Boosting the Electrical Double‐Layer Capacitance of Graphene by Self‐Doped Defects through Ball‐Milling

Improving the capacitance of carbon materials for supercapacitors without sacrificing their rate performance, especially volumetric capacitance at high mass loadings, is a big challenge because of the limited assessable surface area and sluggish electrochemical kinetics of the pseudocapacitive react...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced functional materials Ročník 29; číslo 24
Hlavní autoři: Dong, Yue, Zhang, Su, Du, Xian, Hong, Song, Zhao, Shengna, Chen, Yaxin, Chen, Xiaohong, Song, Huaihe
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc 01.06.2019
Témata:
ISSN:1616-301X, 1616-3028
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Improving the capacitance of carbon materials for supercapacitors without sacrificing their rate performance, especially volumetric capacitance at high mass loadings, is a big challenge because of the limited assessable surface area and sluggish electrochemical kinetics of the pseudocapacitive reactions. Here, it is demonstrated that “self‐doping” defects in carbon materials can contribute to additional capacitance with an electrical double‐layer behavior, thus promoting a significant increase in the specific capacitance. As an exemplification, a novel defect‐enriched graphene block with a low specific surface area of 29.7 m2 g−1 and high packing density of 0.917 g cm−3 performs high gravimetric, volumetric, and areal capacitances of 235 F g−1, 215 F cm−3, and 3.95 F cm−2 (mass loading of 22 mg cm−2) at 1 A g−1, respectively, as well as outstanding rate performance. The resulting specific areal capacitance reaches an ultrahigh value of 7.91 F m−2 including a “self‐doping” defect contribution of 4.81 F m−2, which is dramatically higher than the theoretical capacitance of graphene (0.21 F m−2) and most of the reported carbon‐based materials. Therefore, the defect engineering route broadens the avenue to further improve the capacitive performance of carbon materials, especially for compact energy storage under limited surface areas. Owing to the significantly improved double‐layer capacitance originating from the “self‐doping” defects, defective graphene blocks with high defect density (ID/IG = 2.16), high packing density (0.917 g cm–3), and low specific surface area (29.7 m2 g–1) show an integration of high gravimetric, volumetric, and areal capacitances for supercapacitors.
AbstractList Improving the capacitance of carbon materials for supercapacitors without sacrificing their rate performance, especially volumetric capacitance at high mass loadings, is a big challenge because of the limited assessable surface area and sluggish electrochemical kinetics of the pseudocapacitive reactions. Here, it is demonstrated that “self‐doping” defects in carbon materials can contribute to additional capacitance with an electrical double‐layer behavior, thus promoting a significant increase in the specific capacitance. As an exemplification, a novel defect‐enriched graphene block with a low specific surface area of 29.7 m2 g−1 and high packing density of 0.917 g cm−3 performs high gravimetric, volumetric, and areal capacitances of 235 F g−1, 215 F cm−3, and 3.95 F cm−2 (mass loading of 22 mg cm−2) at 1 A g−1, respectively, as well as outstanding rate performance. The resulting specific areal capacitance reaches an ultrahigh value of 7.91 F m−2 including a “self‐doping” defect contribution of 4.81 F m−2, which is dramatically higher than the theoretical capacitance of graphene (0.21 F m−2) and most of the reported carbon‐based materials. Therefore, the defect engineering route broadens the avenue to further improve the capacitive performance of carbon materials, especially for compact energy storage under limited surface areas. Owing to the significantly improved double‐layer capacitance originating from the “self‐doping” defects, defective graphene blocks with high defect density (ID/IG = 2.16), high packing density (0.917 g cm–3), and low specific surface area (29.7 m2 g–1) show an integration of high gravimetric, volumetric, and areal capacitances for supercapacitors.
Improving the capacitance of carbon materials for supercapacitors without sacrificing their rate performance, especially volumetric capacitance at high mass loadings, is a big challenge because of the limited assessable surface area and sluggish electrochemical kinetics of the pseudocapacitive reactions. Here, it is demonstrated that “self‐doping” defects in carbon materials can contribute to additional capacitance with an electrical double‐layer behavior, thus promoting a significant increase in the specific capacitance. As an exemplification, a novel defect‐enriched graphene block with a low specific surface area of 29.7 m 2 g −1 and high packing density of 0.917 g cm −3 performs high gravimetric, volumetric, and areal capacitances of 235 F g −1 , 215 F cm −3 , and 3.95 F cm −2 (mass loading of 22 mg cm −2 ) at 1 A g −1 , respectively, as well as outstanding rate performance. The resulting specific areal capacitance reaches an ultrahigh value of 7.91 F m −2 including a “self‐doping” defect contribution of 4.81 F m −2 , which is dramatically higher than the theoretical capacitance of graphene (0.21 F m −2 ) and most of the reported carbon‐based materials. Therefore, the defect engineering route broadens the avenue to further improve the capacitive performance of carbon materials, especially for compact energy storage under limited surface areas.
Improving the capacitance of carbon materials for supercapacitors without sacrificing their rate performance, especially volumetric capacitance at high mass loadings, is a big challenge because of the limited assessable surface area and sluggish electrochemical kinetics of the pseudocapacitive reactions. Here, it is demonstrated that “self‐doping” defects in carbon materials can contribute to additional capacitance with an electrical double‐layer behavior, thus promoting a significant increase in the specific capacitance. As an exemplification, a novel defect‐enriched graphene block with a low specific surface area of 29.7 m2 g−1 and high packing density of 0.917 g cm−3 performs high gravimetric, volumetric, and areal capacitances of 235 F g−1, 215 F cm−3, and 3.95 F cm−2 (mass loading of 22 mg cm−2) at 1 A g−1, respectively, as well as outstanding rate performance. The resulting specific areal capacitance reaches an ultrahigh value of 7.91 F m−2 including a “self‐doping” defect contribution of 4.81 F m−2, which is dramatically higher than the theoretical capacitance of graphene (0.21 F m−2) and most of the reported carbon‐based materials. Therefore, the defect engineering route broadens the avenue to further improve the capacitive performance of carbon materials, especially for compact energy storage under limited surface areas.
Author Chen, Yaxin
Song, Huaihe
Chen, Xiaohong
Zhang, Su
Du, Xian
Dong, Yue
Hong, Song
Zhao, Shengna
Author_xml – sequence: 1
  givenname: Yue
  surname: Dong
  fullname: Dong, Yue
  organization: Beijing Key Laboratory of Electrochemical Process and Technology for Materials
– sequence: 2
  givenname: Su
  surname: Zhang
  fullname: Zhang, Su
  organization: Xinjiang University
– sequence: 3
  givenname: Xian
  surname: Du
  fullname: Du, Xian
  organization: Beijing Key Laboratory of Electrochemical Process and Technology for Materials
– sequence: 4
  givenname: Song
  surname: Hong
  fullname: Hong, Song
  organization: Beijing Key Laboratory of Electrochemical Process and Technology for Materials
– sequence: 5
  givenname: Shengna
  surname: Zhao
  fullname: Zhao, Shengna
  organization: Beijing Key Laboratory of Electrochemical Process and Technology for Materials
– sequence: 6
  givenname: Yaxin
  surname: Chen
  fullname: Chen, Yaxin
  organization: Beijing Key Laboratory of Electrochemical Process and Technology for Materials
– sequence: 7
  givenname: Xiaohong
  surname: Chen
  fullname: Chen, Xiaohong
  organization: Beijing Key Laboratory of Electrochemical Process and Technology for Materials
– sequence: 8
  givenname: Huaihe
  orcidid: 0000-0003-1547-0382
  surname: Song
  fullname: Song, Huaihe
  email: songhh@mail.buct.edu.cn
  organization: Beijing Key Laboratory of Electrochemical Process and Technology for Materials
BookMark eNqFkEFPAjEQhRuDiYBePTfxvNjpwi57BBbQBOJBTbxt2u4UlpTt2l1iuPkT_I3-EkswmJgYT9Nk3vfe9HVIq7QlEnINrAeM8VuR622PM0gYAI_PSBsiiIKQ8WHr9IaXC9Kp6w1jEMdhv022Y2vrpihXtFkjnRpUjSuUMDS1O2nw8_1jIfbo6ERUQhWNKBVSq-nciWqNJVK5p49otNeltsKcpqi9Re3dnN2t1nQsjPHLZWGMD7kk51qYGq--Z5c8z6ZPk7tg8TC_n4wWgQr9XUEeapUryMUw1HkCHMVASp7IKJKQazmUiDzUfMBEBImQcV9GCpRSuQY29J8Pu-Tm6Fs5-7rDusk2dudKH5lxHsZxHHEYeFXvqFLO1rVDnVWu2Aq3z4Blh0qzQ6XZqVIP9H8Bh0qawpaNE4X5G0uO2FthcP9PSDZKZ8sf9gvQJJID
CitedBy_id crossref_primary_10_1016_j_jallcom_2025_183765
crossref_primary_10_1007_s10853_025_10927_1
crossref_primary_10_1016_j_micromeso_2019_109954
crossref_primary_10_1016_j_egyr_2022_09_167
crossref_primary_10_1002_adma_201905923
crossref_primary_10_1002_smll_202301391
crossref_primary_10_1016_j_ccr_2025_216751
crossref_primary_10_1007_s12274_023_5701_3
crossref_primary_10_1016_j_seppur_2025_134797
crossref_primary_10_1039_D0NR01126F
crossref_primary_10_1016_j_mtsust_2024_100922
crossref_primary_10_3389_fchem_2022_1067327
crossref_primary_10_1016_j_cej_2022_140418
crossref_primary_10_1016_j_carbon_2022_09_022
crossref_primary_10_1016_j_est_2024_111101
crossref_primary_10_1016_j_jcis_2024_12_111
crossref_primary_10_1016_j_est_2023_109660
crossref_primary_10_1016_j_micromeso_2020_110032
crossref_primary_10_3390_nano12152574
crossref_primary_10_1002_aenm_202301860
crossref_primary_10_1007_s40820_020_00546_7
crossref_primary_10_1016_j_apsusc_2022_154526
crossref_primary_10_1016_j_jelechem_2021_115632
crossref_primary_10_3390_nano11123258
crossref_primary_10_1007_s10853_021_06484_y
crossref_primary_10_1016_j_est_2024_111912
crossref_primary_10_1039_C9NR07428G
crossref_primary_10_1016_j_enchem_2022_100074
crossref_primary_10_1002_anie_202303409
crossref_primary_10_1016_j_cej_2022_134788
crossref_primary_10_1088_1361_6528_ac0190
crossref_primary_10_1016_j_cej_2024_154814
crossref_primary_10_1016_S1872_5805_21_60012_4
crossref_primary_10_1016_j_compositesb_2021_109256
crossref_primary_10_1016_j_est_2023_107826
crossref_primary_10_1002_celc_202101613
crossref_primary_10_1002_smll_202002718
crossref_primary_10_1016_j_apsusc_2020_148788
crossref_primary_10_1016_j_electacta_2025_145880
crossref_primary_10_1002_adfm_202212078
crossref_primary_10_1002_ejic_202400357
crossref_primary_10_1016_j_jallcom_2023_169111
crossref_primary_10_1002_adma_202100537
crossref_primary_10_3390_polym14235250
crossref_primary_10_3390_ma16196549
crossref_primary_10_1016_j_carbon_2024_119791
crossref_primary_10_1016_j_carbon_2022_01_007
crossref_primary_10_3390_ma18020456
crossref_primary_10_1016_j_jcis_2022_08_007
crossref_primary_10_1016_j_envres_2024_118644
crossref_primary_10_1002_aenm_202001769
crossref_primary_10_1016_j_jpowsour_2024_234195
crossref_primary_10_1016_j_cej_2020_125948
crossref_primary_10_1002_batt_202100229
crossref_primary_10_1016_j_biombioe_2023_106747
crossref_primary_10_1016_j_jhazmat_2022_130275
crossref_primary_10_1016_j_est_2024_114640
crossref_primary_10_1016_j_ssi_2021_115562
crossref_primary_10_1016_j_jallcom_2020_156217
crossref_primary_10_1016_j_jcis_2024_01_154
crossref_primary_10_1021_acsami_5c05418
crossref_primary_10_1016_j_diamond_2023_110247
crossref_primary_10_1016_j_surfin_2024_104362
crossref_primary_10_1016_j_apsusc_2024_159868
crossref_primary_10_1016_j_jcis_2022_03_110
crossref_primary_10_1007_s10934_020_01009_5
crossref_primary_10_1016_j_cej_2023_144257
crossref_primary_10_1016_j_ijhydene_2021_08_200
crossref_primary_10_1016_j_watres_2024_122940
crossref_primary_10_1016_j_jece_2025_116617
crossref_primary_10_1016_j_jcis_2022_04_161
crossref_primary_10_1016_j_jpowsour_2022_231072
crossref_primary_10_1016_j_electacta_2020_137036
crossref_primary_10_1016_j_jpowsour_2024_235027
crossref_primary_10_1016_j_ijhydene_2021_06_167
crossref_primary_10_1016_j_nanoen_2022_107545
crossref_primary_10_1016_j_fuel_2025_136378
crossref_primary_10_1016_j_cej_2023_144131
crossref_primary_10_1016_j_solidstatesciences_2023_107375
crossref_primary_10_1038_s41545_024_00372_z
crossref_primary_10_1016_j_apsusc_2023_159113
crossref_primary_10_1016_j_carbon_2024_119334
crossref_primary_10_1016_j_cej_2024_149558
crossref_primary_10_1016_j_surfin_2025_106941
crossref_primary_10_1016_j_carbon_2020_11_051
crossref_primary_10_1002_adfm_202401045
crossref_primary_10_1002_smll_202304450
crossref_primary_10_1016_j_electacta_2023_143699
crossref_primary_10_1080_24701556_2023_2267538
crossref_primary_10_1002_adfm_202010306
crossref_primary_10_1039_D3NR03019A
crossref_primary_10_1016_j_ijhydene_2022_12_022
crossref_primary_10_1016_j_jpowsour_2022_231851
crossref_primary_10_1016_j_pmatsci_2024_101299
crossref_primary_10_1002_er_8592
crossref_primary_10_1016_j_aca_2021_338546
crossref_primary_10_1016_j_cej_2024_156515
crossref_primary_10_1088_1361_6528_ac7fa5
crossref_primary_10_1016_j_cej_2022_140222
crossref_primary_10_1016_j_mtcomm_2025_112937
crossref_primary_10_1039_D2RA01322C
crossref_primary_10_1016_j_carbon_2021_01_016
crossref_primary_10_1016_j_carbon_2024_118812
crossref_primary_10_1016_j_carbon_2021_06_039
crossref_primary_10_3390_coatings9100657
crossref_primary_10_1002_smll_202204119
crossref_primary_10_1016_j_jpcs_2021_110511
crossref_primary_10_1039_D3RA02451B
crossref_primary_10_1002_batt_202500370
crossref_primary_10_1016_j_jelechem_2022_116881
crossref_primary_10_1016_j_pmatsci_2024_101401
crossref_primary_10_1016_j_cej_2025_168681
crossref_primary_10_1016_S1872_5805_22_60612_7
crossref_primary_10_3390_polym15193879
crossref_primary_10_1016_j_electacta_2023_143350
crossref_primary_10_1002_adma_202403033
crossref_primary_10_1016_j_carbon_2020_08_013
crossref_primary_10_1016_j_carbon_2023_118762
crossref_primary_10_1016_j_jallcom_2022_167103
crossref_primary_10_1007_s10853_021_06065_z
crossref_primary_10_1016_j_electacta_2024_143773
crossref_primary_10_1007_s12598_024_02817_3
crossref_primary_10_1016_j_carbon_2021_11_008
crossref_primary_10_1038_s41467_024_53808_y
crossref_primary_10_1088_2631_7990_ad01fd
crossref_primary_10_1016_j_cej_2024_157703
crossref_primary_10_1039_D3NR06258A
crossref_primary_10_1016_S1872_5805_24_60833_4
crossref_primary_10_1016_j_apsusc_2022_154931
crossref_primary_10_1016_j_carbon_2021_02_072
crossref_primary_10_1002_adma_202108327
crossref_primary_10_1016_j_cej_2023_142163
crossref_primary_10_1002_adfm_202510499
crossref_primary_10_1016_j_indcrop_2024_118060
crossref_primary_10_1016_j_carbon_2019_09_091
crossref_primary_10_1007_s11664_021_08812_z
crossref_primary_10_1002_celc_202101231
crossref_primary_10_1016_j_carbon_2023_118318
crossref_primary_10_1002_smll_202007915
crossref_primary_10_1016_j_seppur_2024_127451
crossref_primary_10_1016_j_electacta_2021_138969
crossref_primary_10_1016_j_matt_2024_09_024
crossref_primary_10_1039_D5NR00556F
crossref_primary_10_3390_nano10061097
crossref_primary_10_1039_D4QI01715C
crossref_primary_10_1016_j_jcis_2022_07_054
crossref_primary_10_1002_adma_202108621
crossref_primary_10_1016_j_carbon_2019_09_085
crossref_primary_10_1016_j_jallcom_2025_181878
crossref_primary_10_1016_j_jcis_2021_02_060
crossref_primary_10_1002_cnma_202000437
crossref_primary_10_1016_j_jcis_2021_10_059
crossref_primary_10_1002_smll_202411996
crossref_primary_10_1016_j_jcis_2021_09_070
crossref_primary_10_1007_s11581_020_03883_0
crossref_primary_10_3390_nano13050817
crossref_primary_10_3390_nano13081415
crossref_primary_10_1016_j_est_2023_108720
crossref_primary_10_1016_j_jpowsour_2020_229223
crossref_primary_10_1007_s11581_023_04984_2
crossref_primary_10_1016_j_jpowsour_2021_229881
crossref_primary_10_1016_j_carbon_2021_06_072
crossref_primary_10_1016_j_heliyon_2025_e42889
crossref_primary_10_1016_j_indcrop_2023_117032
crossref_primary_10_1016_j_carbon_2024_118973
crossref_primary_10_1016_j_ces_2024_121043
crossref_primary_10_1002_adfm_202423700
crossref_primary_10_1016_j_ijbiomac_2024_138295
crossref_primary_10_1002_batt_202400129
crossref_primary_10_1016_j_cej_2022_140948
crossref_primary_10_1016_j_coco_2020_100624
crossref_primary_10_1016_j_matchemphys_2022_126724
crossref_primary_10_3390_catal13020393
crossref_primary_10_3390_w17162478
crossref_primary_10_1016_j_mtcomm_2023_107306
crossref_primary_10_1016_j_cej_2025_160245
crossref_primary_10_1002_smll_202502071
crossref_primary_10_1016_j_jhazmat_2024_133636
crossref_primary_10_1016_j_jece_2025_117480
crossref_primary_10_1007_s40843_022_2196_1
crossref_primary_10_1016_j_electacta_2020_135729
crossref_primary_10_1016_j_apsusc_2022_153011
crossref_primary_10_1016_j_jece_2023_110269
crossref_primary_10_1016_j_mtsust_2023_100358
crossref_primary_10_1016_j_jpowsour_2021_230170
crossref_primary_10_1016_j_ijhydene_2023_09_258
crossref_primary_10_1002_smll_202411657
crossref_primary_10_1016_j_est_2020_101614
crossref_primary_10_1007_s42247_020_00159_1
crossref_primary_10_1016_j_jpowsour_2023_232700
crossref_primary_10_1016_S1872_5805_24_60877_2
crossref_primary_10_1039_D1NR02765D
crossref_primary_10_1007_s40820_020_00579_y
crossref_primary_10_1016_j_cej_2025_166230
crossref_primary_10_1016_j_jclepro_2022_131351
crossref_primary_10_1016_j_diamond_2024_111515
crossref_primary_10_1016_j_carbon_2020_01_034
crossref_primary_10_1039_D3SE00565H
crossref_primary_10_1016_j_jiec_2024_07_053
crossref_primary_10_1016_j_msea_2024_147080
crossref_primary_10_1002_nano_202300002
crossref_primary_10_1016_j_est_2024_114776
crossref_primary_10_1002_smll_202106356
crossref_primary_10_1002_ange_202303409
crossref_primary_10_1007_s41918_024_00234_9
crossref_primary_10_3390_ma17153724
crossref_primary_10_1016_j_jcou_2022_102320
crossref_primary_10_1016_j_carbon_2024_119051
crossref_primary_10_1016_j_jeurceramsoc_2021_09_025
crossref_primary_10_3390_nano14211692
crossref_primary_10_1016_j_cej_2025_164035
crossref_primary_10_1016_j_jechem_2025_01_005
crossref_primary_10_1016_j_synthmet_2024_117575
crossref_primary_10_1016_j_ceramint_2023_03_268
crossref_primary_10_1016_j_apsusc_2025_164406
crossref_primary_10_1002_adfm_202402416
crossref_primary_10_1002_cssc_202202393
crossref_primary_10_1016_j_cej_2021_133472
crossref_primary_10_1039_D0QI00375A
crossref_primary_10_1039_D0QM00839G
crossref_primary_10_1016_j_jpowsour_2022_232301
crossref_primary_10_1007_s42823_021_00279_6
crossref_primary_10_1016_j_est_2023_107039
crossref_primary_10_1016_j_jclepro_2022_133672
crossref_primary_10_1016_j_jpcs_2021_110446
crossref_primary_10_1002_smll_202207227
crossref_primary_10_1021_acs_langmuir_5c03375
crossref_primary_10_1016_j_cej_2024_150593
crossref_primary_10_1016_j_jcis_2022_12_170
crossref_primary_10_3390_bios13080787
crossref_primary_10_1002_aenm_202100201
crossref_primary_10_1016_j_carbon_2022_12_076
crossref_primary_10_1039_D5TA01172H
crossref_primary_10_1039_D1NR04838D
crossref_primary_10_1002_bte2_20220017
crossref_primary_10_1002_ente_202100309
crossref_primary_10_1016_j_cej_2021_133250
crossref_primary_10_1016_j_jallcom_2022_168399
crossref_primary_10_1007_s42823_023_00635_8
crossref_primary_10_1002_smll_202302537
crossref_primary_10_1007_s10854_021_06575_1
crossref_primary_10_1016_j_mtcomm_2024_109774
crossref_primary_10_1016_j_jcis_2021_09_179
crossref_primary_10_1016_j_electacta_2020_135800
crossref_primary_10_1007_s40820_020_00538_7
crossref_primary_10_1039_D3NR03889K
crossref_primary_10_1016_j_jallcom_2024_177332
crossref_primary_10_1016_j_jpowsour_2023_232869
Cites_doi 10.1016/S0378-7753(02)00108-8
10.1021/nl800925j
10.1021/nn501308m
10.1103/PhysRevB.44.1427
10.1016/j.carbon.2006.05.022
10.1039/c4ta00556b
10.1039/C7TA06453E
10.1021/nl102661q
10.1021/cm2031009
10.1063/1.4752757
10.1002/adma.201606679
10.1016/j.electacta.2013.07.184
10.1016/j.carbon.2005.10.029
10.1002/anie.201605926
10.1039/c0ee00074d
10.1007/s10008-009-0856-8
10.1016/j.electacta.2003.08.026
10.1016/S0009-2614(01)01037-5
10.1016/j.jpowsour.2006.12.048
10.1016/j.ensm.2015.09.001
10.1016/j.jpowsour.2008.10.075
10.1002/anie.201206260
10.1016/j.elecom.2008.02.033
10.1039/C3RA44530E
10.1063/1.117789
10.1021/acsami.7b07381
10.1039/C5EE00389J
10.1039/C4RA08811E
10.1016/j.carbon.2008.06.027
10.1002/adma.201305851
10.1126/science.1102896
10.1039/C7CS00690J
10.1002/adfm.200600961
10.1016/j.carbon.2007.05.004
10.1039/c3ta13383d
10.1039/c3ta01637d
10.1039/C5EE03109E
10.1016/j.nanoen.2014.11.007
10.1038/nmat2297
10.1002/aenm.201400696
10.1002/adma.200701498
10.1126/science.aab3798
10.1038/nenergy.2016.70
10.1039/C7EE03349D
10.1039/C6EE00941G
10.1038/nnano.2014.247
10.1016/j.electacta.2010.03.047
10.1063/1.2006214
10.1021/nl300173j
10.1063/1.118568
10.1016/j.nanoen.2014.12.014
10.1038/509568a
10.1039/C5NR03828F
10.1002/adma.201602028
10.1038/ncomms5554
10.1002/aenm.201700668
10.1016/j.carbon.2015.05.040
10.1021/nn306044d
10.1039/C1CS15060J
10.1016/j.jpowsour.2011.12.025
10.1016/j.nanoen.2017.04.042
10.1016/0013-4686(90)85068-X
10.1126/science.1200770
10.1002/adfm.201200591
10.1002/anie.201406695
10.1002/adma.201304137
10.1039/c3ee41638k
10.1126/science.1249625
10.1002/adma.201604103
10.1021/nn500497k
10.1002/adfm.201800597
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201901127
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201901127
ADFM201901127
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51272019; 51702275
– fundername: State Key Laboratory of Chemical Resource Engineering
  funderid: CRE‐2017‐C‐201
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMMB
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
LW6
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3177-d3fcdc1da83fd912ea5bb29b66b1dfb8bee23f250a619ab74b6c1cccdf1081123
IEDL.DBID DRFUL
ISICitedReferencesCount 339
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000471074000024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Sun Nov 09 08:29:06 EST 2025
Tue Nov 18 22:11:22 EST 2025
Sat Nov 29 07:22:10 EST 2025
Wed Jan 22 16:40:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3177-d3fcdc1da83fd912ea5bb29b66b1dfb8bee23f250a619ab74b6c1cccdf1081123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1547-0382
PQID 2237776215
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2237776215
crossref_primary_10_1002_adfm_201901127
crossref_citationtrail_10_1002_adfm_201901127
wiley_primary_10_1002_adfm_201901127_ADFM201901127
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2010; 55
2010; 10
2017; 7
2010; 14
2013; 1
2014; 26
2008; 7
2008; 8
2013; 7
2012; 204
2012; 12
2013; 6
2017; 9
2018; 47
2012; 51
2001; 347
2014; 5
2014; 4
2014; 2
2017; 36
1991; 44
2008; 20
2002; 109
2010; 3
1996; 69
2014; 9
2014; 8
2012; 24
2012; 22
2014; 53
2007; 17
2015; 12
2015; 1
2018; 28
1990; 35
2015; 93
2013; 109
2004; 49
2007; 165
2015; 11
2005; 87
2008; 10
2017; 29
2004; 306
2015; 8
2015; 7
2011; 332
2016; 55
2015; 350
2016; 1
2012; 112
1997; 70
2014; 509
2006; 44
2009; 187
2008; 46
2016; 28
2018; 11
2007; 45
2016; 9
2014; 343
2012; 41
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 332
  start-page: 1537
  year: 2011
  publication-title: Science
– volume: 29
  start-page: 1606679
  year: 2017
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1390
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 505
  year: 2014
  publication-title: RSC Adv.
– volume: 347
  start-page: 36
  year: 2001
  publication-title: Chem. Phys. Lett.
– volume: 53
  start-page: 10804
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 343
  start-page: 1210
  year: 2014
  publication-title: Science
– volume: 204
  start-page: 213
  year: 2012
  publication-title: J. Power Sources
– volume: 1
  start-page: 42
  year: 2015
  publication-title: Energy Storage Mater.
– volume: 44
  start-page: 2498
  year: 2006
  publication-title: Carbon
– volume: 7
  start-page: 15990
  year: 2015
  publication-title: Nanoscale
– volume: 7
  start-page: 845
  year: 2008
  publication-title: Nat. Mater.
– volume: 14
  start-page: 811
  year: 2010
  publication-title: J. Solid State Electrochem.
– volume: 11
  start-page: 471
  year: 2015
  publication-title: Nano Energy
– volume: 35
  start-page: 263
  year: 1990
  publication-title: Electrochim. Acta
– volume: 87
  start-page: 051923
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 22
  start-page: 4634
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 1690
  year: 2012
  publication-title: Nano Lett.
– volume: 26
  start-page: 3148
  year: 2014
  publication-title: Adv. Mater.
– volume: 55
  start-page: 4812
  year: 2010
  publication-title: Electrochim. Acta
– volume: 28
  start-page: 1800597
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 70
  start-page: 1480
  year: 1997
  publication-title: Appl. Phys. Lett.
– volume: 109
  start-page: 403
  year: 2002
  publication-title: J. Power Sources
– volume: 29
  start-page: 1604103
  year: 2017
  publication-title: Adv. Mater.
– volume: 165
  start-page: 922
  year: 2007
  publication-title: J. Power Sources
– volume: 7
  start-page: 1700668
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 55
  start-page: 13822
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 36
  start-page: 322
  year: 2017
  publication-title: Nano Energy
– volume: 9
  start-page: 3135
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 112
  start-page: 063525
  year: 2012
  publication-title: J. Appl. Phys.
– volume: 10
  start-page: 4863
  year: 2010
  publication-title: Nano Lett.
– volume: 4
  start-page: 1400696
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 4554
  year: 2014
  publication-title: Nat. Commun.
– volume: 8
  start-page: 2664
  year: 2008
  publication-title: Nano Lett.
– volume: 350
  start-page: 1508
  year: 2015
  publication-title: Science
– volume: 509
  start-page: 568
  year: 2014
  publication-title: Nature
– volume: 11
  start-page: 559
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 14103
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 47
  start-page: 7628
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 19866
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 45
  start-page: 1757
  year: 2007
  publication-title: Carbon
– volume: 8
  start-page: 5249
  year: 2014
  publication-title: ACS Nano
– volume: 51
  start-page: 12107
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 8
  start-page: 4720
  year: 2014
  publication-title: ACS Nano
– volume: 7
  start-page: 2617
  year: 2013
  publication-title: ACS Nano
– volume: 46
  start-page: 1475
  year: 2008
  publication-title: Carbon
– volume: 9
  start-page: 729
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 4565
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 46930
  year: 2014
  publication-title: RSC Adv.
– volume: 26
  start-page: 2219
  year: 2014
  publication-title: Adv. Mater.
– volume: 187
  start-page: 268
  year: 2009
  publication-title: J. Power Sources
– volume: 41
  start-page: 797
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 16070
  year: 2016
  publication-title: Nat. Energy
– volume: 6
  start-page: 2497
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 49
  start-page: 515
  year: 2004
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 1031
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 17
  start-page: 1828
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 7185
  year: 2016
  publication-title: Adv. Mater.
– volume: 44
  start-page: 1427
  year: 1991
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 24655
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 141
  year: 2015
  publication-title: Nano Energy
– volume: 44
  start-page: 866
  year: 2006
  publication-title: Carbon
– volume: 20
  start-page: 815
  year: 2008
  publication-title: Adv. Mater.
– volume: 24
  start-page: 543
  year: 2012
  publication-title: Chem. Mater.
– volume: 69
  start-page: 568
  year: 1996
  publication-title: Appl. Phys. Lett.
– volume: 109
  start-page: 874
  year: 2013
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 6353
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 1294
  year: 2010
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 795
  year: 2008
  publication-title: Electrochem. Commun.
– volume: 93
  start-page: 412
  year: 2015
  publication-title: Carbon
– ident: e_1_2_7_57_1
  doi: 10.1016/S0378-7753(02)00108-8
– ident: e_1_2_7_13_1
  doi: 10.1021/nl800925j
– ident: e_1_2_7_24_1
  doi: 10.1021/nn501308m
– ident: e_1_2_7_38_1
  doi: 10.1103/PhysRevB.44.1427
– ident: e_1_2_7_59_1
  doi: 10.1016/j.carbon.2006.05.022
– ident: e_1_2_7_25_1
  doi: 10.1039/c4ta00556b
– ident: e_1_2_7_67_1
  doi: 10.1039/C7TA06453E
– ident: e_1_2_7_9_1
  doi: 10.1021/nl102661q
– ident: e_1_2_7_26_1
  doi: 10.1021/cm2031009
– ident: e_1_2_7_42_1
  doi: 10.1063/1.4752757
– ident: e_1_2_7_68_1
  doi: 10.1002/adma.201606679
– ident: e_1_2_7_62_1
  doi: 10.1016/j.electacta.2013.07.184
– ident: e_1_2_7_39_1
  doi: 10.1016/j.carbon.2005.10.029
– ident: e_1_2_7_33_1
  doi: 10.1002/anie.201605926
– ident: e_1_2_7_14_1
  doi: 10.1039/c0ee00074d
– ident: e_1_2_7_16_1
  doi: 10.1007/s10008-009-0856-8
– ident: e_1_2_7_58_1
  doi: 10.1016/j.electacta.2003.08.026
– ident: e_1_2_7_53_1
  doi: 10.1016/S0009-2614(01)01037-5
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jpowsour.2006.12.048
– ident: e_1_2_7_63_1
  doi: 10.1016/j.ensm.2015.09.001
– ident: e_1_2_7_17_1
  doi: 10.1016/j.jpowsour.2008.10.075
– ident: e_1_2_7_36_1
  doi: 10.1002/anie.201206260
– ident: e_1_2_7_54_1
  doi: 10.1016/j.elecom.2008.02.033
– ident: e_1_2_7_34_1
  doi: 10.1039/C3RA44530E
– ident: e_1_2_7_41_1
  doi: 10.1063/1.117789
– ident: e_1_2_7_71_1
  doi: 10.1021/acsami.7b07381
– ident: e_1_2_7_12_1
  doi: 10.1039/C5EE00389J
– ident: e_1_2_7_35_1
  doi: 10.1039/C4RA08811E
– ident: e_1_2_7_18_1
  doi: 10.1016/j.carbon.2008.06.027
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.201305851
– ident: e_1_2_7_37_1
  doi: 10.1126/science.1102896
– ident: e_1_2_7_23_1
  doi: 10.1039/C7CS00690J
– ident: e_1_2_7_49_1
  doi: 10.1002/adfm.200600961
– ident: e_1_2_7_50_1
  doi: 10.1016/j.carbon.2007.05.004
– ident: e_1_2_7_20_1
  doi: 10.1039/c3ta13383d
– ident: e_1_2_7_19_1
  doi: 10.1039/c3ta01637d
– ident: e_1_2_7_11_1
  doi: 10.1039/C5EE03109E
– ident: e_1_2_7_61_1
  doi: 10.1016/j.nanoen.2014.11.007
– ident: e_1_2_7_4_1
  doi: 10.1038/nmat2297
– ident: e_1_2_7_30_1
  doi: 10.1002/aenm.201400696
– ident: e_1_2_7_52_1
  doi: 10.1002/adma.200701498
– ident: e_1_2_7_65_1
  doi: 10.1126/science.aab3798
– ident: e_1_2_7_3_1
  doi: 10.1038/nenergy.2016.70
– ident: e_1_2_7_70_1
  doi: 10.1039/C7EE03349D
– ident: e_1_2_7_55_1
  doi: 10.1039/C6EE00941G
– ident: e_1_2_7_66_1
  doi: 10.1038/nnano.2014.247
– ident: e_1_2_7_45_1
  doi: 10.1016/j.electacta.2010.03.047
– ident: e_1_2_7_40_1
  doi: 10.1063/1.2006214
– ident: e_1_2_7_28_1
  doi: 10.1021/nl300173j
– ident: e_1_2_7_51_1
  doi: 10.1063/1.118568
– ident: e_1_2_7_47_1
  doi: 10.1016/j.nanoen.2014.12.014
– ident: e_1_2_7_2_1
  doi: 10.1038/509568a
– ident: e_1_2_7_44_1
  doi: 10.1039/C5NR03828F
– ident: e_1_2_7_32_1
  doi: 10.1002/adma.201602028
– ident: e_1_2_7_56_1
  doi: 10.1038/ncomms5554
– ident: e_1_2_7_10_1
  doi: 10.1002/aenm.201700668
– ident: e_1_2_7_48_1
  doi: 10.1016/j.carbon.2015.05.040
– ident: e_1_2_7_27_1
  doi: 10.1021/nn306044d
– ident: e_1_2_7_7_1
  doi: 10.1039/C1CS15060J
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jpowsour.2011.12.025
– ident: e_1_2_7_43_1
  doi: 10.1016/j.nanoen.2017.04.042
– ident: e_1_2_7_64_1
  doi: 10.1016/0013-4686(90)85068-X
– ident: e_1_2_7_6_1
  doi: 10.1126/science.1200770
– ident: e_1_2_7_31_1
  doi: 10.1002/adfm.201200591
– ident: e_1_2_7_21_1
  doi: 10.1002/anie.201406695
– ident: e_1_2_7_46_1
  doi: 10.1002/adma.201304137
– ident: e_1_2_7_1_1
  doi: 10.1039/c3ee41638k
– ident: e_1_2_7_5_1
  doi: 10.1126/science.1249625
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.201604103
– ident: e_1_2_7_60_1
  doi: 10.1021/nn500497k
– ident: e_1_2_7_69_1
  doi: 10.1002/adfm.201800597
SSID ssj0017734
Score 2.6831887
Snippet Improving the capacitance of carbon materials for supercapacitors without sacrificing their rate performance, especially volumetric capacitance at high mass...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Capacitance
Carbon
Chemical reactions
defective graphene block
Defects
Doping
double‐layer capacitance
Energy storage
Graphene
Gravimetry
Materials science
Packing density
Reaction kinetics
self‐doping
Surface area
volumetric capacitance
Title Boosting the Electrical Double‐Layer Capacitance of Graphene by Self‐Doped Defects through Ball‐Milling
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201901127
https://www.proquest.com/docview/2237776215
Volume 29
WOSCitedRecordID wos000471074000024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMsDAG1EoyAMSU9Q6SWN3BNrCUCrEQ-oW-XUSUmiqtiCx8RP4jfwSzkka2gEhwZYojhP5fHef7bvvCDnVIICHJvQahnMPrSTzBFjmWWiolvFlKJpZonCP9_tiMGjdzmXx5_wQ5Yab04zMXjsFl2pS_yYNlQZcJrlzaMzny6TiMqtw-VVp33Ufe-VJAuf5yXLEXIwXG8yIGxt-fbGHRcf0jTbnMWvmdLqb___dLbJRAE56ns-QbbJkhztkfY6GcJc8X6TpxIU_U0SDtJMVxnGyo4iuVWI_3z96EpE5vUTHqp-mbp7QFOiV47pGU0nVG723CWC7djqyhrZtFiNCixpA9EImCT50aYf4kT3y2O08XF57RRkGTyO44J4JQBvNjBQBmBbzrWwq5bdUFClmQAllrR8AQimJizGpeKgizbTWBhjiDfSM-2RlmA7tAaEiCrEH6WgCIVQBl2CEhsCoUACoZlAl3kwGsS44yl2pjCTO2ZX92A1jXA5jlZyV7Uc5O8ePLWszkcaFlk5ihEacozdgzSrxM-H90kt83u7elHeHf3npiKy56zzarEZWpuMXe0xW9ev0aTI-KWbvF5Is9Dc
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTttAEB6VUAk4tPyKtBT2gNSTRdZ2vJsjEFIqTIQoSLlZ-zdSJBMjEpC48Qg8I0_SWdsxcKgqVT3aXq-tnZ2Zb3dnvgHYNyhRxDYOOlaIgKwkDyQ6Hjjs6J4NVSy7ZaJwKoZDORr1LupoQp8LU_FDNBtuXjNKe-0V3G9IH7yyhiqLPpXcezQeigVYjJNIyBYs9i8H12lzlCBEdbSccB_kxUdz5sZOePC-h_ee6RVuvgWtpdcZfP4P_7sKn2rIyQ6rObIGH9xkHVbeEBFuwM1RUUx9ADQjPMhOytI4XnqM8LXO3cvTc6oIm7Njcq1mPPMzhRXIfni2azKWTD-yXy5Hatcvbp1lfVdGibC6ChA7UnlOD33iIX1kE64HJ1fHp0FdiCEwBC9EYCM01nCrZIS2x0OnulqHPZ0kmlvUUjsXRkhgStFyTGkR68RwY4xFToiDfOMWtCbFxG0Dk0lMPShPFIixjoRCKw1GVscSUXejNgRzIWSmZin3xTLyrOJXDjM_jFkzjG343rS_rfg5_thyZy7TrNbTaUbgSAjyB7zbhrCU3l96yQ77g_Pm6su_vLQHS6dX52mW_hyefYVlf7-KPduB1uzu3n2Dj-ZhNp7e7dZT-TcwFvgn
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB7BFqFy4L_qQgEfkDhFXSdO7BzbpgHEsqqASnuL_DdSpbBZdbdI3HiEPmOfhHGSTdsDQkIck0wmkcee-RLPfAPw1qJCKZyIJk7KiLwkjxR6HnmcmNzFWqi0LRSeytlMzef5SZ9NGGphOn6I4YdbWBmtvw4L3C8d7l-zhmqHoZQ8RDQey7uwJdI8FSPYKr6Up9NhK0HKbms54yHJi883zI2TeP-2htuR6Rpu3gStbdQpH_2H930MD3vIyQ66OfIE7vjFU3hwg4jwGXw_bJpVSIBmhAfZcdsaJ1iPEb42tb_6dTnVhM3ZEYVWe7YOM4U1yN4Htmtylsz8ZF99jSRXNEvvWOHbLBHWdwFih7qu6WIoPKSHPIfT8vjb0Yeob8QQWYIXMnIJWme50ypBl_PY69SYODdZZrhDo4z3cYIEpjR9jmkjhckst9Y65IQ4KDbuwGjRLPwuMJUJ0qADUSAKk0iNTllMnBEK0aTJGKKNESrbs5SHZhl11fErx1UYxmoYxjG8G-SXHT_HHyX3Njat-nW6qggcSUnxgKdjiFvr_UVLdVCUn4ejF_9y0xu4f1KU1fTj7NNL2A6nu9SzPRitzy_8K7hnf6zPVuev-5n8G8ct96I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+the+Electrical+Double%E2%80%90Layer+Capacitance+of+Graphene+by+Self%E2%80%90Doped+Defects+through+Ball%E2%80%90Milling&rft.jtitle=Advanced+functional+materials&rft.au=Dong%2C+Yue&rft.au=Zhang%2C+Su&rft.au=Du%2C+Xian&rft.au=Hong%2C+Song&rft.date=2019-06-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201901127&rft.externalDBID=10.1002%252Fadfm.201901127&rft.externalDocID=ADFM201901127
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon