Oligopeptide‐Induced Multifunctional Interface Layer with Protonated Hydrophobic Behavior and Strong Affinity for Highly Stable Zinc Anode
Zinc‐ion batteries (ZIBs) have attracted wide attention due to their low redox potential, high capacity, and intrinsic safety. However, key issues such as zinc dendrite growth, corrosion, and passivation on zinc anode detrimentally affect the electrochemical performance. Herein, as proof of a concep...
Saved in:
| Published in: | Advanced functional materials Vol. 35; no. 21 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc
01.05.2025
|
| Subjects: | |
| ISSN: | 1616-301X, 1616-3028 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Zinc‐ion batteries (ZIBs) have attracted wide attention due to their low redox potential, high capacity, and intrinsic safety. However, key issues such as zinc dendrite growth, corrosion, and passivation on zinc anode detrimentally affect the electrochemical performance. Herein, as proof of a concept of oligopeptide, glutathione with functional groups including –NH2 and −SH is introduced as an electrolyte additive to construct a multifunctional electrode–electrolyte interface layer on the zinc anode. A protonated amino group (NH3+) is formed, which prevents the adsorption of water molecules on the Zn anode, building a hydrophobic interface layer and thus attenuating corrosion. Moreover, the strong interaction between the −SH and the zinc allows glutathione molecules to be tightly anchored to the electrode surface, constructing a robust interface layer. Consequently, a long cycling life of nearly 3000 h at 1 mA cm−2 for the Zn||Zn symmetric battery is achieved, and a stable cycling life of 1600 h is demonstrated at 3 mA cm−2. Furthermore, Zn||activated carbon (AC) hybrid capacitor with the glutathione‐containing electrolyte runs stably for nearly 28 000 cycles at 5 A g−1, among the best results of reported Zn hybrid capacitors.
Glutathione with functional groups including protonated amino group (NH3+) and −SH is introduced as an electrolyte additive to construct a multifunctional electrode–electrolyte interface layer on the zinc anode, which is conducive to improve interfacial hydrophobic capacity and adhesive strength. Owing to these significant functions, the Zn‐AC hybrid capacitor exhibits ultralong cycle life for over 28 000 cycles at 5 A g−1. |
|---|---|
| AbstractList | Zinc‐ion batteries (ZIBs) have attracted wide attention due to their low redox potential, high capacity, and intrinsic safety. However, key issues such as zinc dendrite growth, corrosion, and passivation on zinc anode detrimentally affect the electrochemical performance. Herein, as proof of a concept of oligopeptide, glutathione with functional groups including –NH2 and −SH is introduced as an electrolyte additive to construct a multifunctional electrode–electrolyte interface layer on the zinc anode. A protonated amino group (NH3+) is formed, which prevents the adsorption of water molecules on the Zn anode, building a hydrophobic interface layer and thus attenuating corrosion. Moreover, the strong interaction between the −SH and the zinc allows glutathione molecules to be tightly anchored to the electrode surface, constructing a robust interface layer. Consequently, a long cycling life of nearly 3000 h at 1 mA cm−2 for the Zn||Zn symmetric battery is achieved, and a stable cycling life of 1600 h is demonstrated at 3 mA cm−2. Furthermore, Zn||activated carbon (AC) hybrid capacitor with the glutathione‐containing electrolyte runs stably for nearly 28 000 cycles at 5 A g−1, among the best results of reported Zn hybrid capacitors. Zinc‐ion batteries (ZIBs) have attracted wide attention due to their low redox potential, high capacity, and intrinsic safety. However, key issues such as zinc dendrite growth, corrosion, and passivation on zinc anode detrimentally affect the electrochemical performance. Herein, as proof of a concept of oligopeptide, glutathione with functional groups including –NH2 and −SH is introduced as an electrolyte additive to construct a multifunctional electrode–electrolyte interface layer on the zinc anode. A protonated amino group (NH3+) is formed, which prevents the adsorption of water molecules on the Zn anode, building a hydrophobic interface layer and thus attenuating corrosion. Moreover, the strong interaction between the −SH and the zinc allows glutathione molecules to be tightly anchored to the electrode surface, constructing a robust interface layer. Consequently, a long cycling life of nearly 3000 h at 1 mA cm−2 for the Zn||Zn symmetric battery is achieved, and a stable cycling life of 1600 h is demonstrated at 3 mA cm−2. Furthermore, Zn||activated carbon (AC) hybrid capacitor with the glutathione‐containing electrolyte runs stably for nearly 28 000 cycles at 5 A g−1, among the best results of reported Zn hybrid capacitors. Glutathione with functional groups including protonated amino group (NH3+) and −SH is introduced as an electrolyte additive to construct a multifunctional electrode–electrolyte interface layer on the zinc anode, which is conducive to improve interfacial hydrophobic capacity and adhesive strength. Owing to these significant functions, the Zn‐AC hybrid capacitor exhibits ultralong cycle life for over 28 000 cycles at 5 A g−1. Zinc‐ion batteries (ZIBs) have attracted wide attention due to their low redox potential, high capacity, and intrinsic safety. However, key issues such as zinc dendrite growth, corrosion, and passivation on zinc anode detrimentally affect the electrochemical performance. Herein, as proof of a concept of oligopeptide, glutathione with functional groups including –NH 2 and −SH is introduced as an electrolyte additive to construct a multifunctional electrode–electrolyte interface layer on the zinc anode. A protonated amino group (NH 3 + ) is formed, which prevents the adsorption of water molecules on the Zn anode, building a hydrophobic interface layer and thus attenuating corrosion. Moreover, the strong interaction between the −SH and the zinc allows glutathione molecules to be tightly anchored to the electrode surface, constructing a robust interface layer. Consequently, a long cycling life of nearly 3000 h at 1 mA cm −2 for the Zn||Zn symmetric battery is achieved, and a stable cycling life of 1600 h is demonstrated at 3 mA cm −2 . Furthermore, Zn||activated carbon (AC) hybrid capacitor with the glutathione‐containing electrolyte runs stably for nearly 28 000 cycles at 5 A g −1 , among the best results of reported Zn hybrid capacitors. |
| Author | Zheng, Yongping Tang, Yongbing Liang, Xiao Lee, Chun‐Sing Yang, Rui Zhang, Wenjun Zhang, Fan |
| Author_xml | – sequence: 1 givenname: Xiao surname: Liang fullname: Liang, Xiao organization: Chinese Academy of Sciences – sequence: 2 givenname: Rui surname: Yang fullname: Yang, Rui organization: Chinese Academy of Sciences – sequence: 3 givenname: Yongping surname: Zheng fullname: Zheng, Yongping organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Fan surname: Zhang fullname: Zhang, Fan email: fan.zhang1@siat.ac.cn organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Wenjun surname: Zhang fullname: Zhang, Wenjun organization: City University of Hong Kong – sequence: 6 givenname: Chun‐Sing surname: Lee fullname: Lee, Chun‐Sing organization: City University of Hong Kong – sequence: 7 givenname: Yongbing orcidid: 0000-0003-2705-4618 surname: Tang fullname: Tang, Yongbing email: tangyb@siat.ac.cn organization: University of Chinese Academy of Sciences |
| BookMark | eNqFkE1LI0EQhhtR8GO9em7wnNhfyUwfs9nNJhBxQQXxMtT0R9Iy6R57ejbMzR_gwd-4v2QnZHFhQTxVUfU-BfWcokMfvEHogpIhJYRdgbabISNMEE5EfoBO6JiOB5yw_PC9pw_H6LRpngihWcbFCXq9qdwq1KZOTpvfL28Lr1tlNL5uq-Rs61VywUOFFz6ZaEEZvITORLx1aY1_xpD6berz807HUK9D6RT-atbwy4WIwWt8m2LwKzyx1nmXOmz7-dyt1lXXr6CsDH50XuGJD9p8QUcWqsac_61n6H72_W46Hyxvfiymk-VAcZrlAxCMipxLJcuRzoCPqcxKW1ohTW4VqHIsqaWSWaGAazFSkGUaRgIo4Uxyw8_Q5f5uHcNza5pUPIU29m82BWcsl71CwvqU2KdUDE0TjS2US7DzkSK4qqCk2Hkvdt6Ld-89NvwPq6PbQOw-BuQe2LrKdJ-ki8m32fU_9g95k5uh |
| CitedBy_id | crossref_primary_10_1021_acsenergylett_5c02217 crossref_primary_10_1002_aenm_202405804 crossref_primary_10_1016_j_ensm_2025_104449 crossref_primary_10_1039_D5QI00035A crossref_primary_10_1039_D5EE00900F crossref_primary_10_1002_adfm_202412733 crossref_primary_10_1002_advs_202407631 |
| Cites_doi | 10.1038/s41560-020-0674-x 10.1021/acsenergylett.1c01249 10.1016/j.scib.2022.01.010 10.1002/adfm.201703857 10.1016/j.matt.2023.08.019 10.1016/j.joule.2019.02.012 10.1038/s41467-019-13436-3 10.1007/s10800-008-9665-5 10.1002/adma.201604685 10.1002/anie.201810575 10.1016/j.nanoen.2019.05.042 10.1002/adfm.202001263 10.1021/acsanm.9b00156 10.1039/D0SC00022A 10.1016/j.joule.2020.03.002 10.1002/adma.202001755 10.1039/D0EE02162H 10.1039/C6TA08736A 10.1016/j.joule.2020.05.018 10.1039/C6EE02326F 10.1002/anie.201813223 10.1023/A:1017580025961 10.1039/D0TA01239D 10.1149/1.2404065 10.1111/j.1755-263X.2011.00166.x 10.1038/s41467-020-15044-y 10.1039/C9TA07218G 10.1002/anie.202307880 10.1002/adma.202007416 10.1002/adma.202001854 10.1016/j.apsusc.2021.150048 10.1002/aenm.201801090 10.1002/adfm.201908445 10.1002/sstr.202300020 10.1002/adma.201903778 10.1021/acs.nanolett.6b04755 10.1016/j.est.2019.100852 10.1002/anie.202304444 10.1021/acsami.6b16560 10.1002/adfm.201906770 10.1002/adfm.201802564 10.1039/C9EE00596J 10.1002/adma.202003021 10.1002/adfm.202304255 10.1016/j.ensm.2021.09.021 10.1002/adfm.202103514 10.1039/C9EE03545A 10.1002/anie.202105756 10.1039/C9EE03828K 10.1039/D3NR05699F 10.1038/s41928-018-0048-6 10.1016/j.jpowsour.2018.05.079 10.1002/adfm.202201675 10.1039/D1EE01244D 10.1002/adfm.202308508 10.1002/adfm.202005209 10.1002/aenm.202003065 10.1038/s41467-023-42919-7 10.1002/adma.202100187 10.1038/s41563-018-0063-z 10.1002/adma.202207682 10.1002/admi.201800848 10.1002/celc.201800572 10.1039/C3EE43754J 10.1002/anie.201907830 10.1016/j.ensm.2020.10.019 |
| ContentType | Journal Article |
| Copyright | 2024 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.202403048 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adfm_202403048 ADFM202403048 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52125105; 52061160484; 52273312; 52173242 – fundername: Science and Technology Planning Project of Guangdong Province funderid: 2021TQ05L894 – fundername: Shenzhen Science and Technology Planning Project funderid: JSGG20211108092801002; JSGG20220831104004008; JCYJ20210324101015037; KCXST20221021111606016; SGDX20230116092055008 – fundername: National Key Research and Development Program of China funderid: 2022YFB2402600 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ 53G AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AGQPQ AGXDD AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 O8X 1OB 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3178-a4214839c9b5d7a36197bfbf49e8fcacb691f192f4ca3d45ca77da54a103293e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001227424600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Wed Aug 13 04:12:15 EDT 2025 Sat Nov 29 07:25:19 EST 2025 Tue Nov 18 22:07:54 EST 2025 Thu May 22 09:26:44 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3178-a4214839c9b5d7a36197bfbf49e8fcacb691f192f4ca3d45ca77da54a103293e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2705-4618 |
| PQID | 3228924002 |
| PQPubID | 2045204 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_3228924002 crossref_citationtrail_10_1002_adfm_202403048 crossref_primary_10_1002_adfm_202403048 wiley_primary_10_1002_adfm_202403048_ADFM202403048 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2018 2023 2023 2019 2020 2023 2021 2024; 28 33 62 10 5 62 43 34 1972; 119 2020; 4 2020 2020 2021 2023 2021 2022; 11 32 60 6 14 34 2014 2016; 7 29 2021; 31 2021; 33 2018 2017 2011 2020; 1 10 4 13 2019; 31 2017; 17 2020 2022 2018 2019; 30 32 57 30 2018 2018 2020 2020 2019 2020; 8 5 30 32 12 32 2021 2021 2019; 34 6 7 2019; 58 2008; 39 2022; 67 2020 2017 2020 2020; 30 28 11 8 2020 2020 2018 2020 2021 2023 2024 2023; 13 11 17 4 33 14 16 4 2019 2019 2019 2018; 2 3 25 395 2020; 13 2018 2017 2017 2019 2019; 5 5 9 62 58 2021; 561 2001; 31 e_1_2_7_3_4 e_1_2_7_5_2 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_1_4 e_1_2_7_3_2 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_5_6 e_1_2_7_7_4 e_1_2_7_9_2 e_1_2_7_5_5 e_1_2_7_7_3 e_1_2_7_9_1 e_1_2_7_5_4 e_1_2_7_7_2 e_1_2_7_5_3 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_9_5 e_1_2_7_5_8 e_1_2_7_9_4 e_1_2_7_5_7 e_1_2_7_9_3 e_1_2_7_23_1 e_1_2_7_21_1 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_2_4 e_1_2_7_4_2 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_4_7 e_1_2_7_6_5 e_1_2_7_8_3 e_1_2_7_4_6 e_1_2_7_6_4 e_1_2_7_8_2 e_1_2_7_4_5 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_4_4 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_12_3 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_8_6 e_1_2_7_8_5 e_1_2_7_4_8 e_1_2_7_6_6 e_1_2_7_8_4 e_1_2_7_22_1 e_1_2_7_20_1 |
| References_xml | – volume: 30 32 57 30 year: 2020 2022 2018 2019 publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Angew. Chem., Int. Ed. Adv. Funct. Mater. – volume: 17 start-page: 1132 year: 2017 publication-title: Nano Lett. – volume: 119 start-page: 1649 year: 1972 publication-title: J. Electrochem. Soc. – volume: 58 start-page: 2760 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 7 29 start-page: 1117 year: 2014 2016 publication-title: Energy Environ. Sci. Adv. Mater. – volume: 67 start-page: 716 year: 2022 publication-title: Sci. Bull. – volume: 5 5 9 62 58 start-page: 2409 730 9681 275 year: 2018 2017 2017 2019 2019 publication-title: ChemElectroChem J. Mater. Chem. A ACS Appl. Mater. Interfaces Nano Energy Angew. Chem., Int. Ed. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 1 10 4 13 start-page: 204 435 202 1429 year: 2018 2017 2011 2020 publication-title: Nat. Electron. Energy Environ. Sci. Conserv. Lett. Energy Environ. Sci. – volume: 34 6 7 start-page: 545 3063 year: 2021 2021 2019 publication-title: Energy Storage Mater. ACS Energy Lett. J. Mater. Chem. A – volume: 30 28 11 8 start-page: 1225 9128 year: 2020 2017 2020 2020 publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Nat. Commun. J. Mater. Chem. A – volume: 11 32 60 6 14 34 start-page: 3993 4926 year: 2020 2020 2021 2023 2021 2022 publication-title: Adv. Energy Mater. Adv. Mater. Angew. Chem., Int. Ed. Matter Energy Environ. Sci. Adv. Mater. – volume: 8 5 30 32 12 32 start-page: 1938 year: 2018 2018 2020 2020 2019 2020 publication-title: Adv. Energy Mater. Adv. Mater. Interfaces Adv. Funct. Mater. Adv. Mater. Energy Environ. Sci. Adv. Mater. – volume: 28 33 62 10 5 62 43 34 start-page: 5374 743 375 year: 2018 2023 2023 2019 2020 2023 2021 2024 publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Angew. Chem., Int. Ed. Nat. Commun. Nat. Energy Angew. Chem., Int. Ed. Energy Storage Mater. Adv.Funct. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 2 3 25 395 start-page: 2679 1289 195 year: 2019 2019 2019 2018 publication-title: ACS Appl. Nano Mater. Joule J. Energy Storage J. Power Sources – volume: 561 year: 2021 publication-title: Appl. Surf. Sci. – volume: 13 start-page: 503 year: 2020 publication-title: Energy Environ. Sci. – volume: 39 start-page: 261 year: 2008 publication-title: J. Appl. Electrochem. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 31 start-page: 685 year: 2001 publication-title: J. Appl. Electrochem. – volume: 4 start-page: 771 year: 2020 publication-title: Joule – volume: 13 11 17 4 33 14 16 4 start-page: 3917 2028 543 1557 7080 2923 year: 2020 2020 2018 2020 2021 2023 2024 2023 publication-title: Energy Environ. Sci. Chem. Sci. Nat. Mater. Joule Adv. Mater. Nat. Commun. Nanoscale Small Struct. – ident: e_1_2_7_4_5 doi: 10.1038/s41560-020-0674-x – ident: e_1_2_7_12_2 doi: 10.1021/acsenergylett.1c01249 – ident: e_1_2_7_13_1 doi: 10.1016/j.scib.2022.01.010 – ident: e_1_2_7_3_2 doi: 10.1002/adfm.201703857 – ident: e_1_2_7_6_4 doi: 10.1016/j.matt.2023.08.019 – ident: e_1_2_7_7_2 doi: 10.1016/j.joule.2019.02.012 – ident: e_1_2_7_4_4 doi: 10.1038/s41467-019-13436-3 – ident: e_1_2_7_17_1 doi: 10.1007/s10800-008-9665-5 – ident: e_1_2_7_10_2 doi: 10.1002/adma.201604685 – ident: e_1_2_7_2_3 doi: 10.1002/anie.201810575 – ident: e_1_2_7_9_4 doi: 10.1016/j.nanoen.2019.05.042 – ident: e_1_2_7_8_3 doi: 10.1002/adfm.202001263 – ident: e_1_2_7_7_1 doi: 10.1021/acsanm.9b00156 – ident: e_1_2_7_5_2 doi: 10.1039/D0SC00022A – ident: e_1_2_7_22_1 doi: 10.1016/j.joule.2020.03.002 – ident: e_1_2_7_8_4 doi: 10.1002/adma.202001755 – ident: e_1_2_7_5_1 doi: 10.1039/D0EE02162H – ident: e_1_2_7_9_2 doi: 10.1039/C6TA08736A – ident: e_1_2_7_5_4 doi: 10.1016/j.joule.2020.05.018 – ident: e_1_2_7_1_2 doi: 10.1039/C6EE02326F – ident: e_1_2_7_16_1 doi: 10.1002/anie.201813223 – ident: e_1_2_7_20_1 doi: 10.1023/A:1017580025961 – ident: e_1_2_7_3_4 doi: 10.1039/D0TA01239D – ident: e_1_2_7_19_1 doi: 10.1149/1.2404065 – ident: e_1_2_7_1_3 doi: 10.1111/j.1755-263X.2011.00166.x – ident: e_1_2_7_3_3 doi: 10.1038/s41467-020-15044-y – ident: e_1_2_7_12_3 doi: 10.1039/C9TA07218G – ident: e_1_2_7_4_3 doi: 10.1002/anie.202307880 – ident: e_1_2_7_5_5 doi: 10.1002/adma.202007416 – ident: e_1_2_7_6_2 doi: 10.1002/adma.202001854 – ident: e_1_2_7_21_1 doi: 10.1016/j.apsusc.2021.150048 – ident: e_1_2_7_8_1 doi: 10.1002/aenm.201801090 – ident: e_1_2_7_2_1 doi: 10.1002/adfm.201908445 – ident: e_1_2_7_5_8 doi: 10.1002/sstr.202300020 – ident: e_1_2_7_15_1 doi: 10.1002/adma.201903778 – ident: e_1_2_7_18_1 doi: 10.1021/acs.nanolett.6b04755 – ident: e_1_2_7_7_3 doi: 10.1016/j.est.2019.100852 – ident: e_1_2_7_4_6 doi: 10.1002/anie.202304444 – ident: e_1_2_7_9_3 doi: 10.1021/acsami.6b16560 – ident: e_1_2_7_2_4 doi: 10.1002/adfm.201906770 – ident: e_1_2_7_4_1 doi: 10.1002/adfm.201802564 – ident: e_1_2_7_8_5 doi: 10.1039/C9EE00596J – ident: e_1_2_7_8_6 doi: 10.1002/adma.202003021 – ident: e_1_2_7_4_2 doi: 10.1002/adfm.202304255 – ident: e_1_2_7_4_7 doi: 10.1016/j.ensm.2021.09.021 – ident: e_1_2_7_11_1 doi: 10.1002/adfm.202103514 – ident: e_1_2_7_23_1 doi: 10.1039/C9EE03545A – ident: e_1_2_7_6_3 doi: 10.1002/anie.202105756 – ident: e_1_2_7_1_4 doi: 10.1039/C9EE03828K – ident: e_1_2_7_5_7 doi: 10.1039/D3NR05699F – ident: e_1_2_7_1_1 doi: 10.1038/s41928-018-0048-6 – ident: e_1_2_7_7_4 doi: 10.1016/j.jpowsour.2018.05.079 – ident: e_1_2_7_2_2 doi: 10.1002/adfm.202201675 – ident: e_1_2_7_6_5 doi: 10.1039/D1EE01244D – ident: e_1_2_7_4_8 doi: 10.1002/adfm.202308508 – ident: e_1_2_7_3_1 doi: 10.1002/adfm.202005209 – ident: e_1_2_7_6_1 doi: 10.1002/aenm.202003065 – ident: e_1_2_7_5_6 doi: 10.1038/s41467-023-42919-7 – ident: e_1_2_7_14_1 doi: 10.1002/adma.202100187 – ident: e_1_2_7_5_3 doi: 10.1038/s41563-018-0063-z – ident: e_1_2_7_6_6 doi: 10.1002/adma.202207682 – ident: e_1_2_7_8_2 doi: 10.1002/admi.201800848 – ident: e_1_2_7_9_1 doi: 10.1002/celc.201800572 – ident: e_1_2_7_10_1 doi: 10.1039/C3EE43754J – ident: e_1_2_7_9_5 doi: 10.1002/anie.201907830 – ident: e_1_2_7_12_1 doi: 10.1016/j.ensm.2020.10.019 |
| SSID | ssj0017734 |
| Score | 2.522051 |
| Snippet | Zinc‐ion batteries (ZIBs) have attracted wide attention due to their low redox potential, high capacity, and intrinsic safety. However, key issues such as zinc... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Activated carbon Ammonia Capacitors Corrosion Cycles Electrochemical analysis Electrodes Electrolytes Functional groups Glutathione Hydrophobicity oligopeptide protonated interface layer Zinc zinc anode Zn‐ion energy storage devices |
| Title | Oligopeptide‐Induced Multifunctional Interface Layer with Protonated Hydrophobic Behavior and Strong Affinity for Highly Stable Zinc Anode |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202403048 https://www.proquest.com/docview/3228924002 |
| Volume | 35 |
| WOSCitedRecordID | wos001227424600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF5ap4fm0HeJ26TsodCTiCyttNqjaWpycNLQNmB6EbOvVGAkIzsB3_IDcshvzC_pjCQrzqEU2qPQahE7szvfzuMbxj4KZdEQeBOAHtlAQOoDDSYMrBp5JcPQa9fwzE7l6Wk2m6mzrSr-lh-id7jRzmjOa9rgoJeH96ShYD1VkhOfHGrhY7YTofImA7Zz9G1yPu0jCVK2keV0RDleo9mGuDGMDh_O8NAw3aPNbczaGJ3J8___3RfsWQc4-bjVkJfskStfsd0tGsLX7ObrvLioFpTfYt3d9S218zDO8qY4lwxf6y_kjffQg3F8CojUOflw-VldrcgDj-OP17auFr8qXRje8S7WHErLv5O__YKPvS_wBFlzBMqcEkzma3xFtVv8Z1EaPi4r696w88mXH5-Pg65LQ2AQe2QBiAivVLEySidWQow3Mqm99kI51AEwOkWxI470wkBsRWJASguJAKLyU7GL37JBWZVuj_HMy0gneCOClOKJDpLQqNQgyhAIpDIxZMFGRLnpKMypk8Y8b8mXo5xWOe9Xecg-9eMXLXnHH0fubySed5t4meNZlynKsY2GLGpk-5dZ8vHR5KR_evcvH71nTyPqMNykVO6zwaq-dAfsiblaFcv6Q6fcvwG7a_0I |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BiwQceKMGCuwBiZNVx157vceIEgXhhgpaKeJi7bNYiuzITZFy4wdw4DfyS5ixHbc9ICTE0fJ6Ze3M7nw7j28AXnNp0RB4Eyg9tgFXqQ-0MmFg5dhLEYZeu5ZnNhfzebZYyOM-m5BqYTp-iMHhRjujPa9pg5ND-uCSNVRZT6XkRCiHangTdjnqEir57uGn6Wk-hBKE6ELL6ZiSvMaLLXNjGB1cn-G6ZbqEm1dBa2t1pvf_w_8-gHs95GSTTkcewg1XPYK7V4gIH8OPj8vyrF5Rhot1v77_pIYexlnWlueS6es8hqz1H3plHMsVYnVGXlx23NRr8sHj-NnGNvXqa61Lw3rmxYapyrLP5HE_YxPvSzxDNgyhMqMUk-UGX1H1FvtSVoZNqtq6J3A6fXfydhb0fRoCg-gjCxSP8FIVSyN1YoWK8U4mtNeeS4daoIxOUfCIJD03KrY8MUoIqxKuiMxPxi5-CjtVXbk9YJkXkU7wTqRSiig6lYRGpgZxBgpXZnwEwVZGhelJzKmXxrLo6Jejgla5GFZ5BG-G8auOvuOPI_e3Ii_6bXxe4GmXScqyjUYQtcL9yyzF5HB6NDw9-5ePXsHt2clRXuTv5x-ew52I-g23CZb7sLNuLtwLuGW-rcvz5mWv6b8B5A4BBw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC50VkQPvsXRVfsgeAqbSTrp9HFwDCuO46AuDF5CP9fAkAzZUZibP8CDv9FfYlWSye4eRBCPIZ0mdFV3fV2PrwBecGnREHgTKD2xAVepD7QyYWDlxEsRhl67lmd2LhaLbLWSyz6bkGphOn6IweFGO6M9r2mDu431R-esocp6KiUnQjlUw6twwKmTzAgOZh_yk_kQShCiCy2nE0rymqz2zI1hdHR5hsuW6RxuXgStrdXJb_-H_70Dt3rIyaadjtyFK666BzcvEBHehx_v1-VpvaEMF-t-ff9JDT2Ms6wtzyXT13kMWes_9Mo4NleI1Rl5cdmyqbfkg8fxxzvb1JsvtS4N65kXG6Yqyz6Sx_2UTb0v8QzZMYTKjFJM1jt8RdVb7HNZGTatausewEn--tOr46Dv0xAYRB9ZoHiEl6pYGqkTK1SMdzKhvfZcOtQCZXSKgkck6blRseWJUUJYlXBFZH4ydvFDGFV15R4By7yIdIJ3IpVSRNGpJDQyNYgzOEKpjI8h2MuoMD2JOfXSWBcd_XJU0CoXwyqP4eUwftPRd_xx5OFe5EW_jc8KPO0ySVm20RiiVrh_maWYzvJ3w9Pjf_noOVxfzvJi_mbx9gnciKjdcJtfeQijbfPVPYVr5tu2PGue9Yr-G21oAII |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oligopeptide%E2%80%90Induced+Multifunctional+Interface+Layer+with+Protonated+Hydrophobic+Behavior+and+Strong+Affinity+for+Highly+Stable+Zinc+Anode&rft.jtitle=Advanced+functional+materials&rft.au=Liang%2C+Xiao&rft.au=Yang%2C+Rui&rft.au=Zheng%2C+Yongping&rft.au=Zhang%2C+Fan&rft.date=2025-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=21&rft_id=info:doi/10.1002%2Fadfm.202403048&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |