Oligopeptide‐Induced Multifunctional Interface Layer with Protonated Hydrophobic Behavior and Strong Affinity for Highly Stable Zinc Anode

Zinc‐ion batteries (ZIBs) have attracted wide attention due to their low redox potential, high capacity, and intrinsic safety. However, key issues such as zinc dendrite growth, corrosion, and passivation on zinc anode detrimentally affect the electrochemical performance. Herein, as proof of a concep...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials Vol. 35; no. 21
Main Authors: Liang, Xiao, Yang, Rui, Zheng, Yongping, Zhang, Fan, Zhang, Wenjun, Lee, Chun‐Sing, Tang, Yongbing
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 01.05.2025
Subjects:
ISSN:1616-301X, 1616-3028
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Zinc‐ion batteries (ZIBs) have attracted wide attention due to their low redox potential, high capacity, and intrinsic safety. However, key issues such as zinc dendrite growth, corrosion, and passivation on zinc anode detrimentally affect the electrochemical performance. Herein, as proof of a concept of oligopeptide, glutathione with functional groups including –NH2 and −SH is introduced as an electrolyte additive to construct a multifunctional electrode–electrolyte interface layer on the zinc anode. A protonated amino group (NH3+) is formed, which prevents the adsorption of water molecules on the Zn anode, building a hydrophobic interface layer and thus attenuating corrosion. Moreover, the strong interaction between the −SH and the zinc allows glutathione molecules to be tightly anchored to the electrode surface, constructing a robust interface layer. Consequently, a long cycling life of nearly 3000 h at 1 mA cm−2 for the Zn||Zn symmetric battery is achieved, and a stable cycling life of 1600 h is demonstrated at 3 mA cm−2. Furthermore, Zn||activated carbon (AC) hybrid capacitor with the glutathione‐containing electrolyte runs stably for nearly 28 000 cycles at 5 A g−1, among the best results of reported Zn hybrid capacitors. Glutathione with functional groups including protonated amino group (NH3+) and −SH is introduced as an electrolyte additive to construct a multifunctional electrode–electrolyte interface layer on the zinc anode, which is conducive to improve interfacial hydrophobic capacity and adhesive strength. Owing to these significant functions, the Zn‐AC hybrid capacitor exhibits ultralong cycle life for over 28 000 cycles at 5 A g−1.
AbstractList Zinc‐ion batteries (ZIBs) have attracted wide attention due to their low redox potential, high capacity, and intrinsic safety. However, key issues such as zinc dendrite growth, corrosion, and passivation on zinc anode detrimentally affect the electrochemical performance. Herein, as proof of a concept of oligopeptide, glutathione with functional groups including –NH2 and −SH is introduced as an electrolyte additive to construct a multifunctional electrode–electrolyte interface layer on the zinc anode. A protonated amino group (NH3+) is formed, which prevents the adsorption of water molecules on the Zn anode, building a hydrophobic interface layer and thus attenuating corrosion. Moreover, the strong interaction between the −SH and the zinc allows glutathione molecules to be tightly anchored to the electrode surface, constructing a robust interface layer. Consequently, a long cycling life of nearly 3000 h at 1 mA cm−2 for the Zn||Zn symmetric battery is achieved, and a stable cycling life of 1600 h is demonstrated at 3 mA cm−2. Furthermore, Zn||activated carbon (AC) hybrid capacitor with the glutathione‐containing electrolyte runs stably for nearly 28 000 cycles at 5 A g−1, among the best results of reported Zn hybrid capacitors.
Zinc‐ion batteries (ZIBs) have attracted wide attention due to their low redox potential, high capacity, and intrinsic safety. However, key issues such as zinc dendrite growth, corrosion, and passivation on zinc anode detrimentally affect the electrochemical performance. Herein, as proof of a concept of oligopeptide, glutathione with functional groups including –NH2 and −SH is introduced as an electrolyte additive to construct a multifunctional electrode–electrolyte interface layer on the zinc anode. A protonated amino group (NH3+) is formed, which prevents the adsorption of water molecules on the Zn anode, building a hydrophobic interface layer and thus attenuating corrosion. Moreover, the strong interaction between the −SH and the zinc allows glutathione molecules to be tightly anchored to the electrode surface, constructing a robust interface layer. Consequently, a long cycling life of nearly 3000 h at 1 mA cm−2 for the Zn||Zn symmetric battery is achieved, and a stable cycling life of 1600 h is demonstrated at 3 mA cm−2. Furthermore, Zn||activated carbon (AC) hybrid capacitor with the glutathione‐containing electrolyte runs stably for nearly 28 000 cycles at 5 A g−1, among the best results of reported Zn hybrid capacitors. Glutathione with functional groups including protonated amino group (NH3+) and −SH is introduced as an electrolyte additive to construct a multifunctional electrode–electrolyte interface layer on the zinc anode, which is conducive to improve interfacial hydrophobic capacity and adhesive strength. Owing to these significant functions, the Zn‐AC hybrid capacitor exhibits ultralong cycle life for over 28 000 cycles at 5 A g−1.
Zinc‐ion batteries (ZIBs) have attracted wide attention due to their low redox potential, high capacity, and intrinsic safety. However, key issues such as zinc dendrite growth, corrosion, and passivation on zinc anode detrimentally affect the electrochemical performance. Herein, as proof of a concept of oligopeptide, glutathione with functional groups including –NH 2 and −SH is introduced as an electrolyte additive to construct a multifunctional electrode–electrolyte interface layer on the zinc anode. A protonated amino group (NH 3 + ) is formed, which prevents the adsorption of water molecules on the Zn anode, building a hydrophobic interface layer and thus attenuating corrosion. Moreover, the strong interaction between the −SH and the zinc allows glutathione molecules to be tightly anchored to the electrode surface, constructing a robust interface layer. Consequently, a long cycling life of nearly 3000 h at 1 mA cm −2 for the Zn||Zn symmetric battery is achieved, and a stable cycling life of 1600 h is demonstrated at 3 mA cm −2 . Furthermore, Zn||activated carbon (AC) hybrid capacitor with the glutathione‐containing electrolyte runs stably for nearly 28 000 cycles at 5 A g −1 , among the best results of reported Zn hybrid capacitors.
Author Zheng, Yongping
Tang, Yongbing
Liang, Xiao
Lee, Chun‐Sing
Yang, Rui
Zhang, Wenjun
Zhang, Fan
Author_xml – sequence: 1
  givenname: Xiao
  surname: Liang
  fullname: Liang, Xiao
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Rui
  surname: Yang
  fullname: Yang, Rui
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Yongping
  surname: Zheng
  fullname: Zheng, Yongping
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Fan
  surname: Zhang
  fullname: Zhang, Fan
  email: fan.zhang1@siat.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Wenjun
  surname: Zhang
  fullname: Zhang, Wenjun
  organization: City University of Hong Kong
– sequence: 6
  givenname: Chun‐Sing
  surname: Lee
  fullname: Lee, Chun‐Sing
  organization: City University of Hong Kong
– sequence: 7
  givenname: Yongbing
  orcidid: 0000-0003-2705-4618
  surname: Tang
  fullname: Tang, Yongbing
  email: tangyb@siat.ac.cn
  organization: University of Chinese Academy of Sciences
BookMark eNqFkE1LI0EQhhtR8GO9em7wnNhfyUwfs9nNJhBxQQXxMtT0R9Iy6R57ejbMzR_gwd-4v2QnZHFhQTxVUfU-BfWcokMfvEHogpIhJYRdgbabISNMEE5EfoBO6JiOB5yw_PC9pw_H6LRpngihWcbFCXq9qdwq1KZOTpvfL28Lr1tlNL5uq-Rs61VywUOFFz6ZaEEZvITORLx1aY1_xpD6berz807HUK9D6RT-atbwy4WIwWt8m2LwKzyx1nmXOmz7-dyt1lXXr6CsDH50XuGJD9p8QUcWqsac_61n6H72_W46Hyxvfiymk-VAcZrlAxCMipxLJcuRzoCPqcxKW1ohTW4VqHIsqaWSWaGAazFSkGUaRgIo4Uxyw8_Q5f5uHcNza5pUPIU29m82BWcsl71CwvqU2KdUDE0TjS2US7DzkSK4qqCk2Hkvdt6Ld-89NvwPq6PbQOw-BuQe2LrKdJ-ki8m32fU_9g95k5uh
CitedBy_id crossref_primary_10_1021_acsenergylett_5c02217
crossref_primary_10_1002_aenm_202405804
crossref_primary_10_1016_j_ensm_2025_104449
crossref_primary_10_1039_D5QI00035A
crossref_primary_10_1039_D5EE00900F
crossref_primary_10_1002_adfm_202412733
crossref_primary_10_1002_advs_202407631
Cites_doi 10.1038/s41560-020-0674-x
10.1021/acsenergylett.1c01249
10.1016/j.scib.2022.01.010
10.1002/adfm.201703857
10.1016/j.matt.2023.08.019
10.1016/j.joule.2019.02.012
10.1038/s41467-019-13436-3
10.1007/s10800-008-9665-5
10.1002/adma.201604685
10.1002/anie.201810575
10.1016/j.nanoen.2019.05.042
10.1002/adfm.202001263
10.1021/acsanm.9b00156
10.1039/D0SC00022A
10.1016/j.joule.2020.03.002
10.1002/adma.202001755
10.1039/D0EE02162H
10.1039/C6TA08736A
10.1016/j.joule.2020.05.018
10.1039/C6EE02326F
10.1002/anie.201813223
10.1023/A:1017580025961
10.1039/D0TA01239D
10.1149/1.2404065
10.1111/j.1755-263X.2011.00166.x
10.1038/s41467-020-15044-y
10.1039/C9TA07218G
10.1002/anie.202307880
10.1002/adma.202007416
10.1002/adma.202001854
10.1016/j.apsusc.2021.150048
10.1002/aenm.201801090
10.1002/adfm.201908445
10.1002/sstr.202300020
10.1002/adma.201903778
10.1021/acs.nanolett.6b04755
10.1016/j.est.2019.100852
10.1002/anie.202304444
10.1021/acsami.6b16560
10.1002/adfm.201906770
10.1002/adfm.201802564
10.1039/C9EE00596J
10.1002/adma.202003021
10.1002/adfm.202304255
10.1016/j.ensm.2021.09.021
10.1002/adfm.202103514
10.1039/C9EE03545A
10.1002/anie.202105756
10.1039/C9EE03828K
10.1039/D3NR05699F
10.1038/s41928-018-0048-6
10.1016/j.jpowsour.2018.05.079
10.1002/adfm.202201675
10.1039/D1EE01244D
10.1002/adfm.202308508
10.1002/adfm.202005209
10.1002/aenm.202003065
10.1038/s41467-023-42919-7
10.1002/adma.202100187
10.1038/s41563-018-0063-z
10.1002/adma.202207682
10.1002/admi.201800848
10.1002/celc.201800572
10.1039/C3EE43754J
10.1002/anie.201907830
10.1016/j.ensm.2020.10.019
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202403048
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202403048
ADFM202403048
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52125105; 52061160484; 52273312; 52173242
– fundername: Science and Technology Planning Project of Guangdong Province
  funderid: 2021TQ05L894
– fundername: Shenzhen Science and Technology Planning Project
  funderid: JSGG20211108092801002; JSGG20220831104004008; JCYJ20210324101015037; KCXST20221021111606016; SGDX20230116092055008
– fundername: National Key Research and Development Program of China
  funderid: 2022YFB2402600
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
53G
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
O8X
1OB
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3178-a4214839c9b5d7a36197bfbf49e8fcacb691f192f4ca3d45ca77da54a103293e3
IEDL.DBID DRFUL
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001227424600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Wed Aug 13 04:12:15 EDT 2025
Sat Nov 29 07:25:19 EST 2025
Tue Nov 18 22:07:54 EST 2025
Thu May 22 09:26:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3178-a4214839c9b5d7a36197bfbf49e8fcacb691f192f4ca3d45ca77da54a103293e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2705-4618
PQID 3228924002
PQPubID 2045204
PageCount 11
ParticipantIDs proquest_journals_3228924002
crossref_citationtrail_10_1002_adfm_202403048
crossref_primary_10_1002_adfm_202403048
wiley_primary_10_1002_adfm_202403048_ADFM202403048
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018 2023 2023 2019 2020 2023 2021 2024; 28 33 62 10 5 62 43 34
1972; 119
2020; 4
2020 2020 2021 2023 2021 2022; 11 32 60 6 14 34
2014 2016; 7 29
2021; 31
2021; 33
2018 2017 2011 2020; 1 10 4 13
2019; 31
2017; 17
2020 2022 2018 2019; 30 32 57 30
2018 2018 2020 2020 2019 2020; 8 5 30 32 12 32
2021 2021 2019; 34 6 7
2019; 58
2008; 39
2022; 67
2020 2017 2020 2020; 30 28 11 8
2020 2020 2018 2020 2021 2023 2024 2023; 13 11 17 4 33 14 16 4
2019 2019 2019 2018; 2 3 25 395
2020; 13
2018 2017 2017 2019 2019; 5 5 9 62 58
2021; 561
2001; 31
e_1_2_7_3_4
e_1_2_7_5_2
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_1_4
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_5_6
e_1_2_7_7_4
e_1_2_7_9_2
e_1_2_7_5_5
e_1_2_7_7_3
e_1_2_7_9_1
e_1_2_7_5_4
e_1_2_7_7_2
e_1_2_7_5_3
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_9_5
e_1_2_7_5_8
e_1_2_7_9_4
e_1_2_7_5_7
e_1_2_7_9_3
e_1_2_7_23_1
e_1_2_7_21_1
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_2_4
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_4_7
e_1_2_7_6_5
e_1_2_7_8_3
e_1_2_7_4_6
e_1_2_7_6_4
e_1_2_7_8_2
e_1_2_7_4_5
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_4_4
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_12_3
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_8_6
e_1_2_7_8_5
e_1_2_7_4_8
e_1_2_7_6_6
e_1_2_7_8_4
e_1_2_7_22_1
e_1_2_7_20_1
References_xml – volume: 30 32 57 30
  year: 2020 2022 2018 2019
  publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Angew. Chem., Int. Ed. Adv. Funct. Mater.
– volume: 17
  start-page: 1132
  year: 2017
  publication-title: Nano Lett.
– volume: 119
  start-page: 1649
  year: 1972
  publication-title: J. Electrochem. Soc.
– volume: 58
  start-page: 2760
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 7 29
  start-page: 1117
  year: 2014 2016
  publication-title: Energy Environ. Sci. Adv. Mater.
– volume: 67
  start-page: 716
  year: 2022
  publication-title: Sci. Bull.
– volume: 5 5 9 62 58
  start-page: 2409 730 9681 275
  year: 2018 2017 2017 2019 2019
  publication-title: ChemElectroChem J. Mater. Chem. A ACS Appl. Mater. Interfaces Nano Energy Angew. Chem., Int. Ed.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 1 10 4 13
  start-page: 204 435 202 1429
  year: 2018 2017 2011 2020
  publication-title: Nat. Electron. Energy Environ. Sci. Conserv. Lett. Energy Environ. Sci.
– volume: 34 6 7
  start-page: 545 3063
  year: 2021 2021 2019
  publication-title: Energy Storage Mater. ACS Energy Lett. J. Mater. Chem. A
– volume: 30 28 11 8
  start-page: 1225 9128
  year: 2020 2017 2020 2020
  publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Nat. Commun. J. Mater. Chem. A
– volume: 11 32 60 6 14 34
  start-page: 3993 4926
  year: 2020 2020 2021 2023 2021 2022
  publication-title: Adv. Energy Mater. Adv. Mater. Angew. Chem., Int. Ed. Matter Energy Environ. Sci. Adv. Mater.
– volume: 8 5 30 32 12 32
  start-page: 1938
  year: 2018 2018 2020 2020 2019 2020
  publication-title: Adv. Energy Mater. Adv. Mater. Interfaces Adv. Funct. Mater. Adv. Mater. Energy Environ. Sci. Adv. Mater.
– volume: 28 33 62 10 5 62 43 34
  start-page: 5374 743 375
  year: 2018 2023 2023 2019 2020 2023 2021 2024
  publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Angew. Chem., Int. Ed. Nat. Commun. Nat. Energy Angew. Chem., Int. Ed. Energy Storage Mater. Adv.Funct. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 2 3 25 395
  start-page: 2679 1289 195
  year: 2019 2019 2019 2018
  publication-title: ACS Appl. Nano Mater. Joule J. Energy Storage J. Power Sources
– volume: 561
  year: 2021
  publication-title: Appl. Surf. Sci.
– volume: 13
  start-page: 503
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 39
  start-page: 261
  year: 2008
  publication-title: J. Appl. Electrochem.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 31
  start-page: 685
  year: 2001
  publication-title: J. Appl. Electrochem.
– volume: 4
  start-page: 771
  year: 2020
  publication-title: Joule
– volume: 13 11 17 4 33 14 16 4
  start-page: 3917 2028 543 1557 7080 2923
  year: 2020 2020 2018 2020 2021 2023 2024 2023
  publication-title: Energy Environ. Sci. Chem. Sci. Nat. Mater. Joule Adv. Mater. Nat. Commun. Nanoscale Small Struct.
– ident: e_1_2_7_4_5
  doi: 10.1038/s41560-020-0674-x
– ident: e_1_2_7_12_2
  doi: 10.1021/acsenergylett.1c01249
– ident: e_1_2_7_13_1
  doi: 10.1016/j.scib.2022.01.010
– ident: e_1_2_7_3_2
  doi: 10.1002/adfm.201703857
– ident: e_1_2_7_6_4
  doi: 10.1016/j.matt.2023.08.019
– ident: e_1_2_7_7_2
  doi: 10.1016/j.joule.2019.02.012
– ident: e_1_2_7_4_4
  doi: 10.1038/s41467-019-13436-3
– ident: e_1_2_7_17_1
  doi: 10.1007/s10800-008-9665-5
– ident: e_1_2_7_10_2
  doi: 10.1002/adma.201604685
– ident: e_1_2_7_2_3
  doi: 10.1002/anie.201810575
– ident: e_1_2_7_9_4
  doi: 10.1016/j.nanoen.2019.05.042
– ident: e_1_2_7_8_3
  doi: 10.1002/adfm.202001263
– ident: e_1_2_7_7_1
  doi: 10.1021/acsanm.9b00156
– ident: e_1_2_7_5_2
  doi: 10.1039/D0SC00022A
– ident: e_1_2_7_22_1
  doi: 10.1016/j.joule.2020.03.002
– ident: e_1_2_7_8_4
  doi: 10.1002/adma.202001755
– ident: e_1_2_7_5_1
  doi: 10.1039/D0EE02162H
– ident: e_1_2_7_9_2
  doi: 10.1039/C6TA08736A
– ident: e_1_2_7_5_4
  doi: 10.1016/j.joule.2020.05.018
– ident: e_1_2_7_1_2
  doi: 10.1039/C6EE02326F
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.201813223
– ident: e_1_2_7_20_1
  doi: 10.1023/A:1017580025961
– ident: e_1_2_7_3_4
  doi: 10.1039/D0TA01239D
– ident: e_1_2_7_19_1
  doi: 10.1149/1.2404065
– ident: e_1_2_7_1_3
  doi: 10.1111/j.1755-263X.2011.00166.x
– ident: e_1_2_7_3_3
  doi: 10.1038/s41467-020-15044-y
– ident: e_1_2_7_12_3
  doi: 10.1039/C9TA07218G
– ident: e_1_2_7_4_3
  doi: 10.1002/anie.202307880
– ident: e_1_2_7_5_5
  doi: 10.1002/adma.202007416
– ident: e_1_2_7_6_2
  doi: 10.1002/adma.202001854
– ident: e_1_2_7_21_1
  doi: 10.1016/j.apsusc.2021.150048
– ident: e_1_2_7_8_1
  doi: 10.1002/aenm.201801090
– ident: e_1_2_7_2_1
  doi: 10.1002/adfm.201908445
– ident: e_1_2_7_5_8
  doi: 10.1002/sstr.202300020
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.201903778
– ident: e_1_2_7_18_1
  doi: 10.1021/acs.nanolett.6b04755
– ident: e_1_2_7_7_3
  doi: 10.1016/j.est.2019.100852
– ident: e_1_2_7_4_6
  doi: 10.1002/anie.202304444
– ident: e_1_2_7_9_3
  doi: 10.1021/acsami.6b16560
– ident: e_1_2_7_2_4
  doi: 10.1002/adfm.201906770
– ident: e_1_2_7_4_1
  doi: 10.1002/adfm.201802564
– ident: e_1_2_7_8_5
  doi: 10.1039/C9EE00596J
– ident: e_1_2_7_8_6
  doi: 10.1002/adma.202003021
– ident: e_1_2_7_4_2
  doi: 10.1002/adfm.202304255
– ident: e_1_2_7_4_7
  doi: 10.1016/j.ensm.2021.09.021
– ident: e_1_2_7_11_1
  doi: 10.1002/adfm.202103514
– ident: e_1_2_7_23_1
  doi: 10.1039/C9EE03545A
– ident: e_1_2_7_6_3
  doi: 10.1002/anie.202105756
– ident: e_1_2_7_1_4
  doi: 10.1039/C9EE03828K
– ident: e_1_2_7_5_7
  doi: 10.1039/D3NR05699F
– ident: e_1_2_7_1_1
  doi: 10.1038/s41928-018-0048-6
– ident: e_1_2_7_7_4
  doi: 10.1016/j.jpowsour.2018.05.079
– ident: e_1_2_7_2_2
  doi: 10.1002/adfm.202201675
– ident: e_1_2_7_6_5
  doi: 10.1039/D1EE01244D
– ident: e_1_2_7_4_8
  doi: 10.1002/adfm.202308508
– ident: e_1_2_7_3_1
  doi: 10.1002/adfm.202005209
– ident: e_1_2_7_6_1
  doi: 10.1002/aenm.202003065
– ident: e_1_2_7_5_6
  doi: 10.1038/s41467-023-42919-7
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.202100187
– ident: e_1_2_7_5_3
  doi: 10.1038/s41563-018-0063-z
– ident: e_1_2_7_6_6
  doi: 10.1002/adma.202207682
– ident: e_1_2_7_8_2
  doi: 10.1002/admi.201800848
– ident: e_1_2_7_9_1
  doi: 10.1002/celc.201800572
– ident: e_1_2_7_10_1
  doi: 10.1039/C3EE43754J
– ident: e_1_2_7_9_5
  doi: 10.1002/anie.201907830
– ident: e_1_2_7_12_1
  doi: 10.1016/j.ensm.2020.10.019
SSID ssj0017734
Score 2.522051
Snippet Zinc‐ion batteries (ZIBs) have attracted wide attention due to their low redox potential, high capacity, and intrinsic safety. However, key issues such as zinc...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Activated carbon
Ammonia
Capacitors
Corrosion
Cycles
Electrochemical analysis
Electrodes
Electrolytes
Functional groups
Glutathione
Hydrophobicity
oligopeptide
protonated interface layer
Zinc
zinc anode
Zn‐ion energy storage devices
Title Oligopeptide‐Induced Multifunctional Interface Layer with Protonated Hydrophobic Behavior and Strong Affinity for Highly Stable Zinc Anode
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202403048
https://www.proquest.com/docview/3228924002
Volume 35
WOSCitedRecordID wos001227424600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF5ap4fm0HeJ26TsodCTiCyttNqjaWpycNLQNmB6EbOvVGAkIzsB3_IDcshvzC_pjCQrzqEU2qPQahE7szvfzuMbxj4KZdEQeBOAHtlAQOoDDSYMrBp5JcPQa9fwzE7l6Wk2m6mzrSr-lh-id7jRzmjOa9rgoJeH96ShYD1VkhOfHGrhY7YTofImA7Zz9G1yPu0jCVK2keV0RDleo9mGuDGMDh_O8NAw3aPNbczaGJ3J8___3RfsWQc4-bjVkJfskStfsd0tGsLX7ObrvLioFpTfYt3d9S218zDO8qY4lwxf6y_kjffQg3F8CojUOflw-VldrcgDj-OP17auFr8qXRje8S7WHErLv5O__YKPvS_wBFlzBMqcEkzma3xFtVv8Z1EaPi4r696w88mXH5-Pg65LQ2AQe2QBiAivVLEySidWQow3Mqm99kI51AEwOkWxI470wkBsRWJASguJAKLyU7GL37JBWZVuj_HMy0gneCOClOKJDpLQqNQgyhAIpDIxZMFGRLnpKMypk8Y8b8mXo5xWOe9Xecg-9eMXLXnHH0fubySed5t4meNZlynKsY2GLGpk-5dZ8vHR5KR_evcvH71nTyPqMNykVO6zwaq-dAfsiblaFcv6Q6fcvwG7a_0I
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BiwQceKMGCuwBiZNVx157vceIEgXhhgpaKeJi7bNYiuzITZFy4wdw4DfyS5ixHbc9ICTE0fJ6Ze3M7nw7j28AXnNp0RB4Eyg9tgFXqQ-0MmFg5dhLEYZeu5ZnNhfzebZYyOM-m5BqYTp-iMHhRjujPa9pg5ND-uCSNVRZT6XkRCiHangTdjnqEir57uGn6Wk-hBKE6ELL6ZiSvMaLLXNjGB1cn-G6ZbqEm1dBa2t1pvf_w_8-gHs95GSTTkcewg1XPYK7V4gIH8OPj8vyrF5Rhot1v77_pIYexlnWlueS6es8hqz1H3plHMsVYnVGXlx23NRr8sHj-NnGNvXqa61Lw3rmxYapyrLP5HE_YxPvSzxDNgyhMqMUk-UGX1H1FvtSVoZNqtq6J3A6fXfydhb0fRoCg-gjCxSP8FIVSyN1YoWK8U4mtNeeS4daoIxOUfCIJD03KrY8MUoIqxKuiMxPxi5-CjtVXbk9YJkXkU7wTqRSiig6lYRGpgZxBgpXZnwEwVZGhelJzKmXxrLo6Jejgla5GFZ5BG-G8auOvuOPI_e3Ii_6bXxe4GmXScqyjUYQtcL9yyzF5HB6NDw9-5ePXsHt2clRXuTv5x-ew52I-g23CZb7sLNuLtwLuGW-rcvz5mWv6b8B5A4BBw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC50VkQPvsXRVfsgeAqbSTrp9HFwDCuO46AuDF5CP9fAkAzZUZibP8CDv9FfYlWSye4eRBCPIZ0mdFV3fV2PrwBecGnREHgTKD2xAVepD7QyYWDlxEsRhl67lmd2LhaLbLWSyz6bkGphOn6IweFGO6M9r2mDu431R-esocp6KiUnQjlUw6twwKmTzAgOZh_yk_kQShCiCy2nE0rymqz2zI1hdHR5hsuW6RxuXgStrdXJb_-H_70Dt3rIyaadjtyFK666BzcvEBHehx_v1-VpvaEMF-t-ff9JDT2Ms6wtzyXT13kMWes_9Mo4NleI1Rl5cdmyqbfkg8fxxzvb1JsvtS4N65kXG6Yqyz6Sx_2UTb0v8QzZMYTKjFJM1jt8RdVb7HNZGTatausewEn--tOr46Dv0xAYRB9ZoHiEl6pYGqkTK1SMdzKhvfZcOtQCZXSKgkck6blRseWJUUJYlXBFZH4ydvFDGFV15R4By7yIdIJ3IpVSRNGpJDQyNYgzOEKpjI8h2MuoMD2JOfXSWBcd_XJU0CoXwyqP4eUwftPRd_xx5OFe5EW_jc8KPO0ySVm20RiiVrh_maWYzvJ3w9Pjf_noOVxfzvJi_mbx9gnciKjdcJtfeQijbfPVPYVr5tu2PGue9Yr-G21oAII
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oligopeptide%E2%80%90Induced+Multifunctional+Interface+Layer+with+Protonated+Hydrophobic+Behavior+and+Strong+Affinity+for+Highly+Stable+Zinc+Anode&rft.jtitle=Advanced+functional+materials&rft.au=Liang%2C+Xiao&rft.au=Yang%2C+Rui&rft.au=Zheng%2C+Yongping&rft.au=Zhang%2C+Fan&rft.date=2025-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=21&rft_id=info:doi/10.1002%2Fadfm.202403048&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon