksX9jxR7bGAvbf0rE6Hq6-GE_AagQhMQ |
| CitedBy_id | crossref_primary_10_1002_adom_202501562 crossref_primary_10_1002_smll_202500660 crossref_primary_10_1002_smtd_202401861 crossref_primary_10_1002_lpor_202500171 crossref_primary_10_1016_j_cej_2025_168643 crossref_primary_10_1002_ifm2_29 crossref_primary_10_1016_j_jcis_2025_138591 crossref_primary_10_1016_j_jallcom_2025_183381 crossref_primary_10_3390_s24165258 crossref_primary_10_3788_CJL250744 crossref_primary_10_1002_adfm_202409828 crossref_primary_10_1039_D4QI02068E crossref_primary_10_1021_acs_inorgchem_5c01752 |
| Cites_doi | 10.1038/s41467-021-21805-0 10.1038/s41467-020-15037-x 10.1002/smll.201603217 10.1126/science.adj8858 10.1021/acsami.9b09035 10.1038/s41566-018-0283-4 10.1038/s41467-021-22193-1 10.1126/science.aba0893 10.1038/s41586-022-05304-w 10.1002/adfm.202010144 10.1126/science.aad1818 10.1038/s41467-022-34421-3 10.1007/s11426-017-9081-3 10.1002/adma.201705992 10.1021/acs.jpclett.5b01666 10.1039/C7CC02447A 10.1146/annurev-physchem-040215-112222 10.1002/adom.202000030 10.1002/adma.201506292 10.1038/s41586-020-2219-7 10.1021/jacs.6b09388 10.1021/jacs.8b10851 10.1002/adma.201601995 10.1038/ncomms11755 10.1007/s40820-023-01140-3 10.1039/C8TC00842F 10.1039/D2NR00513A 10.1021/acsenergylett.9b02787 10.1038/s41467-020-20555-9 10.1038/s41578-022-00522-0 10.1002/lpor.202200904 10.1021/acsphotonics.6b00209 10.1002/anie.202318777 10.1002/adma.202002176 10.1038/nphoton.2016.269 10.1002/adom.201800667 10.1007/s40820-021-00685-5 10.1126/science.aaa5760 10.1038/s41566-021-00909-5 10.1038/nnano.2016.110 10.1038/ncomms15640 10.1038/s41563-020-0784-7 10.1021/acsami.7b06001 10.1039/C4CS00458B 10.1038/s41928-022-00745-7 10.1038/nphoton.2014.284 10.1002/adma.201908340 10.1002/advs.201700471 10.1016/j.xcrp.2023.101363 10.1002/smtd.201900552 10.1016/j.mattod.2018.04.002 10.1021/acs.jpclett.2c00430 10.1038/s41467-019-08561-y 10.1038/s41566-022-01024-9 10.1039/C6EE02941H 10.1021/acsenergylett.9b00847 10.1002/adom.201600327 10.1038/nmat4271 10.1016/j.matt.2019.04.002 10.1039/C5CC06916E 10.1038/s41586-021-03285-w 10.1002/adfm.201909754 10.1126/science.aaa2725 10.1038/srep16563 10.1038/s41566-023-01167-3 10.1039/C7CE01709J 10.1038/s41467-020-14401-1 10.1002/adma.202202390 10.1021/acs.accounts.5b00433 10.1021/acsnano.1c11539 10.1038/s41586-023-06667-4 10.1002/adma.202001999 10.1002/adma.202104867 10.1002/pssr.201800090 10.1002/adfm.202301205 10.7567/JJAP.57.03EH05 10.1002/adom.201900080 10.1002/adfm.202200385 10.1002/advs.202104788 10.1038/s41586-023-05855-6 10.1002/adma.201805244 10.1021/acsnano.7b03660 10.1002/aenm.202103241 10.1002/adma.202109818 10.1002/adma.202103268 10.1038/s41566-019-0505-4 10.1038/s41586-021-03217-8 10.1002/adma.201602639 10.1002/adfm.202112758 10.1002/anie.202011853 10.1038/s41586-023-06637-w 10.1039/C8TC03164A 10.1038/s41586-021-03964-8 10.1021/acsami.1c00174 10.1038/nmat3911 10.1021/acsnano.2c00488 10.1039/D1TC00408E 10.1126/sciadv.aat2390 10.1002/adma.202302283 10.1038/s41586-021-03997-z 10.1021/acsenergylett.7b00468 10.1021/acs.nanolett.0c03593 10.1002/lpor.202200189 10.1126/sciadv.1701186 10.1021/acsenergylett.6b00002 10.1016/j.mattod.2022.04.009 10.1021/acsenergylett.3c00589 10.1002/adma.201500449 10.1039/D0EE03839C 10.1002/adfm.202301425 10.1021/acsenergylett.3c01935 10.1002/anie.201703786 10.1038/nnano.2014.149 10.1002/smtd.201700163 10.1038/s41586-020-2621-1 10.1021/acsami.9b15791 10.1002/adfm.202008684 10.1038/s41566-021-00855-2 10.1002/adma.202108102 10.1038/s41566‐024‐01382‐6 10.1002/adma.201901517 10.1364/OL.41.000555 10.1038/s41586-023-06488-5 10.1007/s12274-022-4205-x 10.1073/pnas.1600789113 10.1002/advs.202101663 10.1021/acsnano.7b02629 10.1038/s41467-022-35218-0 10.1038/s41467-017-02039-5 10.1021/acsenergylett.0c02573 10.1002/adma.201505126 10.1038/s41467-023-39488-0 10.1002/anie.201905521 10.1038/s41565-020-0714-5 10.1002/adma.201802110 10.1039/D1EE02018H 10.1038/s41467-018-07706-9 10.1016/j.nanoen.2023.108951 10.1002/adma.201803336 10.1038/s41467-019-10612-3 10.1002/adom.201700157 10.1021/acs.jpclett.0c02560 10.1002/anie.201511792 10.1021/acs.nanolett.2c00276 10.1002/adma.201707314 10.1002/advs.201801350 10.1002/adom.201900544 10.1038/s41377-023-01129-y 10.1002/adom.201901297 10.1016/j.matt.2021.05.002 10.1038/s41566-019-0526-z 10.1002/adfm.202209563 10.1002/eom2.12036 10.1002/aenm.202000453 10.1002/adma.202303144 10.1016/j.mattod.2018.07.018 10.1038/s41377-023-01231-1 10.1038/ncomms15882 10.1002/adom.201800278 10.1021/acs.nanolett.2c00383 10.1039/C7TA04608A 10.1038/s41578-022-00459-4 10.1021/nl503057g 10.1016/j.physrep.2019.01.005 10.1063/5.0014497 10.1002/anie.202205636 10.1021/acsnano.8b01999 10.1038/ncomms14558 10.1002/adma.201908006 10.1038/nphoton.2016.62 10.7567/JJAP.57.04FL10 10.1021/acsmaterialslett.1c00474 10.1016/j.jlumin.2020.117079 10.1021/acsenergylett.2c02802 10.1002/adma.201804595 10.1038/nphoton.2016.139 10.1021/jacs.6b05683 10.1021/acsphotonics.0c01394 10.1002/adma.201502597 10.1038/s41467-019-13944-2 10.1002/adma.202205217 10.1038/s41586-020-2526-z 10.1002/adma.202000306 10.1021/acsnano.0c01817 10.1002/adma.202204460 10.1038/ncomms8586 10.1002/aenm.201602803 10.1002/adma.202208789 |
| ContentType | Journal Article |
| Copyright | 2024 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.202401189 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adfm_202401189 ADFM202401189 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: Science and Technology Development Fund (FDCT) of the Macao Special Administrative Region funderid: 0145/2022/A3 – fundername: Suzhou Gusu innovation and entrepreneurship leading talent project funderid: ZXL2023342 – fundername: Suzhou Key Laboratory of Functional Nano & Soft Materials – fundername: Outstanding Science & Technology Innovation Team for Jiangsu Universities – fundername: Jiangsu Funding Program for Excellent Postdoctoral Talent funderid: 2023ZB645 – fundername: Joint International Research Laboratory of Carbon‐Based Functional Materials and Devices – fundername: 111 Project – fundername: China Postdoctoral Science Foundation funderid: 2023M742524 – fundername: Postdoctoral Fellowship Program of CPSF funderid: GZC20231876 – fundername: Jiangsu Association for Science and Technology |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ 53G AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AGQPQ AGXDD AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 O8X 1OB 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3179-3de1435a43b4b1ed8c4e84776c4bdb3b967a85d55ec5b1271e6d1fbdfe68ccc33 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001217437700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Wed Aug 13 04:26:53 EDT 2025 Sat Nov 29 07:21:01 EST 2025 Tue Nov 18 20:57:41 EST 2025 Thu May 22 09:26:44 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3179-3de1435a43b4b1ed8c4e84776c4bdb3b967a85d55ec5b1271e6d1fbdfe68ccc33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3244-9449 |
| PQID | 3228924017 |
| PQPubID | 2045204 |
| PageCount | 30 |
| ParticipantIDs | proquest_journals_3228924017 crossref_primary_10_1002_adfm_202401189 crossref_citationtrail_10_1002_adfm_202401189 wiley_primary_10_1002_adfm_202401189_ADFM202401189 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2019; 11 2019; 10 2019; 13 2019; 14 2023; 623 2020; 15 2023; 621 2020; 14 2020; 11 2022; 22 2024 2020; 10 2022; 611 2018; 6 2018; 9 2018; 5 2018; 4 2019; 22 2019; 24 2022; 34 2014; 14 2016; 41 2019; 795 2014; 13 2018; 30 2022; 32 2018; 34 2016; 49 2023; 617 2016; 45 2019; 8 2019; 7 2019; 4 2017; 60 2019; 31 2015; 51 2019; 1 2016; 10 2020; 32 2016; 11 2016; 4 2015; 350 2017; 53 2016; 7 2016; 1 2016; 3 2020; 30 2022; 5 2022; 7 2022; 9 2017; 56 2022; 13 2022; 14 2022; 15 2018; 12 2016; 28 2021; 60 2022; 16 2017; 5 2017; 7 2017; 8 2023; 35 2021; 21 2017; 1 2021; 20 2017; 2 2023; 33 2017; 3 2015; 347 2023; 4 2023; 382 2023; 8 2020; 59 2020; 367 2017; 9 2020; 8 2020; 5 2021; 31 2020; 2 2021; 33 2021; 599 2021; 598 2016; 113 2021; 591 2024; 63 2021; 590 2014; 9 2021; 9 2018; 141 2021; 8 2021; 6 2015; 14 2015; 6 2021; 4 2015; 5 2023; 14 2021; 3 2023; 12 2023; 17 2020; 580 2020; 583 2023; 15 2020; 585 2017; 29 2020; 221 2016; 55 2021; 14 2021; 13 2021; 16 2021; 15 2015; 27 2021; 12 2022; 61 2017; 11 2017; 10 2017; 13 2020; 116 2017; 19 2016; 138 2022; 55 2023; 118 2016; 67 2018; 57 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_161_1 e_1_2_7_184_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_188_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_180_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_150_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_173_1 Sun S. Q. (e_1_2_7_17_1) 2024 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_177_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_139_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_185_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_143_1 e_1_2_7_189_1 e_1_2_7_29_1 e_1_2_7_166_1 e_1_2_7_147_1 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_181_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_136_1 e_1_2_7_159_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_170_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_182_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_186_1 e_1_2_7_148_1 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 Zhao L. (e_1_2_7_11_1) 2018; 34 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_171_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_39_1 e_1_2_7_175_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_179_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_190_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_160_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_183_1 e_1_2_7_27_1 e_1_2_7_164_1 e_1_2_7_145_1 e_1_2_7_187_1 e_1_2_7_168_1 e_1_2_7_149_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_172_1 e_1_2_7_130_1 e_1_2_7_38_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_134_1 e_1_2_7_157_1 e_1_2_7_138_1 |
| References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 6 year: 2018 publication-title: J. Mater. Chem. C – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 6394 year: 2022 publication-title: ACS Nano – volume: 141 start-page: 1171 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 7586 year: 2015 publication-title: Nat. Commun. – volume: 382 start-page: 1399 year: 2023 publication-title: Science – volume: 9 start-page: 6498 year: 2021 publication-title: J. Mater. Chem. C – volume: 9 start-page: 5354 year: 2018 publication-title: Nat. Commun. – volume: 347 start-page: 519 year: 2015 publication-title: Science – volume: 19 start-page: 6797 year: 2017 publication-title: CrystEngComm – volume: 15 start-page: 6568 year: 2022 publication-title: Nano Res. – volume: 16 start-page: 575 year: 2022 publication-title: Nat. Photon. – volume: 11 start-page: 8275 year: 2020 publication-title: J. Phys. Chem. Lett. – volume: 599 start-page: 594 year: 2021 publication-title: Nature – volume: 51 year: 2015 publication-title: Chem. Commun. – volume: 8 year: 2019 publication-title: Adv. Opt. Mater. – volume: 623 start-page: 531 year: 2023 publication-title: Nature – volume: 138 start-page: 9409 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 621 start-page: 746 year: 2023 publication-title: Nature – volume: 14 start-page: 9248 year: 2022 publication-title: Nanoscale – volume: 22 start-page: 67 year: 2019 publication-title: Mater. Today – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 12 start-page: 4919 year: 2018 publication-title: ACS Nano – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 401 year: 2023 publication-title: Nat. Photon. – volume: 12 start-page: 85 year: 2023 publication-title: Light Sci. Appl. – volume: 22 start-page: 2490 year: 2022 publication-title: Nano Lett. – volume: 49 start-page: 294 year: 2016 publication-title: Acc. Chem. Res. – volume: 9 start-page: 687 year: 2014 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 106 year: 2014 publication-title: Nat. Photon. – volume: 12 year: 2021 publication-title: Adv. Energy Mater. – volume: 1 start-page: 465 year: 2019 publication-title: Matter – volume: 347 start-page: 967 year: 2015 publication-title: Science – volume: 580 start-page: 614 year: 2020 publication-title: Nature – volume: 3 start-page: 1125 year: 2016 publication-title: ACS Photonics – volume: 611 start-page: 688 year: 2022 publication-title: Nature – volume: 21 start-page: 1903 year: 2021 publication-title: Nano Lett. – volume: 12 start-page: 783 year: 2018 publication-title: Nat. Photon. – volume: 16 start-page: 14 year: 2021 publication-title: Nat. Photon. – volume: 14 start-page: 50 year: 2019 publication-title: Nat. Photon. – volume: 53 start-page: 5163 year: 2017 publication-title: Chem. Commun. – volume: 10 start-page: 585 year: 2016 publication-title: Nat. Photon. – volume: 13 start-page: 476 year: 2014 publication-title: Nat. Mater. – volume: 10 start-page: 295 year: 2016 publication-title: Nat. Photon. – volume: 16 year: 2022 publication-title: Laser Photonics Rev. – volume: 11 start-page: 872 year: 2016 publication-title: Nat. Nanotechnol. – volume: 350 start-page: 1222 year: 2015 publication-title: Science – volume: 60 start-page: 1367 year: 2017 publication-title: Sci. China Chem. – volume: 45 start-page: 655 year: 2016 publication-title: Chem. Soc. Rev. – volume: 116 year: 2020 publication-title: Appl. Phys. Lett. – volume: 585 start-page: 53 year: 2020 publication-title: Nature – volume: 28 start-page: 2201 year: 2016 publication-title: Adv. Mater. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 28 start-page: 3383 year: 2016 publication-title: Adv. Mater. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 13 start-page: 163 year: 2021 publication-title: Nano‐Micro Lett. – volume: 16 start-page: 7116 year: 2022 publication-title: ACS Nano – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 12 start-page: 1531 year: 2021 publication-title: Nat. Commun. – volume: 598 start-page: 444 year: 2021 publication-title: Nature – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 59 start-page: 6676 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 15 start-page: 656 year: 2021 publication-title: Nat. Photon. – volume: 617 start-page: 79 year: 2023 publication-title: Nature – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 170 year: 2020 publication-title: Nat. Commun. – volume: 7 start-page: 757 year: 2022 publication-title: Nat. Rev. Mater. – volume: 591 start-page: 72 year: 2021 publication-title: Nature – volume: 6 start-page: 631 year: 2021 publication-title: ACS Energy Lett. – volume: 8 start-page: 4915 year: 2023 publication-title: ACS Energy Lett. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 11 start-page: 9869 year: 2017 publication-title: ACS Nano – year: 2024 publication-title: Adv. Mater. – volume: 41 start-page: 555 year: 2016 publication-title: Opt. Lett. – volume: 27 start-page: 5176 year: 2015 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 4 start-page: 2266 year: 2021 publication-title: Matter – volume: 6 start-page: 4464 year: 2018 publication-title: J. Mater. Chem. C – volume: 12 start-page: 184 year: 2023 publication-title: Light Sci. Appl. – volume: 11 start-page: 1194 year: 2020 publication-title: Nat. Commun. – volume: 13 year: 2017 publication-title: Small – volume: 13 start-page: 760 year: 2019 publication-title: Nat. Photon. – volume: 57 year: 2018 publication-title: Jpn. J. Appl. Phys. – volume: 14 start-page: 3883 year: 2023 publication-title: Nat. Commun. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 34 start-page: 18 year: 2018 publication-title: Inf. Disp. – volume: 14 start-page: 2263 year: 2021 publication-title: Energy Environ. Sci. – volume: 15 start-page: 177 year: 2023 publication-title: Nano‐Micro Lett. – volume: 14 start-page: 5690 year: 2021 publication-title: Energy Environ. Sci. – volume: 2 start-page: 1782 year: 2017 publication-title: ACS Energy Lett. – volume: 367 start-page: 1352 year: 2020 publication-title: Science – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 583 start-page: 790 year: 2020 publication-title: Nature – volume: 15 start-page: 668 year: 2020 publication-title: Nat. Nanotechnol. – volume: 12 start-page: 336 year: 2021 publication-title: Nat. Commun. – volume: 118 year: 2023 publication-title: Nano Energy – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 55 start-page: 110 year: 2022 publication-title: Mater. Today – volume: 1 start-page: 32 year: 2016 publication-title: ACS Energy Lett. – volume: 10 start-page: 727 year: 2019 publication-title: Nat. Commun. – volume: 14 start-page: 636 year: 2015 publication-title: Nat. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 start-page: 1890 year: 2017 publication-title: Nat. Commun. – volume: 4 start-page: 1258 year: 2019 publication-title: ACS Energy Lett. – volume: 8 start-page: 341 year: 2023 publication-title: Nat. Rev. Mater. – volume: 6 start-page: 3781 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 10 start-page: 516 year: 2017 publication-title: Energy Environ. Sci. – volume: 55 start-page: 3447 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 63 year: 2024 publication-title: Angew. Chem., Int. Ed. – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 14 start-page: 6076 year: 2020 publication-title: ACS Nano – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 12 start-page: 2023 year: 2021 publication-title: Nat. Commun. – volume: 221 year: 2020 publication-title: J. Lumin. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: Adv. Opt. Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 795 start-page: 1 year: 2019 publication-title: Phys. Rep. – volume: 3 start-page: 1702 year: 2021 publication-title: ACS Mater. Lett. – volume: 4 start-page: 1829 year: 2016 publication-title: Adv. Opt. Mater. – volume: 22 start-page: 3062 year: 2022 publication-title: Nano Lett. – volume: 24 start-page: 17 year: 2019 publication-title: Mater. Today – volume: 14 start-page: 5995 year: 2014 publication-title: Nano Lett. – volume: 13 start-page: 2963 year: 2022 publication-title: J. Phys. Chem. Lett. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 10 start-page: 2818 year: 2019 publication-title: Nat. Commun. – volume: 113 start-page: 1993 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 623 start-page: 732 year: 2023 publication-title: Nature – year: 2024 publication-title: Nat. Photon. – volume: 11 start-page: 108 year: 2017 publication-title: Nat. Photon. – volume: 11 start-page: 611 year: 2020 publication-title: Nat. Commun. – volume: 5 start-page: 203 year: 2022 publication-title: Nat. Electron. – volume: 1 year: 2017 publication-title: Small Methods – volume: 28 start-page: 9204 year: 2016 publication-title: Adv. Mater. – volume: 11 start-page: 6312 year: 2017 publication-title: ACS Nano – volume: 8 start-page: 386 year: 2021 publication-title: ACS Photonics – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 7425 year: 2022 publication-title: Nat. Commun. – volume: 5 start-page: 657 year: 2020 publication-title: ACS Energy Lett. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 4 year: 2019 publication-title: Small Methods – volume: 60 start-page: 2629 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 27 start-page: 3405 year: 2015 publication-title: Adv. Mater. – volume: 5 year: 2017 publication-title: Adv. Opt. Mater. – volume: 20 start-page: 10 year: 2021 publication-title: Nat. Mater. – volume: 67 start-page: 65 year: 2016 publication-title: Annu. Rev. Phys. Chem. – volume: 17 year: 2023 publication-title: Laser Photonics Rev. – volume: 13 start-page: 6629 year: 2022 publication-title: Nat. Commun. – volume: 8 start-page: 927 year: 2023 publication-title: ACS Energy Lett. – volume: 2 year: 2020 publication-title: EcoMat – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 12 year: 2018 publication-title: Phys. Status Solidi RRL – volume: 590 start-page: 587 year: 2021 publication-title: Nature – volume: 8 start-page: 2897 year: 2023 publication-title: ACS Energy Lett. – volume: 4 year: 2023 publication-title: Cell Rep. Phys. Sci. – ident: e_1_2_7_68_1 doi: 10.1038/s41467-021-21805-0 – ident: e_1_2_7_60_1 doi: 10.1038/s41467-020-15037-x – ident: e_1_2_7_178_1 doi: 10.1002/smll.201603217 – ident: e_1_2_7_4_1 doi: 10.1126/science.adj8858 – ident: e_1_2_7_77_1 doi: 10.1021/acsami.9b09035 – ident: e_1_2_7_156_1 doi: 10.1038/s41566-018-0283-4 – ident: e_1_2_7_55_1 doi: 10.1038/s41467-021-22193-1 – ident: e_1_2_7_148_1 doi: 10.1126/science.aba0893 – ident: e_1_2_7_16_1 doi: 10.1038/s41586-022-05304-w – ident: e_1_2_7_168_1 doi: 10.1002/adfm.202010144 – ident: e_1_2_7_149_1 doi: 10.1126/science.aad1818 – ident: e_1_2_7_82_1 doi: 10.1038/s41467-022-34421-3 – ident: e_1_2_7_111_1 doi: 10.1007/s11426-017-9081-3 – ident: e_1_2_7_62_1 doi: 10.1002/adma.201705992 – ident: e_1_2_7_78_1 doi: 10.1021/acs.jpclett.5b01666 – ident: e_1_2_7_95_1 doi: 10.1039/C7CC02447A – ident: e_1_2_7_142_1 doi: 10.1146/annurev-physchem-040215-112222 – ident: e_1_2_7_176_1 doi: 10.1002/adom.202000030 – ident: e_1_2_7_91_1 doi: 10.1002/adma.201506292 – ident: e_1_2_7_3_1 doi: 10.1038/s41586-020-2219-7 – ident: e_1_2_7_63_1 doi: 10.1021/jacs.6b09388 – ident: e_1_2_7_144_1 doi: 10.1021/jacs.8b10851 – ident: e_1_2_7_51_1 doi: 10.1002/adma.201601995 – ident: e_1_2_7_87_1 doi: 10.1038/ncomms11755 – ident: e_1_2_7_164_1 doi: 10.1007/s40820-023-01140-3 – ident: e_1_2_7_110_1 doi: 10.1039/C8TC00842F – ident: e_1_2_7_42_1 doi: 10.1039/D2NR00513A – ident: e_1_2_7_34_1 doi: 10.1021/acsenergylett.9b02787 – ident: e_1_2_7_143_1 doi: 10.1038/s41467-020-20555-9 – ident: e_1_2_7_27_1 doi: 10.1038/s41578-022-00522-0 – ident: e_1_2_7_129_1 doi: 10.1002/lpor.202200904 – ident: e_1_2_7_175_1 doi: 10.1021/acsphotonics.6b00209 – ident: e_1_2_7_22_1 doi: 10.1002/anie.202318777 – ident: e_1_2_7_153_1 doi: 10.1002/adma.202002176 – ident: e_1_2_7_146_1 doi: 10.1038/nphoton.2016.269 – ident: e_1_2_7_159_1 doi: 10.1002/adom.201800667 – ident: e_1_2_7_189_1 doi: 10.1007/s40820-021-00685-5 – ident: e_1_2_7_31_1 doi: 10.1126/science.aaa5760 – ident: e_1_2_7_38_1 doi: 10.1038/s41566-021-00909-5 – ident: e_1_2_7_145_1 doi: 10.1038/nnano.2016.110 – ident: e_1_2_7_154_1 doi: 10.1038/ncomms15640 – ident: e_1_2_7_12_1 doi: 10.1038/s41563-020-0784-7 – ident: e_1_2_7_188_1 doi: 10.1021/acsami.7b06001 – ident: e_1_2_7_41_1 doi: 10.1039/C4CS00458B – ident: e_1_2_7_124_1 doi: 10.1038/s41928-022-00745-7 – ident: e_1_2_7_158_1 doi: 10.1038/nphoton.2014.284 – ident: e_1_2_7_120_1 doi: 10.1002/adma.201908340 – ident: e_1_2_7_53_1 doi: 10.1002/advs.201700471 – ident: e_1_2_7_65_1 doi: 10.1016/j.xcrp.2023.101363 – ident: e_1_2_7_48_1 doi: 10.1002/smtd.201900552 – ident: e_1_2_7_58_1 doi: 10.1016/j.mattod.2018.04.002 – ident: e_1_2_7_136_1 doi: 10.1021/acs.jpclett.2c00430 – ident: e_1_2_7_161_1 doi: 10.1038/s41467-019-08561-y – ident: e_1_2_7_2_1 doi: 10.1038/s41566-022-01024-9 – ident: e_1_2_7_92_1 doi: 10.1039/C6EE02941H – ident: e_1_2_7_33_1 doi: 10.1021/acsenergylett.9b00847 – ident: e_1_2_7_76_1 doi: 10.1002/adom.201600327 – ident: e_1_2_7_169_1 doi: 10.1038/nmat4271 – ident: e_1_2_7_104_1 doi: 10.1016/j.matt.2019.04.002 – ident: e_1_2_7_108_1 doi: 10.1039/C5CC06916E – ident: e_1_2_7_6_1 doi: 10.1038/s41586-021-03285-w – ident: e_1_2_7_21_1 doi: 10.1002/adfm.201909754 – ident: e_1_2_7_32_1 doi: 10.1126/science.aaa2725 – ident: e_1_2_7_106_1 doi: 10.1038/srep16563 – ident: e_1_2_7_47_1 doi: 10.1038/s41566-023-01167-3 – ident: e_1_2_7_94_1 doi: 10.1039/C7CE01709J – ident: e_1_2_7_150_1 doi: 10.1038/s41467-020-14401-1 – ident: e_1_2_7_74_1 doi: 10.1002/adma.202202390 – ident: e_1_2_7_140_1 doi: 10.1021/acs.accounts.5b00433 – ident: e_1_2_7_44_1 doi: 10.1021/acsnano.1c11539 – ident: e_1_2_7_1_1 doi: 10.1038/s41586-023-06667-4 – ident: e_1_2_7_119_1 doi: 10.1002/adma.202001999 – ident: e_1_2_7_185_1 doi: 10.1002/adma.202104867 – year: 2024 ident: e_1_2_7_17_1 publication-title: Adv. Mater. – ident: e_1_2_7_187_1 doi: 10.1002/pssr.201800090 – ident: e_1_2_7_69_1 doi: 10.1002/adfm.202301205 – ident: e_1_2_7_133_1 doi: 10.7567/JJAP.57.03EH05 – ident: e_1_2_7_167_1 doi: 10.1002/adom.201900080 – ident: e_1_2_7_181_1 doi: 10.1002/adfm.202200385 – ident: e_1_2_7_61_1 doi: 10.1002/advs.202104788 – ident: e_1_2_7_182_1 doi: 10.1038/s41586-023-05855-6 – ident: e_1_2_7_30_1 doi: 10.1002/adma.201805244 – ident: e_1_2_7_130_1 doi: 10.1021/acsnano.7b03660 – ident: e_1_2_7_75_1 doi: 10.1002/aenm.202103241 – ident: e_1_2_7_80_1 doi: 10.1002/adma.202109818 – ident: e_1_2_7_14_1 doi: 10.1002/adma.202103268 – ident: e_1_2_7_160_1 doi: 10.1038/s41566-019-0505-4 – ident: e_1_2_7_19_1 doi: 10.1038/s41586-021-03217-8 – ident: e_1_2_7_59_1 doi: 10.1002/adma.201602639 – ident: e_1_2_7_116_1 doi: 10.1002/adfm.202112758 – ident: e_1_2_7_71_1 doi: 10.1002/anie.202011853 – ident: e_1_2_7_5_1 doi: 10.1038/s41586-023-06637-w – ident: e_1_2_7_43_1 doi: 10.1039/C8TC03164A – ident: e_1_2_7_7_1 doi: 10.1038/s41586-021-03964-8 – ident: e_1_2_7_109_1 doi: 10.1021/acsami.1c00174 – ident: e_1_2_7_163_1 doi: 10.1038/nmat3911 – ident: e_1_2_7_96_1 doi: 10.1021/acsnano.2c00488 – ident: e_1_2_7_105_1 doi: 10.1039/D1TC00408E – ident: e_1_2_7_113_1 doi: 10.1126/sciadv.aat2390 – ident: e_1_2_7_13_1 doi: 10.1002/adma.202302283 – ident: e_1_2_7_15_1 doi: 10.1038/s41586-021-03997-z – ident: e_1_2_7_100_1 doi: 10.1021/acsenergylett.7b00468 – ident: e_1_2_7_128_1 doi: 10.1021/acs.nanolett.0c03593 – ident: e_1_2_7_127_1 doi: 10.1002/lpor.202200189 – ident: e_1_2_7_81_1 doi: 10.1126/sciadv.1701186 – ident: e_1_2_7_64_1 doi: 10.1021/acsenergylett.6b00002 – ident: e_1_2_7_9_1 doi: 10.1016/j.mattod.2022.04.009 – ident: e_1_2_7_24_1 doi: 10.1021/acsenergylett.3c00589 – ident: e_1_2_7_177_1 doi: 10.1002/adma.201500449 – ident: e_1_2_7_35_1 doi: 10.1039/D0EE03839C – ident: e_1_2_7_23_1 doi: 10.1002/adfm.202301425 – ident: e_1_2_7_37_1 doi: 10.1021/acsenergylett.3c01935 – ident: e_1_2_7_88_1 doi: 10.1002/anie.201703786 – ident: e_1_2_7_10_1 doi: 10.1038/nnano.2014.149 – ident: e_1_2_7_170_1 doi: 10.1002/smtd.201700163 – ident: e_1_2_7_173_1 doi: 10.1038/s41586-020-2621-1 – ident: e_1_2_7_131_1 doi: 10.1021/acsami.9b15791 – ident: e_1_2_7_52_1 doi: 10.1002/adfm.202008684 – ident: e_1_2_7_98_1 doi: 10.1038/s41566-021-00855-2 – ident: e_1_2_7_125_1 doi: 10.1002/adma.202108102 – ident: e_1_2_7_26_1 doi: 10.1038/s41566‐024‐01382‐6 – ident: e_1_2_7_157_1 doi: 10.1002/adma.201901517 – ident: e_1_2_7_90_1 doi: 10.1364/OL.41.000555 – ident: e_1_2_7_162_1 doi: 10.1038/s41586-023-06488-5 – ident: e_1_2_7_117_1 doi: 10.1007/s12274-022-4205-x – ident: e_1_2_7_174_1 doi: 10.1073/pnas.1600789113 – ident: e_1_2_7_186_1 doi: 10.1002/advs.202101663 – ident: e_1_2_7_39_1 doi: 10.1021/acsnano.7b02629 – ident: e_1_2_7_20_1 doi: 10.1038/s41467-022-35218-0 – ident: e_1_2_7_73_1 doi: 10.1038/s41467-017-02039-5 – volume: 34 start-page: 18 year: 2018 ident: e_1_2_7_11_1 publication-title: Inf. Disp. – ident: e_1_2_7_46_1 doi: 10.1021/acsenergylett.0c02573 – ident: e_1_2_7_121_1 doi: 10.1002/adma.201505126 – ident: e_1_2_7_115_1 doi: 10.1038/s41467-023-39488-0 – ident: e_1_2_7_29_1 doi: 10.1002/anie.201905521 – ident: e_1_2_7_25_1 doi: 10.1038/s41565-020-0714-5 – ident: e_1_2_7_70_1 doi: 10.1002/adma.201802110 – ident: e_1_2_7_97_1 doi: 10.1039/D1EE02018H – ident: e_1_2_7_99_1 doi: 10.1038/s41467-018-07706-9 – ident: e_1_2_7_66_1 doi: 10.1016/j.nanoen.2023.108951 – ident: e_1_2_7_137_1 doi: 10.1002/adma.201803336 – ident: e_1_2_7_155_1 doi: 10.1038/s41467-019-10612-3 – ident: e_1_2_7_67_1 doi: 10.1002/adom.201700157 – ident: e_1_2_7_135_1 doi: 10.1021/acs.jpclett.0c02560 – ident: e_1_2_7_107_1 doi: 10.1002/anie.201511792 – ident: e_1_2_7_123_1 doi: 10.1021/acs.nanolett.2c00276 – ident: e_1_2_7_56_1 doi: 10.1002/adma.201707314 – ident: e_1_2_7_151_1 doi: 10.1002/advs.201801350 – ident: e_1_2_7_166_1 doi: 10.1002/adom.201900544 – ident: e_1_2_7_101_1 doi: 10.1038/s41377-023-01129-y – ident: e_1_2_7_184_1 doi: 10.1002/adom.201901297 – ident: e_1_2_7_49_1 doi: 10.1016/j.matt.2021.05.002 – ident: e_1_2_7_86_1 doi: 10.1038/s41566-019-0526-z – ident: e_1_2_7_114_1 doi: 10.1002/adfm.202209563 – ident: e_1_2_7_45_1 doi: 10.1002/eom2.12036 – ident: e_1_2_7_36_1 doi: 10.1002/aenm.202000453 – ident: e_1_2_7_183_1 doi: 10.1002/adma.202303144 – ident: e_1_2_7_83_1 doi: 10.1016/j.mattod.2018.07.018 – ident: e_1_2_7_112_1 doi: 10.1038/s41377-023-01231-1 – ident: e_1_2_7_54_1 doi: 10.1038/ncomms15882 – ident: e_1_2_7_172_1 doi: 10.1002/adom.201800278 – ident: e_1_2_7_8_1 doi: 10.1021/acs.nanolett.2c00383 – ident: e_1_2_7_93_1 doi: 10.1039/C7TA04608A – ident: e_1_2_7_28_1 doi: 10.1038/s41578-022-00459-4 – ident: e_1_2_7_89_1 doi: 10.1021/nl503057g – ident: e_1_2_7_171_1 doi: 10.1016/j.physrep.2019.01.005 – ident: e_1_2_7_134_1 doi: 10.1063/5.0014497 – ident: e_1_2_7_180_1 doi: 10.1002/anie.202205636 – ident: e_1_2_7_103_1 doi: 10.1021/acsnano.8b01999 – ident: e_1_2_7_139_1 doi: 10.1038/ncomms14558 – ident: e_1_2_7_118_1 doi: 10.1002/adma.201908006 – ident: e_1_2_7_85_1 doi: 10.1038/nphoton.2016.62 – ident: e_1_2_7_40_1 doi: 10.7567/JJAP.57.04FL10 – ident: e_1_2_7_50_1 doi: 10.1021/acsmaterialslett.1c00474 – ident: e_1_2_7_102_1 doi: 10.1016/j.jlumin.2020.117079 – ident: e_1_2_7_138_1 doi: 10.1021/acsenergylett.2c02802 – ident: e_1_2_7_141_1 doi: 10.1002/adma.201804595 – ident: e_1_2_7_165_1 doi: 10.1038/nphoton.2016.139 – ident: e_1_2_7_72_1 doi: 10.1021/jacs.6b05683 – ident: e_1_2_7_147_1 doi: 10.1021/acsphotonics.0c01394 – ident: e_1_2_7_79_1 doi: 10.1002/adma.201502597 – ident: e_1_2_7_122_1 doi: 10.1038/s41467-019-13944-2 – ident: e_1_2_7_126_1 doi: 10.1002/adma.202205217 – ident: e_1_2_7_132_1 doi: 10.1038/s41586-020-2526-z – ident: e_1_2_7_179_1 doi: 10.1002/adma.202000306 – ident: e_1_2_7_190_1 doi: 10.1021/acsnano.0c01817 – ident: e_1_2_7_18_1 doi: 10.1002/adma.202204460 – ident: e_1_2_7_57_1 doi: 10.1038/ncomms8586 – ident: e_1_2_7_152_1 doi: 10.1002/aenm.201602803 – ident: e_1_2_7_84_1 doi: 10.1002/adma.202208789 |
| SSID | ssj0017734 |
| Score | 2.5417697 |
| SecondaryResourceType | review_article |
| Snippet | Metal halide perovskite single crystals (MHP SCs) have attracted extensive attention due to their superior properties, such as higher carrier mobility, longer... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Carrier mobility crystal growth methods Diffusion length Electroluminescence Ion migration Light emitting diodes metal halide perovskite Metal halides Optoelectronic devices perovskite light‐emitting diodes Perovskites Single crystals Stability |
| Title | Metal Halide Perovskite Single Crystals toward Electroluminescent Applications |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202401189 https://www.proquest.com/docview/3228924017 |
| Volume | 35 |
| WOSCitedRecordID | wos001217437700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB609aAH32J9sQfBU2g3m2Q3x9IHPbSlqJXewr4CQmklqQX_vbtJmqYHEfQYMhnCzM7Ot7uz3wA8chwTbnC7I4lZonihkg43ix5HWPK3mMWSZPfW3oZ0PGazWTip3OLP-SHKDTcbGdl8bQOci7S5JQ3lKrY3yY1Kg5HDfai7ZvD6Nah3n_vTYXmSQGl-shxgW-OFZxvixpbb3NWwm5i2aLOKWbOk0z_5_--ewnEBOFE7HyFnsKcX53BUoSG8gPFIGwiOBgaSK40mOlmuU7upi17M67lGneTLYMh5ilZZjS3q5a1zzLRma-ZteSdqV87BL2Ha7712Bk7RZ8E4yMSjQ5S2qIl7RHgCa8Wkp03SooH0hBJEhAHlzFe-r6UvsEuxDhSOhYp1wKSUhFxBbbFc6GtATLpSSaJbNBSeDJgw3pYk9kjAOfa1aoCzMXIkCxJy2wtjHuX0yW5k7RSVdmrAUyn_kdNv_Ch5t_FZVIRhGpnZioVWgDbAzbzzi5ao3e2Pyqebv3x0C4eu7RGcFUXeQW2VfOp7OJDr1XuaPBTD8xusNubY |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60FdSDb7FadQ-Cp9Amm-ex9EHFNBRtpbeQfQSE0kpSC_57Z5M0bQ8iiMeQzRB2Zna-3Zn9BuAh0mMaIW7XOMUtiukJrkW46dGYIn-L3ZjT7N7am-8EgTuZeMOimlDdhcn5IcoDN-UZ2XqtHFwdSDfWrKGRiNVVcpSJINnbhaqJtoRGXu289MZ-mUpwnDy1bOuqyEufrJgbm0ZjW8J2ZFrDzU3QmkWd3vE__O8JHBWQk7RyGzmFHTk7g8MNIsJzCAYSQTjpIygXkgxlMl-m6liXvOLrqSTt5AtR5DQli6zKlnTz5jm4sKmqeVXgSVobmfALGPe6o3ZfKzotoIrQIzUqpMJNkUmZyXQpXG5KDFuOzU0mGGWe7USuJSxLcovphqNLW-gxE7G0Xc45pZdQmc1n8gqIyw0uOJVNx2Mmt12G-uY0NqkdRbolRQ201SyHvKAhV90wpmFOoGyEap7Ccp5q8FiO_8gJOH4cWV8pLSwcMQ1xvXI9NcCpgZGp5xcpYavTG5RP13_56B72-6OBH_pPwfMNHBiqY3BWIlmHyiL5lLewx5eL9zS5K2z1G4kQ6sg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7oJqIP3sXp1DwIPpWtTS_p49hWJm5lqJO9ldwKwthGOwf-e5O267YHEcTH0jSUnJzkS853vgPwQM0YU4XbDY7VEcX2BTeoOvQYTIu_xSTmOMtbe-97YUjGY39YsAl1LkyuD1FeuGnPyNZr7eByLuLGWjWUilinkqs-FUj2d6Fq60oyFah2XoJRvwwleF4eWnZNTfIyxyvlxqbV2O5he2daw81N0JrtOsHxP_zvCRwVkBO18jlyCjtyegaHG0KE5xAOpALhqKdAuZBoKJPZMtXXuuhVvZ5I1E6-FIqcpGiRsWxRNy-eoxY2zZrXBE_U2oiEX8Ao6L61e0ZRaUGZSHmkgYXUuInamNnMlIJwW6pty3O5zQTDzHc9ShzhOJI7zLQ8U7rCjJmIpUs45xhfQmU6m8orQIRbXHAsm57PbO4SpuzNcWxjl1LTkaIGxmqUI17IkOtqGJMoF1C2Ij1OUTlONXgs289zAY4fW9ZXRosKR0wjtV4RXzfwamBl5vmll6jVCQbl0_VfPrqH_WEniPpP4fMNHFi6YHDGkKxDZZF8ylvY48vFR5rcFVP1GzKI6kM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+Halide+Perovskite+Single+Crystals+toward+Electroluminescent+Applications&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Chaoqiang&rft.au=Chen%2C+Shuai&rft.au=Jie%2C+Jiansheng&rft.au=Tian%2C+Chao&rft.date=2025-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=21&rft_id=info:doi/10.1002%2Fadfm.202401189&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |