Boosting the Electrical Double‐Layer Capacitance of Graphene by Self‐Doped Defects through Ball‐Milling
Improving the capacitance of carbon materials for supercapacitors without sacrificing their rate performance, especially volumetric capacitance at high mass loadings, is a big challenge because of the limited assessable surface area and sluggish electrochemical kinetics of the pseudocapacitive react...
Uloženo v:
| Vydáno v: | Advanced functional materials Ročník 29; číslo 24 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
Wiley Subscription Services, Inc
01.06.2019
|
| Témata: | |
| ISSN: | 1616-301X, 1616-3028 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Improving the capacitance of carbon materials for supercapacitors without sacrificing their rate performance, especially volumetric capacitance at high mass loadings, is a big challenge because of the limited assessable surface area and sluggish electrochemical kinetics of the pseudocapacitive reactions. Here, it is demonstrated that “self‐doping” defects in carbon materials can contribute to additional capacitance with an electrical double‐layer behavior, thus promoting a significant increase in the specific capacitance. As an exemplification, a novel defect‐enriched graphene block with a low specific surface area of 29.7 m2 g−1 and high packing density of 0.917 g cm−3 performs high gravimetric, volumetric, and areal capacitances of 235 F g−1, 215 F cm−3, and 3.95 F cm−2 (mass loading of 22 mg cm−2) at 1 A g−1, respectively, as well as outstanding rate performance. The resulting specific areal capacitance reaches an ultrahigh value of 7.91 F m−2 including a “self‐doping” defect contribution of 4.81 F m−2, which is dramatically higher than the theoretical capacitance of graphene (0.21 F m−2) and most of the reported carbon‐based materials. Therefore, the defect engineering route broadens the avenue to further improve the capacitive performance of carbon materials, especially for compact energy storage under limited surface areas.
Owing to the significantly improved double‐layer capacitance originating from the “self‐doping” defects, defective graphene blocks with high defect density (ID/IG = 2.16), high packing density (0.917 g cm–3), and low specific surface area (29.7 m2 g–1) show an integration of high gravimetric, volumetric, and areal capacitances for supercapacitors. |
|---|---|
| AbstractList | Improving the capacitance of carbon materials for supercapacitors without sacrificing their rate performance, especially volumetric capacitance at high mass loadings, is a big challenge because of the limited assessable surface area and sluggish electrochemical kinetics of the pseudocapacitive reactions. Here, it is demonstrated that “self‐doping” defects in carbon materials can contribute to additional capacitance with an electrical double‐layer behavior, thus promoting a significant increase in the specific capacitance. As an exemplification, a novel defect‐enriched graphene block with a low specific surface area of 29.7 m2 g−1 and high packing density of 0.917 g cm−3 performs high gravimetric, volumetric, and areal capacitances of 235 F g−1, 215 F cm−3, and 3.95 F cm−2 (mass loading of 22 mg cm−2) at 1 A g−1, respectively, as well as outstanding rate performance. The resulting specific areal capacitance reaches an ultrahigh value of 7.91 F m−2 including a “self‐doping” defect contribution of 4.81 F m−2, which is dramatically higher than the theoretical capacitance of graphene (0.21 F m−2) and most of the reported carbon‐based materials. Therefore, the defect engineering route broadens the avenue to further improve the capacitive performance of carbon materials, especially for compact energy storage under limited surface areas.
Owing to the significantly improved double‐layer capacitance originating from the “self‐doping” defects, defective graphene blocks with high defect density (ID/IG = 2.16), high packing density (0.917 g cm–3), and low specific surface area (29.7 m2 g–1) show an integration of high gravimetric, volumetric, and areal capacitances for supercapacitors. Improving the capacitance of carbon materials for supercapacitors without sacrificing their rate performance, especially volumetric capacitance at high mass loadings, is a big challenge because of the limited assessable surface area and sluggish electrochemical kinetics of the pseudocapacitive reactions. Here, it is demonstrated that “self‐doping” defects in carbon materials can contribute to additional capacitance with an electrical double‐layer behavior, thus promoting a significant increase in the specific capacitance. As an exemplification, a novel defect‐enriched graphene block with a low specific surface area of 29.7 m 2 g −1 and high packing density of 0.917 g cm −3 performs high gravimetric, volumetric, and areal capacitances of 235 F g −1 , 215 F cm −3 , and 3.95 F cm −2 (mass loading of 22 mg cm −2 ) at 1 A g −1 , respectively, as well as outstanding rate performance. The resulting specific areal capacitance reaches an ultrahigh value of 7.91 F m −2 including a “self‐doping” defect contribution of 4.81 F m −2 , which is dramatically higher than the theoretical capacitance of graphene (0.21 F m −2 ) and most of the reported carbon‐based materials. Therefore, the defect engineering route broadens the avenue to further improve the capacitive performance of carbon materials, especially for compact energy storage under limited surface areas. Improving the capacitance of carbon materials for supercapacitors without sacrificing their rate performance, especially volumetric capacitance at high mass loadings, is a big challenge because of the limited assessable surface area and sluggish electrochemical kinetics of the pseudocapacitive reactions. Here, it is demonstrated that “self‐doping” defects in carbon materials can contribute to additional capacitance with an electrical double‐layer behavior, thus promoting a significant increase in the specific capacitance. As an exemplification, a novel defect‐enriched graphene block with a low specific surface area of 29.7 m2 g−1 and high packing density of 0.917 g cm−3 performs high gravimetric, volumetric, and areal capacitances of 235 F g−1, 215 F cm−3, and 3.95 F cm−2 (mass loading of 22 mg cm−2) at 1 A g−1, respectively, as well as outstanding rate performance. The resulting specific areal capacitance reaches an ultrahigh value of 7.91 F m−2 including a “self‐doping” defect contribution of 4.81 F m−2, which is dramatically higher than the theoretical capacitance of graphene (0.21 F m−2) and most of the reported carbon‐based materials. Therefore, the defect engineering route broadens the avenue to further improve the capacitive performance of carbon materials, especially for compact energy storage under limited surface areas. |
| Author | Chen, Yaxin Song, Huaihe Chen, Xiaohong Zhang, Su Du, Xian Dong, Yue Hong, Song Zhao, Shengna |
| Author_xml | – sequence: 1 givenname: Yue surname: Dong fullname: Dong, Yue organization: Beijing Key Laboratory of Electrochemical Process and Technology for Materials – sequence: 2 givenname: Su surname: Zhang fullname: Zhang, Su organization: Xinjiang University – sequence: 3 givenname: Xian surname: Du fullname: Du, Xian organization: Beijing Key Laboratory of Electrochemical Process and Technology for Materials – sequence: 4 givenname: Song surname: Hong fullname: Hong, Song organization: Beijing Key Laboratory of Electrochemical Process and Technology for Materials – sequence: 5 givenname: Shengna surname: Zhao fullname: Zhao, Shengna organization: Beijing Key Laboratory of Electrochemical Process and Technology for Materials – sequence: 6 givenname: Yaxin surname: Chen fullname: Chen, Yaxin organization: Beijing Key Laboratory of Electrochemical Process and Technology for Materials – sequence: 7 givenname: Xiaohong surname: Chen fullname: Chen, Xiaohong organization: Beijing Key Laboratory of Electrochemical Process and Technology for Materials – sequence: 8 givenname: Huaihe orcidid: 0000-0003-1547-0382 surname: Song fullname: Song, Huaihe email: songhh@mail.buct.edu.cn organization: Beijing Key Laboratory of Electrochemical Process and Technology for Materials |
| BookMark | eNqFkEFPAjEQhRuDiYBePTfxvNjpwi57BBbQBOJBTbxt2u4UlpTt2l1iuPkT_I3-EkswmJgYT9Nk3vfe9HVIq7QlEnINrAeM8VuR622PM0gYAI_PSBsiiIKQ8WHr9IaXC9Kp6w1jEMdhv022Y2vrpihXtFkjnRpUjSuUMDS1O2nw8_1jIfbo6ERUQhWNKBVSq-nciWqNJVK5p49otNeltsKcpqi9Re3dnN2t1nQsjPHLZWGMD7kk51qYGq--Z5c8z6ZPk7tg8TC_n4wWgQr9XUEeapUryMUw1HkCHMVASp7IKJKQazmUiDzUfMBEBImQcV9GCpRSuQY29J8Pu-Tm6Fs5-7rDusk2dudKH5lxHsZxHHEYeFXvqFLO1rVDnVWu2Aq3z4Blh0qzQ6XZqVIP9H8Bh0qawpaNE4X5G0uO2FthcP9PSDZKZ8sf9gvQJJID |
| CitedBy_id | crossref_primary_10_1016_j_jallcom_2025_183765 crossref_primary_10_1007_s10853_025_10927_1 crossref_primary_10_1016_j_micromeso_2019_109954 crossref_primary_10_1016_j_egyr_2022_09_167 crossref_primary_10_1002_adma_201905923 crossref_primary_10_1002_smll_202301391 crossref_primary_10_1016_j_ccr_2025_216751 crossref_primary_10_1007_s12274_023_5701_3 crossref_primary_10_1016_j_seppur_2025_134797 crossref_primary_10_1039_D0NR01126F crossref_primary_10_1016_j_mtsust_2024_100922 crossref_primary_10_3389_fchem_2022_1067327 crossref_primary_10_1016_j_cej_2022_140418 crossref_primary_10_1016_j_carbon_2022_09_022 crossref_primary_10_1016_j_est_2024_111101 crossref_primary_10_1016_j_jcis_2024_12_111 crossref_primary_10_1016_j_est_2023_109660 crossref_primary_10_1016_j_micromeso_2020_110032 crossref_primary_10_3390_nano12152574 crossref_primary_10_1002_aenm_202301860 crossref_primary_10_1007_s40820_020_00546_7 crossref_primary_10_1016_j_apsusc_2022_154526 crossref_primary_10_1016_j_jelechem_2021_115632 crossref_primary_10_3390_nano11123258 crossref_primary_10_1007_s10853_021_06484_y crossref_primary_10_1016_j_est_2024_111912 crossref_primary_10_1039_C9NR07428G crossref_primary_10_1016_j_enchem_2022_100074 crossref_primary_10_1002_anie_202303409 crossref_primary_10_1016_j_cej_2022_134788 crossref_primary_10_1088_1361_6528_ac0190 crossref_primary_10_1016_j_cej_2024_154814 crossref_primary_10_1016_S1872_5805_21_60012_4 crossref_primary_10_1016_j_compositesb_2021_109256 crossref_primary_10_1016_j_est_2023_107826 crossref_primary_10_1002_celc_202101613 crossref_primary_10_1002_smll_202002718 crossref_primary_10_1016_j_apsusc_2020_148788 crossref_primary_10_1016_j_electacta_2025_145880 crossref_primary_10_1002_adfm_202212078 crossref_primary_10_1002_ejic_202400357 crossref_primary_10_1016_j_jallcom_2023_169111 crossref_primary_10_1002_adma_202100537 crossref_primary_10_3390_polym14235250 crossref_primary_10_3390_ma16196549 crossref_primary_10_1016_j_carbon_2024_119791 crossref_primary_10_1016_j_carbon_2022_01_007 crossref_primary_10_3390_ma18020456 crossref_primary_10_1016_j_jcis_2022_08_007 crossref_primary_10_1016_j_envres_2024_118644 crossref_primary_10_1002_aenm_202001769 crossref_primary_10_1016_j_jpowsour_2024_234195 crossref_primary_10_1016_j_cej_2020_125948 crossref_primary_10_1002_batt_202100229 crossref_primary_10_1016_j_biombioe_2023_106747 crossref_primary_10_1016_j_jhazmat_2022_130275 crossref_primary_10_1016_j_est_2024_114640 crossref_primary_10_1016_j_ssi_2021_115562 crossref_primary_10_1016_j_jallcom_2020_156217 crossref_primary_10_1016_j_jcis_2024_01_154 crossref_primary_10_1021_acsami_5c05418 crossref_primary_10_1016_j_diamond_2023_110247 crossref_primary_10_1016_j_surfin_2024_104362 crossref_primary_10_1016_j_apsusc_2024_159868 crossref_primary_10_1016_j_jcis_2022_03_110 crossref_primary_10_1007_s10934_020_01009_5 crossref_primary_10_1016_j_cej_2023_144257 crossref_primary_10_1016_j_ijhydene_2021_08_200 crossref_primary_10_1016_j_watres_2024_122940 crossref_primary_10_1016_j_jece_2025_116617 crossref_primary_10_1016_j_jcis_2022_04_161 crossref_primary_10_1016_j_jpowsour_2022_231072 crossref_primary_10_1016_j_electacta_2020_137036 crossref_primary_10_1016_j_jpowsour_2024_235027 crossref_primary_10_1016_j_ijhydene_2021_06_167 crossref_primary_10_1016_j_nanoen_2022_107545 crossref_primary_10_1016_j_fuel_2025_136378 crossref_primary_10_1016_j_cej_2023_144131 crossref_primary_10_1016_j_solidstatesciences_2023_107375 crossref_primary_10_1038_s41545_024_00372_z crossref_primary_10_1016_j_apsusc_2023_159113 crossref_primary_10_1016_j_carbon_2024_119334 crossref_primary_10_1016_j_cej_2024_149558 crossref_primary_10_1016_j_surfin_2025_106941 crossref_primary_10_1016_j_carbon_2020_11_051 crossref_primary_10_1002_adfm_202401045 crossref_primary_10_1002_smll_202304450 crossref_primary_10_1016_j_electacta_2023_143699 crossref_primary_10_1080_24701556_2023_2267538 crossref_primary_10_1002_adfm_202010306 crossref_primary_10_1039_D3NR03019A crossref_primary_10_1016_j_ijhydene_2022_12_022 crossref_primary_10_1016_j_jpowsour_2022_231851 crossref_primary_10_1016_j_pmatsci_2024_101299 crossref_primary_10_1002_er_8592 crossref_primary_10_1016_j_aca_2021_338546 crossref_primary_10_1016_j_cej_2024_156515 crossref_primary_10_1088_1361_6528_ac7fa5 crossref_primary_10_1016_j_cej_2022_140222 crossref_primary_10_1016_j_mtcomm_2025_112937 crossref_primary_10_1039_D2RA01322C crossref_primary_10_1016_j_carbon_2021_01_016 crossref_primary_10_1016_j_carbon_2024_118812 crossref_primary_10_1016_j_carbon_2021_06_039 crossref_primary_10_3390_coatings9100657 crossref_primary_10_1002_smll_202204119 crossref_primary_10_1016_j_jpcs_2021_110511 crossref_primary_10_1039_D3RA02451B crossref_primary_10_1002_batt_202500370 crossref_primary_10_1016_j_jelechem_2022_116881 crossref_primary_10_1016_j_pmatsci_2024_101401 crossref_primary_10_1016_j_cej_2025_168681 crossref_primary_10_1016_S1872_5805_22_60612_7 crossref_primary_10_3390_polym15193879 crossref_primary_10_1016_j_electacta_2023_143350 crossref_primary_10_1002_adma_202403033 crossref_primary_10_1016_j_carbon_2020_08_013 crossref_primary_10_1016_j_carbon_2023_118762 crossref_primary_10_1016_j_jallcom_2022_167103 crossref_primary_10_1007_s10853_021_06065_z crossref_primary_10_1016_j_electacta_2024_143773 crossref_primary_10_1007_s12598_024_02817_3 crossref_primary_10_1016_j_carbon_2021_11_008 crossref_primary_10_1038_s41467_024_53808_y crossref_primary_10_1088_2631_7990_ad01fd crossref_primary_10_1016_j_cej_2024_157703 crossref_primary_10_1039_D3NR06258A crossref_primary_10_1016_S1872_5805_24_60833_4 crossref_primary_10_1016_j_apsusc_2022_154931 crossref_primary_10_1016_j_carbon_2021_02_072 crossref_primary_10_1002_adma_202108327 crossref_primary_10_1016_j_cej_2023_142163 crossref_primary_10_1002_adfm_202510499 crossref_primary_10_1016_j_indcrop_2024_118060 crossref_primary_10_1016_j_carbon_2019_09_091 crossref_primary_10_1007_s11664_021_08812_z crossref_primary_10_1002_celc_202101231 crossref_primary_10_1016_j_carbon_2023_118318 crossref_primary_10_1002_smll_202007915 crossref_primary_10_1016_j_seppur_2024_127451 crossref_primary_10_1016_j_electacta_2021_138969 crossref_primary_10_1016_j_matt_2024_09_024 crossref_primary_10_1039_D5NR00556F crossref_primary_10_3390_nano10061097 crossref_primary_10_1039_D4QI01715C crossref_primary_10_1016_j_jcis_2022_07_054 crossref_primary_10_1002_adma_202108621 crossref_primary_10_1016_j_carbon_2019_09_085 crossref_primary_10_1016_j_jallcom_2025_181878 crossref_primary_10_1016_j_jcis_2021_02_060 crossref_primary_10_1002_cnma_202000437 crossref_primary_10_1016_j_jcis_2021_10_059 crossref_primary_10_1002_smll_202411996 crossref_primary_10_1016_j_jcis_2021_09_070 crossref_primary_10_1007_s11581_020_03883_0 crossref_primary_10_3390_nano13050817 crossref_primary_10_3390_nano13081415 crossref_primary_10_1016_j_est_2023_108720 crossref_primary_10_1016_j_jpowsour_2020_229223 crossref_primary_10_1007_s11581_023_04984_2 crossref_primary_10_1016_j_jpowsour_2021_229881 crossref_primary_10_1016_j_carbon_2021_06_072 crossref_primary_10_1016_j_heliyon_2025_e42889 crossref_primary_10_1016_j_indcrop_2023_117032 crossref_primary_10_1016_j_carbon_2024_118973 crossref_primary_10_1016_j_ces_2024_121043 crossref_primary_10_1002_adfm_202423700 crossref_primary_10_1016_j_ijbiomac_2024_138295 crossref_primary_10_1002_batt_202400129 crossref_primary_10_1016_j_cej_2022_140948 crossref_primary_10_1016_j_coco_2020_100624 crossref_primary_10_1016_j_matchemphys_2022_126724 crossref_primary_10_3390_catal13020393 crossref_primary_10_3390_w17162478 crossref_primary_10_1016_j_mtcomm_2023_107306 crossref_primary_10_1016_j_cej_2025_160245 crossref_primary_10_1002_smll_202502071 crossref_primary_10_1016_j_jhazmat_2024_133636 crossref_primary_10_1016_j_jece_2025_117480 crossref_primary_10_1007_s40843_022_2196_1 crossref_primary_10_1016_j_electacta_2020_135729 crossref_primary_10_1016_j_apsusc_2022_153011 crossref_primary_10_1016_j_jece_2023_110269 crossref_primary_10_1016_j_mtsust_2023_100358 crossref_primary_10_1016_j_jpowsour_2021_230170 crossref_primary_10_1016_j_ijhydene_2023_09_258 crossref_primary_10_1002_smll_202411657 crossref_primary_10_1016_j_est_2020_101614 crossref_primary_10_1007_s42247_020_00159_1 crossref_primary_10_1016_j_jpowsour_2023_232700 crossref_primary_10_1016_S1872_5805_24_60877_2 crossref_primary_10_1039_D1NR02765D crossref_primary_10_1007_s40820_020_00579_y crossref_primary_10_1016_j_cej_2025_166230 crossref_primary_10_1016_j_jclepro_2022_131351 crossref_primary_10_1016_j_diamond_2024_111515 crossref_primary_10_1016_j_carbon_2020_01_034 crossref_primary_10_1039_D3SE00565H crossref_primary_10_1016_j_jiec_2024_07_053 crossref_primary_10_1016_j_msea_2024_147080 crossref_primary_10_1002_nano_202300002 crossref_primary_10_1016_j_est_2024_114776 crossref_primary_10_1002_smll_202106356 crossref_primary_10_1002_ange_202303409 crossref_primary_10_1007_s41918_024_00234_9 crossref_primary_10_3390_ma17153724 crossref_primary_10_1016_j_jcou_2022_102320 crossref_primary_10_1016_j_carbon_2024_119051 crossref_primary_10_1016_j_jeurceramsoc_2021_09_025 crossref_primary_10_3390_nano14211692 crossref_primary_10_1016_j_cej_2025_164035 crossref_primary_10_1016_j_jechem_2025_01_005 crossref_primary_10_1016_j_synthmet_2024_117575 crossref_primary_10_1016_j_ceramint_2023_03_268 crossref_primary_10_1016_j_apsusc_2025_164406 crossref_primary_10_1002_adfm_202402416 crossref_primary_10_1002_cssc_202202393 crossref_primary_10_1016_j_cej_2021_133472 crossref_primary_10_1039_D0QI00375A crossref_primary_10_1039_D0QM00839G crossref_primary_10_1016_j_jpowsour_2022_232301 crossref_primary_10_1007_s42823_021_00279_6 crossref_primary_10_1016_j_est_2023_107039 crossref_primary_10_1016_j_jclepro_2022_133672 crossref_primary_10_1016_j_jpcs_2021_110446 crossref_primary_10_1002_smll_202207227 crossref_primary_10_1021_acs_langmuir_5c03375 crossref_primary_10_1016_j_cej_2024_150593 crossref_primary_10_1016_j_jcis_2022_12_170 crossref_primary_10_3390_bios13080787 crossref_primary_10_1002_aenm_202100201 crossref_primary_10_1016_j_carbon_2022_12_076 crossref_primary_10_1039_D5TA01172H crossref_primary_10_1039_D1NR04838D crossref_primary_10_1002_bte2_20220017 crossref_primary_10_1002_ente_202100309 crossref_primary_10_1016_j_cej_2021_133250 crossref_primary_10_1016_j_jallcom_2022_168399 crossref_primary_10_1007_s42823_023_00635_8 crossref_primary_10_1002_smll_202302537 crossref_primary_10_1007_s10854_021_06575_1 crossref_primary_10_1016_j_mtcomm_2024_109774 crossref_primary_10_1016_j_jcis_2021_09_179 crossref_primary_10_1016_j_electacta_2020_135800 crossref_primary_10_1007_s40820_020_00538_7 crossref_primary_10_1039_D3NR03889K crossref_primary_10_1016_j_jallcom_2024_177332 crossref_primary_10_1016_j_jpowsour_2023_232869 |
| Cites_doi | 10.1016/S0378-7753(02)00108-8 10.1021/nl800925j 10.1021/nn501308m 10.1103/PhysRevB.44.1427 10.1016/j.carbon.2006.05.022 10.1039/c4ta00556b 10.1039/C7TA06453E 10.1021/nl102661q 10.1021/cm2031009 10.1063/1.4752757 10.1002/adma.201606679 10.1016/j.electacta.2013.07.184 10.1016/j.carbon.2005.10.029 10.1002/anie.201605926 10.1039/c0ee00074d 10.1007/s10008-009-0856-8 10.1016/j.electacta.2003.08.026 10.1016/S0009-2614(01)01037-5 10.1016/j.jpowsour.2006.12.048 10.1016/j.ensm.2015.09.001 10.1016/j.jpowsour.2008.10.075 10.1002/anie.201206260 10.1016/j.elecom.2008.02.033 10.1039/C3RA44530E 10.1063/1.117789 10.1021/acsami.7b07381 10.1039/C5EE00389J 10.1039/C4RA08811E 10.1016/j.carbon.2008.06.027 10.1002/adma.201305851 10.1126/science.1102896 10.1039/C7CS00690J 10.1002/adfm.200600961 10.1016/j.carbon.2007.05.004 10.1039/c3ta13383d 10.1039/c3ta01637d 10.1039/C5EE03109E 10.1016/j.nanoen.2014.11.007 10.1038/nmat2297 10.1002/aenm.201400696 10.1002/adma.200701498 10.1126/science.aab3798 10.1038/nenergy.2016.70 10.1039/C7EE03349D 10.1039/C6EE00941G 10.1038/nnano.2014.247 10.1016/j.electacta.2010.03.047 10.1063/1.2006214 10.1021/nl300173j 10.1063/1.118568 10.1016/j.nanoen.2014.12.014 10.1038/509568a 10.1039/C5NR03828F 10.1002/adma.201602028 10.1038/ncomms5554 10.1002/aenm.201700668 10.1016/j.carbon.2015.05.040 10.1021/nn306044d 10.1039/C1CS15060J 10.1016/j.jpowsour.2011.12.025 10.1016/j.nanoen.2017.04.042 10.1016/0013-4686(90)85068-X 10.1126/science.1200770 10.1002/adfm.201200591 10.1002/anie.201406695 10.1002/adma.201304137 10.1039/c3ee41638k 10.1126/science.1249625 10.1002/adma.201604103 10.1021/nn500497k 10.1002/adfm.201800597 |
| ContentType | Journal Article |
| Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.201901127 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adfm_201901127 ADFM201901127 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51272019; 51702275 – fundername: State Key Laboratory of Chemical Resource Engineering funderid: CRE‐2017‐C‐201 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMMB AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF LW6 O8X 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3177-d3fcdc1da83fd912ea5bb29b66b1dfb8bee23f250a619ab74b6c1cccdf1081123 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 339 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000471074000024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Sun Nov 09 08:29:06 EST 2025 Tue Nov 18 22:11:22 EST 2025 Sat Nov 29 07:22:10 EST 2025 Wed Jan 22 16:40:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3177-d3fcdc1da83fd912ea5bb29b66b1dfb8bee23f250a619ab74b6c1cccdf1081123 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1547-0382 |
| PQID | 2237776215 |
| PQPubID | 2045204 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2237776215 crossref_primary_10_1002_adfm_201901127 crossref_citationtrail_10_1002_adfm_201901127 wiley_primary_10_1002_adfm_201901127_ADFM201901127 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 5 2010; 55 2010; 10 2017; 7 2010; 14 2013; 1 2014; 26 2008; 7 2008; 8 2013; 7 2012; 204 2012; 12 2013; 6 2017; 9 2018; 47 2012; 51 2001; 347 2014; 5 2014; 4 2014; 2 2017; 36 1991; 44 2008; 20 2002; 109 2010; 3 1996; 69 2014; 9 2014; 8 2012; 24 2012; 22 2014; 53 2007; 17 2015; 12 2015; 1 2018; 28 1990; 35 2015; 93 2013; 109 2004; 49 2007; 165 2015; 11 2005; 87 2008; 10 2017; 29 2004; 306 2015; 8 2015; 7 2011; 332 2016; 55 2015; 350 2016; 1 2012; 112 1997; 70 2014; 509 2006; 44 2009; 187 2008; 46 2016; 28 2018; 11 2007; 45 2016; 9 2014; 343 2012; 41 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
| References_xml | – volume: 332 start-page: 1537 year: 2011 publication-title: Science – volume: 29 start-page: 1606679 year: 2017 publication-title: Adv. Mater. – volume: 8 start-page: 1390 year: 2015 publication-title: Energy Environ. Sci. – volume: 4 start-page: 505 year: 2014 publication-title: RSC Adv. – volume: 347 start-page: 36 year: 2001 publication-title: Chem. Phys. Lett. – volume: 53 start-page: 10804 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 343 start-page: 1210 year: 2014 publication-title: Science – volume: 204 start-page: 213 year: 2012 publication-title: J. Power Sources – volume: 1 start-page: 42 year: 2015 publication-title: Energy Storage Mater. – volume: 44 start-page: 2498 year: 2006 publication-title: Carbon – volume: 7 start-page: 15990 year: 2015 publication-title: Nanoscale – volume: 7 start-page: 845 year: 2008 publication-title: Nat. Mater. – volume: 14 start-page: 811 year: 2010 publication-title: J. Solid State Electrochem. – volume: 11 start-page: 471 year: 2015 publication-title: Nano Energy – volume: 35 start-page: 263 year: 1990 publication-title: Electrochim. Acta – volume: 87 start-page: 051923 year: 2005 publication-title: Appl. Phys. Lett. – volume: 22 start-page: 4634 year: 2012 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 1690 year: 2012 publication-title: Nano Lett. – volume: 26 start-page: 3148 year: 2014 publication-title: Adv. Mater. – volume: 55 start-page: 4812 year: 2010 publication-title: Electrochim. Acta – volume: 28 start-page: 1800597 year: 2018 publication-title: Adv. Funct. Mater. – volume: 70 start-page: 1480 year: 1997 publication-title: Appl. Phys. Lett. – volume: 109 start-page: 403 year: 2002 publication-title: J. Power Sources – volume: 29 start-page: 1604103 year: 2017 publication-title: Adv. Mater. – volume: 165 start-page: 922 year: 2007 publication-title: J. Power Sources – volume: 7 start-page: 1700668 year: 2017 publication-title: Adv. Energy Mater. – volume: 55 start-page: 13822 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 36 start-page: 322 year: 2017 publication-title: Nano Energy – volume: 9 start-page: 3135 year: 2016 publication-title: Energy Environ. Sci. – volume: 112 start-page: 063525 year: 2012 publication-title: J. Appl. Phys. – volume: 10 start-page: 4863 year: 2010 publication-title: Nano Lett. – volume: 4 start-page: 1400696 year: 2014 publication-title: Adv. Energy Mater. – volume: 5 start-page: 4554 year: 2014 publication-title: Nat. Commun. – volume: 8 start-page: 2664 year: 2008 publication-title: Nano Lett. – volume: 350 start-page: 1508 year: 2015 publication-title: Science – volume: 509 start-page: 568 year: 2014 publication-title: Nature – volume: 11 start-page: 559 year: 2018 publication-title: Energy Environ. Sci. – volume: 1 start-page: 14103 year: 2013 publication-title: J. Mater. Chem. A – volume: 47 start-page: 7628 year: 2018 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 19866 year: 2017 publication-title: J. Mater. Chem. A – volume: 45 start-page: 1757 year: 2007 publication-title: Carbon – volume: 8 start-page: 5249 year: 2014 publication-title: ACS Nano – volume: 51 start-page: 12107 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 8 start-page: 4720 year: 2014 publication-title: ACS Nano – volume: 7 start-page: 2617 year: 2013 publication-title: ACS Nano – volume: 46 start-page: 1475 year: 2008 publication-title: Carbon – volume: 9 start-page: 729 year: 2016 publication-title: Energy Environ. Sci. – volume: 1 start-page: 4565 year: 2013 publication-title: J. Mater. Chem. A – volume: 4 start-page: 46930 year: 2014 publication-title: RSC Adv. – volume: 26 start-page: 2219 year: 2014 publication-title: Adv. Mater. – volume: 187 start-page: 268 year: 2009 publication-title: J. Power Sources – volume: 41 start-page: 797 year: 2012 publication-title: Chem. Soc. Rev. – volume: 1 start-page: 16070 year: 2016 publication-title: Nat. Energy – volume: 6 start-page: 2497 year: 2013 publication-title: Energy Environ. Sci. – volume: 49 start-page: 515 year: 2004 publication-title: Electrochim. Acta – volume: 9 start-page: 1031 year: 2014 publication-title: Nat. Nanotechnol. – volume: 17 start-page: 1828 year: 2007 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 7185 year: 2016 publication-title: Adv. Mater. – volume: 44 start-page: 1427 year: 1991 publication-title: Phys. Rev. B – volume: 9 start-page: 24655 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 141 year: 2015 publication-title: Nano Energy – volume: 44 start-page: 866 year: 2006 publication-title: Carbon – volume: 20 start-page: 815 year: 2008 publication-title: Adv. Mater. – volume: 24 start-page: 543 year: 2012 publication-title: Chem. Mater. – volume: 69 start-page: 568 year: 1996 publication-title: Appl. Phys. Lett. – volume: 109 start-page: 874 year: 2013 publication-title: Electrochim. Acta – volume: 2 start-page: 6353 year: 2014 publication-title: J. Mater. Chem. A – volume: 3 start-page: 1294 year: 2010 publication-title: Energy Environ. Sci. – volume: 10 start-page: 795 year: 2008 publication-title: Electrochem. Commun. – volume: 93 start-page: 412 year: 2015 publication-title: Carbon – ident: e_1_2_7_57_1 doi: 10.1016/S0378-7753(02)00108-8 – ident: e_1_2_7_13_1 doi: 10.1021/nl800925j – ident: e_1_2_7_24_1 doi: 10.1021/nn501308m – ident: e_1_2_7_38_1 doi: 10.1103/PhysRevB.44.1427 – ident: e_1_2_7_59_1 doi: 10.1016/j.carbon.2006.05.022 – ident: e_1_2_7_25_1 doi: 10.1039/c4ta00556b – ident: e_1_2_7_67_1 doi: 10.1039/C7TA06453E – ident: e_1_2_7_9_1 doi: 10.1021/nl102661q – ident: e_1_2_7_26_1 doi: 10.1021/cm2031009 – ident: e_1_2_7_42_1 doi: 10.1063/1.4752757 – ident: e_1_2_7_68_1 doi: 10.1002/adma.201606679 – ident: e_1_2_7_62_1 doi: 10.1016/j.electacta.2013.07.184 – ident: e_1_2_7_39_1 doi: 10.1016/j.carbon.2005.10.029 – ident: e_1_2_7_33_1 doi: 10.1002/anie.201605926 – ident: e_1_2_7_14_1 doi: 10.1039/c0ee00074d – ident: e_1_2_7_16_1 doi: 10.1007/s10008-009-0856-8 – ident: e_1_2_7_58_1 doi: 10.1016/j.electacta.2003.08.026 – ident: e_1_2_7_53_1 doi: 10.1016/S0009-2614(01)01037-5 – ident: e_1_2_7_8_1 doi: 10.1016/j.jpowsour.2006.12.048 – ident: e_1_2_7_63_1 doi: 10.1016/j.ensm.2015.09.001 – ident: e_1_2_7_17_1 doi: 10.1016/j.jpowsour.2008.10.075 – ident: e_1_2_7_36_1 doi: 10.1002/anie.201206260 – ident: e_1_2_7_54_1 doi: 10.1016/j.elecom.2008.02.033 – ident: e_1_2_7_34_1 doi: 10.1039/C3RA44530E – ident: e_1_2_7_41_1 doi: 10.1063/1.117789 – ident: e_1_2_7_71_1 doi: 10.1021/acsami.7b07381 – ident: e_1_2_7_12_1 doi: 10.1039/C5EE00389J – ident: e_1_2_7_35_1 doi: 10.1039/C4RA08811E – ident: e_1_2_7_18_1 doi: 10.1016/j.carbon.2008.06.027 – ident: e_1_2_7_29_1 doi: 10.1002/adma.201305851 – ident: e_1_2_7_37_1 doi: 10.1126/science.1102896 – ident: e_1_2_7_23_1 doi: 10.1039/C7CS00690J – ident: e_1_2_7_49_1 doi: 10.1002/adfm.200600961 – ident: e_1_2_7_50_1 doi: 10.1016/j.carbon.2007.05.004 – ident: e_1_2_7_20_1 doi: 10.1039/c3ta13383d – ident: e_1_2_7_19_1 doi: 10.1039/c3ta01637d – ident: e_1_2_7_11_1 doi: 10.1039/C5EE03109E – ident: e_1_2_7_61_1 doi: 10.1016/j.nanoen.2014.11.007 – ident: e_1_2_7_4_1 doi: 10.1038/nmat2297 – ident: e_1_2_7_30_1 doi: 10.1002/aenm.201400696 – ident: e_1_2_7_52_1 doi: 10.1002/adma.200701498 – ident: e_1_2_7_65_1 doi: 10.1126/science.aab3798 – ident: e_1_2_7_3_1 doi: 10.1038/nenergy.2016.70 – ident: e_1_2_7_70_1 doi: 10.1039/C7EE03349D – ident: e_1_2_7_55_1 doi: 10.1039/C6EE00941G – ident: e_1_2_7_66_1 doi: 10.1038/nnano.2014.247 – ident: e_1_2_7_45_1 doi: 10.1016/j.electacta.2010.03.047 – ident: e_1_2_7_40_1 doi: 10.1063/1.2006214 – ident: e_1_2_7_28_1 doi: 10.1021/nl300173j – ident: e_1_2_7_51_1 doi: 10.1063/1.118568 – ident: e_1_2_7_47_1 doi: 10.1016/j.nanoen.2014.12.014 – ident: e_1_2_7_2_1 doi: 10.1038/509568a – ident: e_1_2_7_44_1 doi: 10.1039/C5NR03828F – ident: e_1_2_7_32_1 doi: 10.1002/adma.201602028 – ident: e_1_2_7_56_1 doi: 10.1038/ncomms5554 – ident: e_1_2_7_10_1 doi: 10.1002/aenm.201700668 – ident: e_1_2_7_48_1 doi: 10.1016/j.carbon.2015.05.040 – ident: e_1_2_7_27_1 doi: 10.1021/nn306044d – ident: e_1_2_7_7_1 doi: 10.1039/C1CS15060J – ident: e_1_2_7_15_1 doi: 10.1016/j.jpowsour.2011.12.025 – ident: e_1_2_7_43_1 doi: 10.1016/j.nanoen.2017.04.042 – ident: e_1_2_7_64_1 doi: 10.1016/0013-4686(90)85068-X – ident: e_1_2_7_6_1 doi: 10.1126/science.1200770 – ident: e_1_2_7_31_1 doi: 10.1002/adfm.201200591 – ident: e_1_2_7_21_1 doi: 10.1002/anie.201406695 – ident: e_1_2_7_46_1 doi: 10.1002/adma.201304137 – ident: e_1_2_7_1_1 doi: 10.1039/c3ee41638k – ident: e_1_2_7_5_1 doi: 10.1126/science.1249625 – ident: e_1_2_7_22_1 doi: 10.1002/adma.201604103 – ident: e_1_2_7_60_1 doi: 10.1021/nn500497k – ident: e_1_2_7_69_1 doi: 10.1002/adfm.201800597 |
| SSID | ssj0017734 |
| Score | 2.6831887 |
| Snippet | Improving the capacitance of carbon materials for supercapacitors without sacrificing their rate performance, especially volumetric capacitance at high mass... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Capacitance Carbon Chemical reactions defective graphene block Defects Doping double‐layer capacitance Energy storage Graphene Gravimetry Materials science Packing density Reaction kinetics self‐doping Surface area volumetric capacitance |
| Title | Boosting the Electrical Double‐Layer Capacitance of Graphene by Self‐Doped Defects through Ball‐Milling |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201901127 https://www.proquest.com/docview/2237776215 |
| Volume | 29 |
| WOSCitedRecordID | wos000471074000024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMsDAG1EoyAMSU9Q6SWN3BNrCUCrEQ-oW-XUSUmiqtiCx8RP4jfwSzkka2gEhwZYojhP5fHef7bvvCDnVIICHJvQahnMPrSTzBFjmWWiolvFlKJpZonCP9_tiMGjdzmXx5_wQ5Yab04zMXjsFl2pS_yYNlQZcJrlzaMzny6TiMqtw-VVp33Ufe-VJAuf5yXLEXIwXG8yIGxt-fbGHRcf0jTbnMWvmdLqb___dLbJRAE56ns-QbbJkhztkfY6GcJc8X6TpxIU_U0SDtJMVxnGyo4iuVWI_3z96EpE5vUTHqp-mbp7QFOiV47pGU0nVG723CWC7djqyhrZtFiNCixpA9EImCT50aYf4kT3y2O08XF57RRkGTyO44J4JQBvNjBQBmBbzrWwq5bdUFClmQAllrR8AQimJizGpeKgizbTWBhjiDfSM-2RlmA7tAaEiCrEH6WgCIVQBl2CEhsCoUACoZlAl3kwGsS44yl2pjCTO2ZX92A1jXA5jlZyV7Uc5O8ePLWszkcaFlk5ihEacozdgzSrxM-H90kt83u7elHeHf3npiKy56zzarEZWpuMXe0xW9ev0aTI-KWbvF5Is9Dc |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTttAEB6VUAk4tPyKtBT2gNSTRdZ2vJsjEFIqTIQoSLlZ-zdSJBMjEpC48Qg8I0_SWdsxcKgqVT3aXq-tnZ2Zb3dnvgHYNyhRxDYOOlaIgKwkDyQ6Hjjs6J4NVSy7ZaJwKoZDORr1LupoQp8LU_FDNBtuXjNKe-0V3G9IH7yyhiqLPpXcezQeigVYjJNIyBYs9i8H12lzlCBEdbSccB_kxUdz5sZOePC-h_ee6RVuvgWtpdcZfP4P_7sKn2rIyQ6rObIGH9xkHVbeEBFuwM1RUUx9ADQjPMhOytI4XnqM8LXO3cvTc6oIm7Njcq1mPPMzhRXIfni2azKWTD-yXy5Hatcvbp1lfVdGibC6ChA7UnlOD33iIX1kE64HJ1fHp0FdiCEwBC9EYCM01nCrZIS2x0OnulqHPZ0kmlvUUjsXRkhgStFyTGkR68RwY4xFToiDfOMWtCbFxG0Dk0lMPShPFIixjoRCKw1GVscSUXejNgRzIWSmZin3xTLyrOJXDjM_jFkzjG343rS_rfg5_thyZy7TrNbTaUbgSAjyB7zbhrCU3l96yQ77g_Pm6su_vLQHS6dX52mW_hyefYVlf7-KPduB1uzu3n2Dj-ZhNp7e7dZT-TcwFvgn |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB7BFqFy4L_qQgEfkDhFXSdO7BzbpgHEsqqASnuL_DdSpbBZdbdI3HiEPmOfhHGSTdsDQkIck0wmkcee-RLPfAPw1qJCKZyIJk7KiLwkjxR6HnmcmNzFWqi0LRSeytlMzef5SZ9NGGphOn6I4YdbWBmtvw4L3C8d7l-zhmqHoZQ8RDQey7uwJdI8FSPYKr6Up9NhK0HKbms54yHJi883zI2TeP-2htuR6Rpu3gStbdQpH_2H930MD3vIyQ66OfIE7vjFU3hwg4jwGXw_bJpVSIBmhAfZcdsaJ1iPEb42tb_6dTnVhM3ZEYVWe7YOM4U1yN4Htmtylsz8ZF99jSRXNEvvWOHbLBHWdwFih7qu6WIoPKSHPIfT8vjb0Yeob8QQWYIXMnIJWme50ypBl_PY69SYODdZZrhDo4z3cYIEpjR9jmkjhckst9Y65IQ4KDbuwGjRLPwuMJUJ0qADUSAKk0iNTllMnBEK0aTJGKKNESrbs5SHZhl11fErx1UYxmoYxjG8G-SXHT_HHyX3Njat-nW6qggcSUnxgKdjiFvr_UVLdVCUn4ejF_9y0xu4f1KU1fTj7NNL2A6nu9SzPRitzy_8K7hnf6zPVuev-5n8G8ct96I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+the+Electrical+Double%E2%80%90Layer+Capacitance+of+Graphene+by+Self%E2%80%90Doped+Defects+through+Ball%E2%80%90Milling&rft.jtitle=Advanced+functional+materials&rft.au=Dong%2C+Yue&rft.au=Zhang%2C+Su&rft.au=Du%2C+Xian&rft.au=Hong%2C+Song&rft.date=2019-06-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201901127&rft.externalDBID=10.1002%252Fadfm.201901127&rft.externalDocID=ADFM201901127 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |