Metal Halide Perovskite Single Crystals toward Electroluminescent Applications

Metal halide perovskite single crystals (MHP SCs) have attracted extensive attention due to their superior properties, such as higher carrier mobility, longer carrier diffusion length, and better stability than their polycrystalline counterparts. In particular, the suppression of ion migration and A...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced functional materials Ročník 35; číslo 21
Hlavní autoři: Wang, Chaoqiang, Chen, Shuai, Jie, Jiansheng, Tian, Chao, Jia, Ruofei, Wu, Xiaofeng, Zhang, Xiaohong, Zhang, Xiujuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc 01.05.2025
Témata:
ISSN:1616-301X, 1616-3028
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Metal halide perovskite single crystals (MHP SCs) have attracted extensive attention due to their superior properties, such as higher carrier mobility, longer carrier diffusion length, and better stability than their polycrystalline counterparts. In particular, the suppression of ion migration and Auger recombination endows MHP SCs with excellent electroluminescence (EL) properties, thus holding great potential for highly efficient and stable light‐emitting devices. In this review, general overview of MHP crystal structures are begin, and highlight the merits of MHP SCs in terms of outstanding optoelectronic properties and high stability. Then, appropriate growth methods of high‐quality, thickness‐controlled MHP SCs for EL device applications are systematically summarized. Subsequently, recent advancements in developing MHP SC‐based perovskite light‐emitting diodes (PeLEDs) are discussed, and the effective strategies to further enhance the device performance are reviewed. Moreover, the potential application of MHP SCs for electrically pumped lasers is highlighted. Finally, the review is concluded with a detailed account of the current challenges and a perspective on the key approaches and opportunities on the optimization of SC growth, the improvement of device performance and the integration of SC‐based optoelectronic devices. Metal halide perovskite single crystals (MHP SCs) have attracted much attention due to their dramatically enhanced optoelectronic properties and improved stability compared with their polycrystalline counterparts. The recent advancements in MHP SC‐based light‐emitting diodes, potential strategies for further device performance improvement and future application prospects in electrically pumped lasers are discussed in this review.
AbstractList Metal halide perovskite single crystals (MHP SCs) have attracted extensive attention due to their superior properties, such as higher carrier mobility, longer carrier diffusion length, and better stability than their polycrystalline counterparts. In particular, the suppression of ion migration and Auger recombination endows MHP SCs with excellent electroluminescence (EL) properties, thus holding great potential for highly efficient and stable light‐emitting devices. In this review, general overview of MHP crystal structures are begin, and highlight the merits of MHP SCs in terms of outstanding optoelectronic properties and high stability. Then, appropriate growth methods of high‐quality, thickness‐controlled MHP SCs for EL device applications are systematically summarized. Subsequently, recent advancements in developing MHP SC‐based perovskite light‐emitting diodes (PeLEDs) are discussed, and the effective strategies to further enhance the device performance are reviewed. Moreover, the potential application of MHP SCs for electrically pumped lasers is highlighted. Finally, the review is concluded with a detailed account of the current challenges and a perspective on the key approaches and opportunities on the optimization of SC growth, the improvement of device performance and the integration of SC‐based optoelectronic devices.
Metal halide perovskite single crystals (MHP SCs) have attracted extensive attention due to their superior properties, such as higher carrier mobility, longer carrier diffusion length, and better stability than their polycrystalline counterparts. In particular, the suppression of ion migration and Auger recombination endows MHP SCs with excellent electroluminescence (EL) properties, thus holding great potential for highly efficient and stable light‐emitting devices. In this review, general overview of MHP crystal structures are begin, and highlight the merits of MHP SCs in terms of outstanding optoelectronic properties and high stability. Then, appropriate growth methods of high‐quality, thickness‐controlled MHP SCs for EL device applications are systematically summarized. Subsequently, recent advancements in developing MHP SC‐based perovskite light‐emitting diodes (PeLEDs) are discussed, and the effective strategies to further enhance the device performance are reviewed. Moreover, the potential application of MHP SCs for electrically pumped lasers is highlighted. Finally, the review is concluded with a detailed account of the current challenges and a perspective on the key approaches and opportunities on the optimization of SC growth, the improvement of device performance and the integration of SC‐based optoelectronic devices. Metal halide perovskite single crystals (MHP SCs) have attracted much attention due to their dramatically enhanced optoelectronic properties and improved stability compared with their polycrystalline counterparts. The recent advancements in MHP SC‐based light‐emitting diodes, potential strategies for further device performance improvement and future application prospects in electrically pumped lasers are discussed in this review.
Author Jia, Ruofei
Wu, Xiaofeng
Jie, Jiansheng
Chen, Shuai
Wang, Chaoqiang
Tian, Chao
Zhang, Xiujuan
Zhang, Xiaohong
Author_xml – sequence: 1
  givenname: Chaoqiang
  surname: Wang
  fullname: Wang, Chaoqiang
  organization: Soochow University
– sequence: 2
  givenname: Shuai
  surname: Chen
  fullname: Chen, Shuai
  organization: Soochow University
– sequence: 3
  givenname: Jiansheng
  surname: Jie
  fullname: Jie, Jiansheng
  email: jsjie@suda.edu.cn
  organization: Soochow University
– sequence: 4
  givenname: Chao
  surname: Tian
  fullname: Tian, Chao
  organization: Soochow University
– sequence: 5
  givenname: Ruofei
  surname: Jia
  fullname: Jia, Ruofei
  organization: Soochow University
– sequence: 6
  givenname: Xiaofeng
  surname: Wu
  fullname: Wu, Xiaofeng
  organization: Academy of Advanced Semiconductors and Intelligence Technologies
– sequence: 7
  givenname: Xiaohong
  surname: Zhang
  fullname: Zhang, Xiaohong
  email: xiaohong_zhang@suda.edu.cn
  organization: Soochow University
– sequence: 8
  givenname: Xiujuan
  orcidid: 0000-0002-3244-9449
  surname: Zhang
  fullname: Zhang, Xiujuan
  email: xjzhang@suda.edu.cn
  organization: Soochow University
BookMark eNqFkMFLwzAUh4NMcE6vngueO5MmbdrjmJsTNhVU8BbS5FUys7YmmWP_vZ2TCYJ4eu_w-96P952iXt3UgNAFwUOCcXIldbUaJjhhmJC8OEJ9kpEspjjJe4edvJygU--XGBPOKeujuwUEaaOZtEZD9ACu-fBvJkD0aOpXC9HYbX0X8FFoNtLpaGJBBdfY9crU4BXUIRq1rTVKBtPU_gwdV10azr_nAD1PJ0_jWTy_v7kdj-axooQXMdVAGE0loyUrCehcMcgZ55lipS5pWWRc5qlOU1BpSRJOINOkKnUFWa6UonSALvd3W9e8r8EHsWzWru4qBU2SvNhJ4F1quE8p13jvoBKtMyvptoJgsXMmds7EwVkHsF-AMuHrs-CksX9jxR7bGAvbf0rE6Hq6-GE_AagQhMQ
CitedBy_id crossref_primary_10_1002_adom_202501562
crossref_primary_10_1002_smll_202500660
crossref_primary_10_1002_smtd_202401861
crossref_primary_10_1002_lpor_202500171
crossref_primary_10_1016_j_cej_2025_168643
crossref_primary_10_1002_ifm2_29
crossref_primary_10_1016_j_jcis_2025_138591
crossref_primary_10_1016_j_jallcom_2025_183381
crossref_primary_10_3390_s24165258
crossref_primary_10_3788_CJL250744
crossref_primary_10_1002_adfm_202409828
crossref_primary_10_1039_D4QI02068E
crossref_primary_10_1021_acs_inorgchem_5c01752
Cites_doi 10.1038/s41467-021-21805-0
10.1038/s41467-020-15037-x
10.1002/smll.201603217
10.1126/science.adj8858
10.1021/acsami.9b09035
10.1038/s41566-018-0283-4
10.1038/s41467-021-22193-1
10.1126/science.aba0893
10.1038/s41586-022-05304-w
10.1002/adfm.202010144
10.1126/science.aad1818
10.1038/s41467-022-34421-3
10.1007/s11426-017-9081-3
10.1002/adma.201705992
10.1021/acs.jpclett.5b01666
10.1039/C7CC02447A
10.1146/annurev-physchem-040215-112222
10.1002/adom.202000030
10.1002/adma.201506292
10.1038/s41586-020-2219-7
10.1021/jacs.6b09388
10.1021/jacs.8b10851
10.1002/adma.201601995
10.1038/ncomms11755
10.1007/s40820-023-01140-3
10.1039/C8TC00842F
10.1039/D2NR00513A
10.1021/acsenergylett.9b02787
10.1038/s41467-020-20555-9
10.1038/s41578-022-00522-0
10.1002/lpor.202200904
10.1021/acsphotonics.6b00209
10.1002/anie.202318777
10.1002/adma.202002176
10.1038/nphoton.2016.269
10.1002/adom.201800667
10.1007/s40820-021-00685-5
10.1126/science.aaa5760
10.1038/s41566-021-00909-5
10.1038/nnano.2016.110
10.1038/ncomms15640
10.1038/s41563-020-0784-7
10.1021/acsami.7b06001
10.1039/C4CS00458B
10.1038/s41928-022-00745-7
10.1038/nphoton.2014.284
10.1002/adma.201908340
10.1002/advs.201700471
10.1016/j.xcrp.2023.101363
10.1002/smtd.201900552
10.1016/j.mattod.2018.04.002
10.1021/acs.jpclett.2c00430
10.1038/s41467-019-08561-y
10.1038/s41566-022-01024-9
10.1039/C6EE02941H
10.1021/acsenergylett.9b00847
10.1002/adom.201600327
10.1038/nmat4271
10.1016/j.matt.2019.04.002
10.1039/C5CC06916E
10.1038/s41586-021-03285-w
10.1002/adfm.201909754
10.1126/science.aaa2725
10.1038/srep16563
10.1038/s41566-023-01167-3
10.1039/C7CE01709J
10.1038/s41467-020-14401-1
10.1002/adma.202202390
10.1021/acs.accounts.5b00433
10.1021/acsnano.1c11539
10.1038/s41586-023-06667-4
10.1002/adma.202001999
10.1002/adma.202104867
10.1002/pssr.201800090
10.1002/adfm.202301205
10.7567/JJAP.57.03EH05
10.1002/adom.201900080
10.1002/adfm.202200385
10.1002/advs.202104788
10.1038/s41586-023-05855-6
10.1002/adma.201805244
10.1021/acsnano.7b03660
10.1002/aenm.202103241
10.1002/adma.202109818
10.1002/adma.202103268
10.1038/s41566-019-0505-4
10.1038/s41586-021-03217-8
10.1002/adma.201602639
10.1002/adfm.202112758
10.1002/anie.202011853
10.1038/s41586-023-06637-w
10.1039/C8TC03164A
10.1038/s41586-021-03964-8
10.1021/acsami.1c00174
10.1038/nmat3911
10.1021/acsnano.2c00488
10.1039/D1TC00408E
10.1126/sciadv.aat2390
10.1002/adma.202302283
10.1038/s41586-021-03997-z
10.1021/acsenergylett.7b00468
10.1021/acs.nanolett.0c03593
10.1002/lpor.202200189
10.1126/sciadv.1701186
10.1021/acsenergylett.6b00002
10.1016/j.mattod.2022.04.009
10.1021/acsenergylett.3c00589
10.1002/adma.201500449
10.1039/D0EE03839C
10.1002/adfm.202301425
10.1021/acsenergylett.3c01935
10.1002/anie.201703786
10.1038/nnano.2014.149
10.1002/smtd.201700163
10.1038/s41586-020-2621-1
10.1021/acsami.9b15791
10.1002/adfm.202008684
10.1038/s41566-021-00855-2
10.1002/adma.202108102
10.1038/s41566‐024‐01382‐6
10.1002/adma.201901517
10.1364/OL.41.000555
10.1038/s41586-023-06488-5
10.1007/s12274-022-4205-x
10.1073/pnas.1600789113
10.1002/advs.202101663
10.1021/acsnano.7b02629
10.1038/s41467-022-35218-0
10.1038/s41467-017-02039-5
10.1021/acsenergylett.0c02573
10.1002/adma.201505126
10.1038/s41467-023-39488-0
10.1002/anie.201905521
10.1038/s41565-020-0714-5
10.1002/adma.201802110
10.1039/D1EE02018H
10.1038/s41467-018-07706-9
10.1016/j.nanoen.2023.108951
10.1002/adma.201803336
10.1038/s41467-019-10612-3
10.1002/adom.201700157
10.1021/acs.jpclett.0c02560
10.1002/anie.201511792
10.1021/acs.nanolett.2c00276
10.1002/adma.201707314
10.1002/advs.201801350
10.1002/adom.201900544
10.1038/s41377-023-01129-y
10.1002/adom.201901297
10.1016/j.matt.2021.05.002
10.1038/s41566-019-0526-z
10.1002/adfm.202209563
10.1002/eom2.12036
10.1002/aenm.202000453
10.1002/adma.202303144
10.1016/j.mattod.2018.07.018
10.1038/s41377-023-01231-1
10.1038/ncomms15882
10.1002/adom.201800278
10.1021/acs.nanolett.2c00383
10.1039/C7TA04608A
10.1038/s41578-022-00459-4
10.1021/nl503057g
10.1016/j.physrep.2019.01.005
10.1063/5.0014497
10.1002/anie.202205636
10.1021/acsnano.8b01999
10.1038/ncomms14558
10.1002/adma.201908006
10.1038/nphoton.2016.62
10.7567/JJAP.57.04FL10
10.1021/acsmaterialslett.1c00474
10.1016/j.jlumin.2020.117079
10.1021/acsenergylett.2c02802
10.1002/adma.201804595
10.1038/nphoton.2016.139
10.1021/jacs.6b05683
10.1021/acsphotonics.0c01394
10.1002/adma.201502597
10.1038/s41467-019-13944-2
10.1002/adma.202205217
10.1038/s41586-020-2526-z
10.1002/adma.202000306
10.1021/acsnano.0c01817
10.1002/adma.202204460
10.1038/ncomms8586
10.1002/aenm.201602803
10.1002/adma.202208789
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202401189
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202401189
ADFM202401189
Genre reviewArticle
GrantInformation_xml – fundername: Science and Technology Development Fund (FDCT) of the Macao Special Administrative Region
  funderid: 0145/2022/A3
– fundername: Suzhou Gusu innovation and entrepreneurship leading talent project
  funderid: ZXL2023342
– fundername: Suzhou Key Laboratory of Functional Nano & Soft Materials
– fundername: Outstanding Science & Technology Innovation Team for Jiangsu Universities
– fundername: Jiangsu Funding Program for Excellent Postdoctoral Talent
  funderid: 2023ZB645
– fundername: Joint International Research Laboratory of Carbon‐Based Functional Materials and Devices
– fundername: 111 Project
– fundername: China Postdoctoral Science Foundation
  funderid: 2023M742524
– fundername: Postdoctoral Fellowship Program of CPSF
  funderid: GZC20231876
– fundername: Jiangsu Association for Science and Technology
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
53G
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
O8X
1OB
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3179-3de1435a43b4b1ed8c4e84776c4bdb3b967a85d55ec5b1271e6d1fbdfe68ccc33
IEDL.DBID DRFUL
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001217437700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Wed Aug 13 04:26:53 EDT 2025
Sat Nov 29 07:21:01 EST 2025
Tue Nov 18 20:57:41 EST 2025
Thu May 22 09:26:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3179-3de1435a43b4b1ed8c4e84776c4bdb3b967a85d55ec5b1271e6d1fbdfe68ccc33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3244-9449
PQID 3228924017
PQPubID 2045204
PageCount 30
ParticipantIDs proquest_journals_3228924017
crossref_primary_10_1002_adfm_202401189
crossref_citationtrail_10_1002_adfm_202401189
wiley_primary_10_1002_adfm_202401189_ADFM202401189
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 11
2019; 10
2019; 13
2019; 14
2023; 623
2020; 15
2023; 621
2020; 14
2020; 11
2022; 22
2024
2020; 10
2022; 611
2018; 6
2018; 9
2018; 5
2018; 4
2019; 22
2019; 24
2022; 34
2014; 14
2016; 41
2019; 795
2014; 13
2018; 30
2022; 32
2018; 34
2016; 49
2023; 617
2016; 45
2019; 8
2019; 7
2019; 4
2017; 60
2019; 31
2015; 51
2019; 1
2016; 10
2020; 32
2016; 11
2016; 4
2015; 350
2017; 53
2016; 7
2016; 1
2016; 3
2020; 30
2022; 5
2022; 7
2022; 9
2017; 56
2022; 13
2022; 14
2022; 15
2018; 12
2016; 28
2021; 60
2022; 16
2017; 5
2017; 7
2017; 8
2023; 35
2021; 21
2017; 1
2021; 20
2017; 2
2023; 33
2017; 3
2015; 347
2023; 4
2023; 382
2023; 8
2020; 59
2020; 367
2017; 9
2020; 8
2020; 5
2021; 31
2020; 2
2021; 33
2021; 599
2021; 598
2016; 113
2021; 591
2024; 63
2021; 590
2014; 9
2021; 9
2018; 141
2021; 8
2021; 6
2015; 14
2015; 6
2021; 4
2015; 5
2023; 14
2021; 3
2023; 12
2023; 17
2020; 580
2020; 583
2023; 15
2020; 585
2017; 29
2020; 221
2016; 55
2021; 14
2021; 13
2021; 16
2021; 15
2015; 27
2021; 12
2022; 61
2017; 11
2017; 10
2017; 13
2020; 116
2017; 19
2016; 138
2022; 55
2023; 118
2016; 67
2018; 57
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_161_1
e_1_2_7_184_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_188_1
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_180_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_150_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_173_1
Sun S. Q. (e_1_2_7_17_1) 2024
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_177_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_139_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_185_1
e_1_2_7_48_1
e_1_2_7_162_1
e_1_2_7_143_1
e_1_2_7_189_1
e_1_2_7_29_1
e_1_2_7_166_1
e_1_2_7_147_1
e_1_2_7_117_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_181_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_151_1
e_1_2_7_174_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_178_1
e_1_2_7_136_1
e_1_2_7_159_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_170_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_182_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_186_1
e_1_2_7_148_1
e_1_2_7_118_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
Zhao L. (e_1_2_7_11_1) 2018; 34
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_171_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_39_1
e_1_2_7_175_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_179_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_190_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_160_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_183_1
e_1_2_7_27_1
e_1_2_7_164_1
e_1_2_7_145_1
e_1_2_7_187_1
e_1_2_7_168_1
e_1_2_7_149_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_172_1
e_1_2_7_130_1
e_1_2_7_38_1
e_1_2_7_153_1
e_1_2_7_176_1
e_1_2_7_134_1
e_1_2_7_157_1
e_1_2_7_138_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 6394
  year: 2022
  publication-title: ACS Nano
– volume: 141
  start-page: 1171
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 7586
  year: 2015
  publication-title: Nat. Commun.
– volume: 382
  start-page: 1399
  year: 2023
  publication-title: Science
– volume: 9
  start-page: 6498
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 9
  start-page: 5354
  year: 2018
  publication-title: Nat. Commun.
– volume: 347
  start-page: 519
  year: 2015
  publication-title: Science
– volume: 19
  start-page: 6797
  year: 2017
  publication-title: CrystEngComm
– volume: 15
  start-page: 6568
  year: 2022
  publication-title: Nano Res.
– volume: 16
  start-page: 575
  year: 2022
  publication-title: Nat. Photon.
– volume: 11
  start-page: 8275
  year: 2020
  publication-title: J. Phys. Chem. Lett.
– volume: 599
  start-page: 594
  year: 2021
  publication-title: Nature
– volume: 51
  year: 2015
  publication-title: Chem. Commun.
– volume: 8
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 623
  start-page: 531
  year: 2023
  publication-title: Nature
– volume: 138
  start-page: 9409
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 621
  start-page: 746
  year: 2023
  publication-title: Nature
– volume: 14
  start-page: 9248
  year: 2022
  publication-title: Nanoscale
– volume: 22
  start-page: 67
  year: 2019
  publication-title: Mater. Today
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 12
  start-page: 4919
  year: 2018
  publication-title: ACS Nano
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 17
  start-page: 401
  year: 2023
  publication-title: Nat. Photon.
– volume: 12
  start-page: 85
  year: 2023
  publication-title: Light Sci. Appl.
– volume: 22
  start-page: 2490
  year: 2022
  publication-title: Nano Lett.
– volume: 49
  start-page: 294
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 9
  start-page: 687
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 106
  year: 2014
  publication-title: Nat. Photon.
– volume: 12
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 465
  year: 2019
  publication-title: Matter
– volume: 347
  start-page: 967
  year: 2015
  publication-title: Science
– volume: 580
  start-page: 614
  year: 2020
  publication-title: Nature
– volume: 3
  start-page: 1125
  year: 2016
  publication-title: ACS Photonics
– volume: 611
  start-page: 688
  year: 2022
  publication-title: Nature
– volume: 21
  start-page: 1903
  year: 2021
  publication-title: Nano Lett.
– volume: 12
  start-page: 783
  year: 2018
  publication-title: Nat. Photon.
– volume: 16
  start-page: 14
  year: 2021
  publication-title: Nat. Photon.
– volume: 14
  start-page: 50
  year: 2019
  publication-title: Nat. Photon.
– volume: 53
  start-page: 5163
  year: 2017
  publication-title: Chem. Commun.
– volume: 10
  start-page: 585
  year: 2016
  publication-title: Nat. Photon.
– volume: 13
  start-page: 476
  year: 2014
  publication-title: Nat. Mater.
– volume: 10
  start-page: 295
  year: 2016
  publication-title: Nat. Photon.
– volume: 16
  year: 2022
  publication-title: Laser Photonics Rev.
– volume: 11
  start-page: 872
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 350
  start-page: 1222
  year: 2015
  publication-title: Science
– volume: 60
  start-page: 1367
  year: 2017
  publication-title: Sci. China Chem.
– volume: 45
  start-page: 655
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 116
  year: 2020
  publication-title: Appl. Phys. Lett.
– volume: 585
  start-page: 53
  year: 2020
  publication-title: Nature
– volume: 28
  start-page: 2201
  year: 2016
  publication-title: Adv. Mater.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 28
  start-page: 3383
  year: 2016
  publication-title: Adv. Mater.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 13
  start-page: 163
  year: 2021
  publication-title: Nano‐Micro Lett.
– volume: 16
  start-page: 7116
  year: 2022
  publication-title: ACS Nano
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 12
  start-page: 1531
  year: 2021
  publication-title: Nat. Commun.
– volume: 598
  start-page: 444
  year: 2021
  publication-title: Nature
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 59
  start-page: 6676
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 15
  start-page: 656
  year: 2021
  publication-title: Nat. Photon.
– volume: 617
  start-page: 79
  year: 2023
  publication-title: Nature
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 170
  year: 2020
  publication-title: Nat. Commun.
– volume: 7
  start-page: 757
  year: 2022
  publication-title: Nat. Rev. Mater.
– volume: 591
  start-page: 72
  year: 2021
  publication-title: Nature
– volume: 6
  start-page: 631
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 8
  start-page: 4915
  year: 2023
  publication-title: ACS Energy Lett.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 9869
  year: 2017
  publication-title: ACS Nano
– year: 2024
  publication-title: Adv. Mater.
– volume: 41
  start-page: 555
  year: 2016
  publication-title: Opt. Lett.
– volume: 27
  start-page: 5176
  year: 2015
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 4
  start-page: 2266
  year: 2021
  publication-title: Matter
– volume: 6
  start-page: 4464
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 12
  start-page: 184
  year: 2023
  publication-title: Light Sci. Appl.
– volume: 11
  start-page: 1194
  year: 2020
  publication-title: Nat. Commun.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 13
  start-page: 760
  year: 2019
  publication-title: Nat. Photon.
– volume: 57
  year: 2018
  publication-title: Jpn. J. Appl. Phys.
– volume: 14
  start-page: 3883
  year: 2023
  publication-title: Nat. Commun.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 34
  start-page: 18
  year: 2018
  publication-title: Inf. Disp.
– volume: 14
  start-page: 2263
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 15
  start-page: 177
  year: 2023
  publication-title: Nano‐Micro Lett.
– volume: 14
  start-page: 5690
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 1782
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 367
  start-page: 1352
  year: 2020
  publication-title: Science
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 583
  start-page: 790
  year: 2020
  publication-title: Nature
– volume: 15
  start-page: 668
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 336
  year: 2021
  publication-title: Nat. Commun.
– volume: 118
  year: 2023
  publication-title: Nano Energy
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 55
  start-page: 110
  year: 2022
  publication-title: Mater. Today
– volume: 1
  start-page: 32
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 727
  year: 2019
  publication-title: Nat. Commun.
– volume: 14
  start-page: 636
  year: 2015
  publication-title: Nat. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1890
  year: 2017
  publication-title: Nat. Commun.
– volume: 4
  start-page: 1258
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 8
  start-page: 341
  year: 2023
  publication-title: Nat. Rev. Mater.
– volume: 6
  start-page: 3781
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 10
  start-page: 516
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 55
  start-page: 3447
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 63
  year: 2024
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 14
  start-page: 6076
  year: 2020
  publication-title: ACS Nano
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 12
  start-page: 2023
  year: 2021
  publication-title: Nat. Commun.
– volume: 221
  year: 2020
  publication-title: J. Lumin.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 795
  start-page: 1
  year: 2019
  publication-title: Phys. Rep.
– volume: 3
  start-page: 1702
  year: 2021
  publication-title: ACS Mater. Lett.
– volume: 4
  start-page: 1829
  year: 2016
  publication-title: Adv. Opt. Mater.
– volume: 22
  start-page: 3062
  year: 2022
  publication-title: Nano Lett.
– volume: 24
  start-page: 17
  year: 2019
  publication-title: Mater. Today
– volume: 14
  start-page: 5995
  year: 2014
  publication-title: Nano Lett.
– volume: 13
  start-page: 2963
  year: 2022
  publication-title: J. Phys. Chem. Lett.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 10
  start-page: 2818
  year: 2019
  publication-title: Nat. Commun.
– volume: 113
  start-page: 1993
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 623
  start-page: 732
  year: 2023
  publication-title: Nature
– year: 2024
  publication-title: Nat. Photon.
– volume: 11
  start-page: 108
  year: 2017
  publication-title: Nat. Photon.
– volume: 11
  start-page: 611
  year: 2020
  publication-title: Nat. Commun.
– volume: 5
  start-page: 203
  year: 2022
  publication-title: Nat. Electron.
– volume: 1
  year: 2017
  publication-title: Small Methods
– volume: 28
  start-page: 9204
  year: 2016
  publication-title: Adv. Mater.
– volume: 11
  start-page: 6312
  year: 2017
  publication-title: ACS Nano
– volume: 8
  start-page: 386
  year: 2021
  publication-title: ACS Photonics
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 7425
  year: 2022
  publication-title: Nat. Commun.
– volume: 5
  start-page: 657
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  year: 2019
  publication-title: Small Methods
– volume: 60
  start-page: 2629
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 27
  start-page: 3405
  year: 2015
  publication-title: Adv. Mater.
– volume: 5
  year: 2017
  publication-title: Adv. Opt. Mater.
– volume: 20
  start-page: 10
  year: 2021
  publication-title: Nat. Mater.
– volume: 67
  start-page: 65
  year: 2016
  publication-title: Annu. Rev. Phys. Chem.
– volume: 17
  year: 2023
  publication-title: Laser Photonics Rev.
– volume: 13
  start-page: 6629
  year: 2022
  publication-title: Nat. Commun.
– volume: 8
  start-page: 927
  year: 2023
  publication-title: ACS Energy Lett.
– volume: 2
  year: 2020
  publication-title: EcoMat
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 12
  year: 2018
  publication-title: Phys. Status Solidi RRL
– volume: 590
  start-page: 587
  year: 2021
  publication-title: Nature
– volume: 8
  start-page: 2897
  year: 2023
  publication-title: ACS Energy Lett.
– volume: 4
  year: 2023
  publication-title: Cell Rep. Phys. Sci.
– ident: e_1_2_7_68_1
  doi: 10.1038/s41467-021-21805-0
– ident: e_1_2_7_60_1
  doi: 10.1038/s41467-020-15037-x
– ident: e_1_2_7_178_1
  doi: 10.1002/smll.201603217
– ident: e_1_2_7_4_1
  doi: 10.1126/science.adj8858
– ident: e_1_2_7_77_1
  doi: 10.1021/acsami.9b09035
– ident: e_1_2_7_156_1
  doi: 10.1038/s41566-018-0283-4
– ident: e_1_2_7_55_1
  doi: 10.1038/s41467-021-22193-1
– ident: e_1_2_7_148_1
  doi: 10.1126/science.aba0893
– ident: e_1_2_7_16_1
  doi: 10.1038/s41586-022-05304-w
– ident: e_1_2_7_168_1
  doi: 10.1002/adfm.202010144
– ident: e_1_2_7_149_1
  doi: 10.1126/science.aad1818
– ident: e_1_2_7_82_1
  doi: 10.1038/s41467-022-34421-3
– ident: e_1_2_7_111_1
  doi: 10.1007/s11426-017-9081-3
– ident: e_1_2_7_62_1
  doi: 10.1002/adma.201705992
– ident: e_1_2_7_78_1
  doi: 10.1021/acs.jpclett.5b01666
– ident: e_1_2_7_95_1
  doi: 10.1039/C7CC02447A
– ident: e_1_2_7_142_1
  doi: 10.1146/annurev-physchem-040215-112222
– ident: e_1_2_7_176_1
  doi: 10.1002/adom.202000030
– ident: e_1_2_7_91_1
  doi: 10.1002/adma.201506292
– ident: e_1_2_7_3_1
  doi: 10.1038/s41586-020-2219-7
– ident: e_1_2_7_63_1
  doi: 10.1021/jacs.6b09388
– ident: e_1_2_7_144_1
  doi: 10.1021/jacs.8b10851
– ident: e_1_2_7_51_1
  doi: 10.1002/adma.201601995
– ident: e_1_2_7_87_1
  doi: 10.1038/ncomms11755
– ident: e_1_2_7_164_1
  doi: 10.1007/s40820-023-01140-3
– ident: e_1_2_7_110_1
  doi: 10.1039/C8TC00842F
– ident: e_1_2_7_42_1
  doi: 10.1039/D2NR00513A
– ident: e_1_2_7_34_1
  doi: 10.1021/acsenergylett.9b02787
– ident: e_1_2_7_143_1
  doi: 10.1038/s41467-020-20555-9
– ident: e_1_2_7_27_1
  doi: 10.1038/s41578-022-00522-0
– ident: e_1_2_7_129_1
  doi: 10.1002/lpor.202200904
– ident: e_1_2_7_175_1
  doi: 10.1021/acsphotonics.6b00209
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.202318777
– ident: e_1_2_7_153_1
  doi: 10.1002/adma.202002176
– ident: e_1_2_7_146_1
  doi: 10.1038/nphoton.2016.269
– ident: e_1_2_7_159_1
  doi: 10.1002/adom.201800667
– ident: e_1_2_7_189_1
  doi: 10.1007/s40820-021-00685-5
– ident: e_1_2_7_31_1
  doi: 10.1126/science.aaa5760
– ident: e_1_2_7_38_1
  doi: 10.1038/s41566-021-00909-5
– ident: e_1_2_7_145_1
  doi: 10.1038/nnano.2016.110
– ident: e_1_2_7_154_1
  doi: 10.1038/ncomms15640
– ident: e_1_2_7_12_1
  doi: 10.1038/s41563-020-0784-7
– ident: e_1_2_7_188_1
  doi: 10.1021/acsami.7b06001
– ident: e_1_2_7_41_1
  doi: 10.1039/C4CS00458B
– ident: e_1_2_7_124_1
  doi: 10.1038/s41928-022-00745-7
– ident: e_1_2_7_158_1
  doi: 10.1038/nphoton.2014.284
– ident: e_1_2_7_120_1
  doi: 10.1002/adma.201908340
– ident: e_1_2_7_53_1
  doi: 10.1002/advs.201700471
– ident: e_1_2_7_65_1
  doi: 10.1016/j.xcrp.2023.101363
– ident: e_1_2_7_48_1
  doi: 10.1002/smtd.201900552
– ident: e_1_2_7_58_1
  doi: 10.1016/j.mattod.2018.04.002
– ident: e_1_2_7_136_1
  doi: 10.1021/acs.jpclett.2c00430
– ident: e_1_2_7_161_1
  doi: 10.1038/s41467-019-08561-y
– ident: e_1_2_7_2_1
  doi: 10.1038/s41566-022-01024-9
– ident: e_1_2_7_92_1
  doi: 10.1039/C6EE02941H
– ident: e_1_2_7_33_1
  doi: 10.1021/acsenergylett.9b00847
– ident: e_1_2_7_76_1
  doi: 10.1002/adom.201600327
– ident: e_1_2_7_169_1
  doi: 10.1038/nmat4271
– ident: e_1_2_7_104_1
  doi: 10.1016/j.matt.2019.04.002
– ident: e_1_2_7_108_1
  doi: 10.1039/C5CC06916E
– ident: e_1_2_7_6_1
  doi: 10.1038/s41586-021-03285-w
– ident: e_1_2_7_21_1
  doi: 10.1002/adfm.201909754
– ident: e_1_2_7_32_1
  doi: 10.1126/science.aaa2725
– ident: e_1_2_7_106_1
  doi: 10.1038/srep16563
– ident: e_1_2_7_47_1
  doi: 10.1038/s41566-023-01167-3
– ident: e_1_2_7_94_1
  doi: 10.1039/C7CE01709J
– ident: e_1_2_7_150_1
  doi: 10.1038/s41467-020-14401-1
– ident: e_1_2_7_74_1
  doi: 10.1002/adma.202202390
– ident: e_1_2_7_140_1
  doi: 10.1021/acs.accounts.5b00433
– ident: e_1_2_7_44_1
  doi: 10.1021/acsnano.1c11539
– ident: e_1_2_7_1_1
  doi: 10.1038/s41586-023-06667-4
– ident: e_1_2_7_119_1
  doi: 10.1002/adma.202001999
– ident: e_1_2_7_185_1
  doi: 10.1002/adma.202104867
– year: 2024
  ident: e_1_2_7_17_1
  publication-title: Adv. Mater.
– ident: e_1_2_7_187_1
  doi: 10.1002/pssr.201800090
– ident: e_1_2_7_69_1
  doi: 10.1002/adfm.202301205
– ident: e_1_2_7_133_1
  doi: 10.7567/JJAP.57.03EH05
– ident: e_1_2_7_167_1
  doi: 10.1002/adom.201900080
– ident: e_1_2_7_181_1
  doi: 10.1002/adfm.202200385
– ident: e_1_2_7_61_1
  doi: 10.1002/advs.202104788
– ident: e_1_2_7_182_1
  doi: 10.1038/s41586-023-05855-6
– ident: e_1_2_7_30_1
  doi: 10.1002/adma.201805244
– ident: e_1_2_7_130_1
  doi: 10.1021/acsnano.7b03660
– ident: e_1_2_7_75_1
  doi: 10.1002/aenm.202103241
– ident: e_1_2_7_80_1
  doi: 10.1002/adma.202109818
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.202103268
– ident: e_1_2_7_160_1
  doi: 10.1038/s41566-019-0505-4
– ident: e_1_2_7_19_1
  doi: 10.1038/s41586-021-03217-8
– ident: e_1_2_7_59_1
  doi: 10.1002/adma.201602639
– ident: e_1_2_7_116_1
  doi: 10.1002/adfm.202112758
– ident: e_1_2_7_71_1
  doi: 10.1002/anie.202011853
– ident: e_1_2_7_5_1
  doi: 10.1038/s41586-023-06637-w
– ident: e_1_2_7_43_1
  doi: 10.1039/C8TC03164A
– ident: e_1_2_7_7_1
  doi: 10.1038/s41586-021-03964-8
– ident: e_1_2_7_109_1
  doi: 10.1021/acsami.1c00174
– ident: e_1_2_7_163_1
  doi: 10.1038/nmat3911
– ident: e_1_2_7_96_1
  doi: 10.1021/acsnano.2c00488
– ident: e_1_2_7_105_1
  doi: 10.1039/D1TC00408E
– ident: e_1_2_7_113_1
  doi: 10.1126/sciadv.aat2390
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.202302283
– ident: e_1_2_7_15_1
  doi: 10.1038/s41586-021-03997-z
– ident: e_1_2_7_100_1
  doi: 10.1021/acsenergylett.7b00468
– ident: e_1_2_7_128_1
  doi: 10.1021/acs.nanolett.0c03593
– ident: e_1_2_7_127_1
  doi: 10.1002/lpor.202200189
– ident: e_1_2_7_81_1
  doi: 10.1126/sciadv.1701186
– ident: e_1_2_7_64_1
  doi: 10.1021/acsenergylett.6b00002
– ident: e_1_2_7_9_1
  doi: 10.1016/j.mattod.2022.04.009
– ident: e_1_2_7_24_1
  doi: 10.1021/acsenergylett.3c00589
– ident: e_1_2_7_177_1
  doi: 10.1002/adma.201500449
– ident: e_1_2_7_35_1
  doi: 10.1039/D0EE03839C
– ident: e_1_2_7_23_1
  doi: 10.1002/adfm.202301425
– ident: e_1_2_7_37_1
  doi: 10.1021/acsenergylett.3c01935
– ident: e_1_2_7_88_1
  doi: 10.1002/anie.201703786
– ident: e_1_2_7_10_1
  doi: 10.1038/nnano.2014.149
– ident: e_1_2_7_170_1
  doi: 10.1002/smtd.201700163
– ident: e_1_2_7_173_1
  doi: 10.1038/s41586-020-2621-1
– ident: e_1_2_7_131_1
  doi: 10.1021/acsami.9b15791
– ident: e_1_2_7_52_1
  doi: 10.1002/adfm.202008684
– ident: e_1_2_7_98_1
  doi: 10.1038/s41566-021-00855-2
– ident: e_1_2_7_125_1
  doi: 10.1002/adma.202108102
– ident: e_1_2_7_26_1
  doi: 10.1038/s41566‐024‐01382‐6
– ident: e_1_2_7_157_1
  doi: 10.1002/adma.201901517
– ident: e_1_2_7_90_1
  doi: 10.1364/OL.41.000555
– ident: e_1_2_7_162_1
  doi: 10.1038/s41586-023-06488-5
– ident: e_1_2_7_117_1
  doi: 10.1007/s12274-022-4205-x
– ident: e_1_2_7_174_1
  doi: 10.1073/pnas.1600789113
– ident: e_1_2_7_186_1
  doi: 10.1002/advs.202101663
– ident: e_1_2_7_39_1
  doi: 10.1021/acsnano.7b02629
– ident: e_1_2_7_20_1
  doi: 10.1038/s41467-022-35218-0
– ident: e_1_2_7_73_1
  doi: 10.1038/s41467-017-02039-5
– volume: 34
  start-page: 18
  year: 2018
  ident: e_1_2_7_11_1
  publication-title: Inf. Disp.
– ident: e_1_2_7_46_1
  doi: 10.1021/acsenergylett.0c02573
– ident: e_1_2_7_121_1
  doi: 10.1002/adma.201505126
– ident: e_1_2_7_115_1
  doi: 10.1038/s41467-023-39488-0
– ident: e_1_2_7_29_1
  doi: 10.1002/anie.201905521
– ident: e_1_2_7_25_1
  doi: 10.1038/s41565-020-0714-5
– ident: e_1_2_7_70_1
  doi: 10.1002/adma.201802110
– ident: e_1_2_7_97_1
  doi: 10.1039/D1EE02018H
– ident: e_1_2_7_99_1
  doi: 10.1038/s41467-018-07706-9
– ident: e_1_2_7_66_1
  doi: 10.1016/j.nanoen.2023.108951
– ident: e_1_2_7_137_1
  doi: 10.1002/adma.201803336
– ident: e_1_2_7_155_1
  doi: 10.1038/s41467-019-10612-3
– ident: e_1_2_7_67_1
  doi: 10.1002/adom.201700157
– ident: e_1_2_7_135_1
  doi: 10.1021/acs.jpclett.0c02560
– ident: e_1_2_7_107_1
  doi: 10.1002/anie.201511792
– ident: e_1_2_7_123_1
  doi: 10.1021/acs.nanolett.2c00276
– ident: e_1_2_7_56_1
  doi: 10.1002/adma.201707314
– ident: e_1_2_7_151_1
  doi: 10.1002/advs.201801350
– ident: e_1_2_7_166_1
  doi: 10.1002/adom.201900544
– ident: e_1_2_7_101_1
  doi: 10.1038/s41377-023-01129-y
– ident: e_1_2_7_184_1
  doi: 10.1002/adom.201901297
– ident: e_1_2_7_49_1
  doi: 10.1016/j.matt.2021.05.002
– ident: e_1_2_7_86_1
  doi: 10.1038/s41566-019-0526-z
– ident: e_1_2_7_114_1
  doi: 10.1002/adfm.202209563
– ident: e_1_2_7_45_1
  doi: 10.1002/eom2.12036
– ident: e_1_2_7_36_1
  doi: 10.1002/aenm.202000453
– ident: e_1_2_7_183_1
  doi: 10.1002/adma.202303144
– ident: e_1_2_7_83_1
  doi: 10.1016/j.mattod.2018.07.018
– ident: e_1_2_7_112_1
  doi: 10.1038/s41377-023-01231-1
– ident: e_1_2_7_54_1
  doi: 10.1038/ncomms15882
– ident: e_1_2_7_172_1
  doi: 10.1002/adom.201800278
– ident: e_1_2_7_8_1
  doi: 10.1021/acs.nanolett.2c00383
– ident: e_1_2_7_93_1
  doi: 10.1039/C7TA04608A
– ident: e_1_2_7_28_1
  doi: 10.1038/s41578-022-00459-4
– ident: e_1_2_7_89_1
  doi: 10.1021/nl503057g
– ident: e_1_2_7_171_1
  doi: 10.1016/j.physrep.2019.01.005
– ident: e_1_2_7_134_1
  doi: 10.1063/5.0014497
– ident: e_1_2_7_180_1
  doi: 10.1002/anie.202205636
– ident: e_1_2_7_103_1
  doi: 10.1021/acsnano.8b01999
– ident: e_1_2_7_139_1
  doi: 10.1038/ncomms14558
– ident: e_1_2_7_118_1
  doi: 10.1002/adma.201908006
– ident: e_1_2_7_85_1
  doi: 10.1038/nphoton.2016.62
– ident: e_1_2_7_40_1
  doi: 10.7567/JJAP.57.04FL10
– ident: e_1_2_7_50_1
  doi: 10.1021/acsmaterialslett.1c00474
– ident: e_1_2_7_102_1
  doi: 10.1016/j.jlumin.2020.117079
– ident: e_1_2_7_138_1
  doi: 10.1021/acsenergylett.2c02802
– ident: e_1_2_7_141_1
  doi: 10.1002/adma.201804595
– ident: e_1_2_7_165_1
  doi: 10.1038/nphoton.2016.139
– ident: e_1_2_7_72_1
  doi: 10.1021/jacs.6b05683
– ident: e_1_2_7_147_1
  doi: 10.1021/acsphotonics.0c01394
– ident: e_1_2_7_79_1
  doi: 10.1002/adma.201502597
– ident: e_1_2_7_122_1
  doi: 10.1038/s41467-019-13944-2
– ident: e_1_2_7_126_1
  doi: 10.1002/adma.202205217
– ident: e_1_2_7_132_1
  doi: 10.1038/s41586-020-2526-z
– ident: e_1_2_7_179_1
  doi: 10.1002/adma.202000306
– ident: e_1_2_7_190_1
  doi: 10.1021/acsnano.0c01817
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.202204460
– ident: e_1_2_7_57_1
  doi: 10.1038/ncomms8586
– ident: e_1_2_7_152_1
  doi: 10.1002/aenm.201602803
– ident: e_1_2_7_84_1
  doi: 10.1002/adma.202208789
SSID ssj0017734
Score 2.5417697
SecondaryResourceType review_article
Snippet Metal halide perovskite single crystals (MHP SCs) have attracted extensive attention due to their superior properties, such as higher carrier mobility, longer...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Carrier mobility
crystal growth methods
Diffusion length
Electroluminescence
Ion migration
Light emitting diodes
metal halide perovskite
Metal halides
Optoelectronic devices
perovskite light‐emitting diodes
Perovskites
Single crystals
Stability
Title Metal Halide Perovskite Single Crystals toward Electroluminescent Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202401189
https://www.proquest.com/docview/3228924017
Volume 35
WOSCitedRecordID wos001217437700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB609aAH32J9sQfBU2g3m2Q3x9IHPbSlqJXewr4CQmklqQX_vbtJmqYHEfQYMhnCzM7Ot7uz3wA8chwTbnC7I4lZonihkg43ix5HWPK3mMWSZPfW3oZ0PGazWTip3OLP-SHKDTcbGdl8bQOci7S5JQ3lKrY3yY1Kg5HDfai7ZvD6Nah3n_vTYXmSQGl-shxgW-OFZxvixpbb3NWwm5i2aLOKWbOk0z_5_--ewnEBOFE7HyFnsKcX53BUoSG8gPFIGwiOBgaSK40mOlmuU7upi17M67lGneTLYMh5ilZZjS3q5a1zzLRma-ZteSdqV87BL2Ha7712Bk7RZ8E4yMSjQ5S2qIl7RHgCa8Wkp03SooH0hBJEhAHlzFe-r6UvsEuxDhSOhYp1wKSUhFxBbbFc6GtATLpSSaJbNBSeDJgw3pYk9kjAOfa1aoCzMXIkCxJy2wtjHuX0yW5k7RSVdmrAUyn_kdNv_Ch5t_FZVIRhGpnZioVWgDbAzbzzi5ao3e2Pyqebv3x0C4eu7RGcFUXeQW2VfOp7OJDr1XuaPBTD8xusNubY
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60FdSDb7FadQ-Cp9Amm-ex9EHFNBRtpbeQfQSE0kpSC_57Z5M0bQ8iiMeQzRB2Zna-3Zn9BuAh0mMaIW7XOMUtiukJrkW46dGYIn-L3ZjT7N7am-8EgTuZeMOimlDdhcn5IcoDN-UZ2XqtHFwdSDfWrKGRiNVVcpSJINnbhaqJtoRGXu289MZ-mUpwnDy1bOuqyEufrJgbm0ZjW8J2ZFrDzU3QmkWd3vE__O8JHBWQk7RyGzmFHTk7g8MNIsJzCAYSQTjpIygXkgxlMl-m6liXvOLrqSTt5AtR5DQli6zKlnTz5jm4sKmqeVXgSVobmfALGPe6o3ZfKzotoIrQIzUqpMJNkUmZyXQpXG5KDFuOzU0mGGWe7USuJSxLcovphqNLW-gxE7G0Xc45pZdQmc1n8gqIyw0uOJVNx2Mmt12G-uY0NqkdRbolRQ201SyHvKAhV90wpmFOoGyEap7Ccp5q8FiO_8gJOH4cWV8pLSwcMQ1xvXI9NcCpgZGp5xcpYavTG5RP13_56B72-6OBH_pPwfMNHBiqY3BWIlmHyiL5lLewx5eL9zS5K2z1G4kQ6sg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7oJqIP3sXp1DwIPpWtTS_p49hWJm5lqJO9ldwKwthGOwf-e5O267YHEcTH0jSUnJzkS853vgPwQM0YU4XbDY7VEcX2BTeoOvQYTIu_xSTmOMtbe-97YUjGY39YsAl1LkyuD1FeuGnPyNZr7eByLuLGWjWUilinkqs-FUj2d6Fq60oyFah2XoJRvwwleF4eWnZNTfIyxyvlxqbV2O5he2daw81N0JrtOsHxP_zvCRwVkBO18jlyCjtyegaHG0KE5xAOpALhqKdAuZBoKJPZMtXXuuhVvZ5I1E6-FIqcpGiRsWxRNy-eoxY2zZrXBE_U2oiEX8Ao6L61e0ZRaUGZSHmkgYXUuInamNnMlIJwW6pty3O5zQTDzHc9ShzhOJI7zLQ8U7rCjJmIpUs45xhfQmU6m8orQIRbXHAsm57PbO4SpuzNcWxjl1LTkaIGxmqUI17IkOtqGJMoF1C2Ij1OUTlONXgs289zAY4fW9ZXRosKR0wjtV4RXzfwamBl5vmll6jVCQbl0_VfPrqH_WEniPpP4fMNHFi6YHDGkKxDZZF8ylvY48vFR5rcFVP1GzKI6kM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+Halide+Perovskite+Single+Crystals+toward+Electroluminescent+Applications&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Chaoqiang&rft.au=Chen%2C+Shuai&rft.au=Jie%2C+Jiansheng&rft.au=Tian%2C+Chao&rft.date=2025-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=21&rft_id=info:doi/10.1002%2Fadfm.202401189&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon