SoftPool++: An Encoder–Decoder Network for Point Cloud Completion
We propose a novel convolutional operator for the task of point cloud completion. One striking characteristic of our approach is that, conversely to related work it does not require any max-pooling or voxelization operation. Instead, the proposed operator used to learn the point cloud embedding in t...
Uloženo v:
| Vydáno v: | International journal of computer vision Ročník 130; číslo 5; s. 1145 - 1164 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.05.2022
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0920-5691, 1573-1405 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We propose a novel convolutional operator for the task of point cloud completion. One striking characteristic of our approach is that, conversely to related work it does not require any max-pooling or voxelization operation. Instead, the proposed operator used to learn the point cloud embedding in the encoder extracts permutation-invariant features from the point cloud via a
soft-pooling
of feature activations, which are able to preserve fine-grained geometric details. These features are then passed on to a decoder architecture. Due to the compression in the encoder, a typical limitation of this type of architectures is that they tend to lose parts of the input shape structure. We propose to overcome this limitation by using skip connections specifically devised for point clouds, where links between corresponding layers in the encoder and the decoder are established. As part of these connections, we introduce a transformation matrix that projects the features from the encoder to the decoder and vice-versa. The quantitative and qualitative results on the task of object completion from partial scans on the ShapeNet dataset show that incorporating our approach achieves state-of-the-art performance in shape completion both at low and high resolutions. |
|---|---|
| AbstractList | We propose a novel convolutional operator for the task of point cloud completion. One striking characteristic of our approach is that, conversely to related work it does not require any max-pooling or voxelization operation. Instead, the proposed operator used to learn the point cloud embedding in the encoder extracts permutation-invariant features from the point cloud via a soft-pooling of feature activations, which are able to preserve fine-grained geometric details. These features are then passed on to a decoder architecture. Due to the compression in the encoder, a typical limitation of this type of architectures is that they tend to lose parts of the input shape structure. We propose to overcome this limitation by using skip connections specifically devised for point clouds, where links between corresponding layers in the encoder and the decoder are established. As part of these connections, we introduce a transformation matrix that projects the features from the encoder to the decoder and vice-versa. The quantitative and qualitative results on the task of object completion from partial scans on the ShapeNet dataset show that incorporating our approach achieves state-of-the-art performance in shape completion both at low and high resolutions. We propose a novel convolutional operator for the task of point cloud completion. One striking characteristic of our approach is that, conversely to related work it does not require any max-pooling or voxelization operation. Instead, the proposed operator used to learn the point cloud embedding in the encoder extracts permutation-invariant features from the point cloud via a soft-pooling of feature activations, which are able to preserve fine-grained geometric details. These features are then passed on to a decoder architecture. Due to the compression in the encoder, a typical limitation of this type of architectures is that they tend to lose parts of the input shape structure. We propose to overcome this limitation by using skip connections specifically devised for point clouds, where links between corresponding layers in the encoder and the decoder are established. As part of these connections, we introduce a transformation matrix that projects the features from the encoder to the decoder and vice-versa. The quantitative and qualitative results on the task of object completion from partial scans on the ShapeNet dataset show that incorporating our approach achieves state-of-the-art performance in shape completion both at low and high resolutions. |
| Audience | Academic |
| Author | Tan, David Joseph Navab, Nassir Tombari, Federico Wang, Yida |
| Author_xml | – sequence: 1 givenname: Yida orcidid: 0000-0003-4519-9108 surname: Wang fullname: Wang, Yida email: yida.wang@tum.de organization: Technische Universität München – sequence: 2 givenname: David Joseph surname: Tan fullname: Tan, David Joseph organization: Google – sequence: 3 givenname: Nassir surname: Navab fullname: Navab, Nassir organization: Technische Universität München – sequence: 4 givenname: Federico surname: Tombari fullname: Tombari, Federico organization: Technische Universität München, Google |
| BookMark | eNp9kMtKAzEUhoNUsK2-gKsBlyU1l0ky466M9QJFC-o6THMpU6dJzUwRd76Db-iTmHYEwUXJIuFwvvznfAPQc94ZAM4xGmOExGWDMeEUIkIgwizLoDgCfcwEhThFrAf6KCcIMp7jEzBomhVCiGSE9kHx5G07974eja6SiUumTnltwvfn17XZv5IH07778JpYH5K5r1ybFLXf6qTw601t2sq7U3Bsy7oxZ7_3ELzcTJ-LOzh7vL0vJjOoKBYCZjw32qbWap4TobQiymKbCy6YZsRyUfJMEFSWJkcLTFlcRqeKC71QnC6wokNw0f27Cf5ta5pWrvw2uBgpCWcsJykTKHaNu65lWRtZOevbUKp4tFlXKmqzVaxPBMJZdJLmESAdoIJvmmCs3IRqXYYPiZHc2ZWdXRkHknu7UkQo-wepqi13NmJaVR9GaYc2McctTfhb4wD1A1rmj5o |
| CitedBy_id | crossref_primary_10_1007_s11263_023_01820_y crossref_primary_10_1109_ACCESS_2023_3283920 crossref_primary_10_1186_s13640_024_00659_8 crossref_primary_10_1016_j_eswa_2024_126249 crossref_primary_10_1016_j_cag_2023_07_033 crossref_primary_10_1109_TVCG_2023_3344935 crossref_primary_10_1109_TDSC_2024_3371530 crossref_primary_10_1007_s11760_023_02901_8 crossref_primary_10_1007_s00371_024_03364_9 crossref_primary_10_1007_s11263_024_02244_y crossref_primary_10_1016_j_engappai_2023_107656 crossref_primary_10_1007_s11042_024_18136_9 |
| Cites_doi | 10.1109/ICCV.2019.00166 10.1109/CVPR.2015.7298801 10.1109/CVPR42600.2020.01372 10.1109/ICCVW.2019.00052 10.1109/CVPR42600.2020.00087 10.1109/CVPR42600.2020.00700 10.1109/CVPR.2017.693 10.1109/ICCV.2017.25 10.1109/ICCV.2019.00396 10.1109/CVPR46437.2021.01288 10.1109/ICCV48922.2021.00545 10.1007/978-3-030-58545-7_21 10.1109/ICCV.2019.00204 10.1109/CVPR42600.2020.01163 10.1109/CVPR42600.2020.00178 10.1007/s11263-020-01347-6 10.1109/CVPR42600.2020.01398 10.1007/978-3-319-49409-8_20 10.1109/ICCV48922.2021.00964 10.1109/TPAMI.2018.2868195 10.1109/ICCV48922.2021.01227 10.1109/CVPR.2016.181 10.1007/978-3-030-58595-2_31 10.1109/LRA.2020.2994483 10.1109/CVPR.2018.00478 10.1109/CVPR.2019.00352 10.1109/ICCVW.2017.86 10.1109/ICCV.2013.212 10.1109/ICCV.2015.178 10.1007/978-3-030-58580-8_5 10.1007/s11263-019-01217-w 10.1109/ICCV.2019.00937 10.1109/CVPR46437.2021.00736 10.1609/aaai.v34i07.6827 10.1109/CVPR42600.2020.00201 10.1109/CVPR.2018.00030 10.1109/3DV.2018.00088 10.1007/978-3-319-46484-8_38 10.1109/ICCV.2019.00278 10.1109/CVPR42600.2020.00982 10.1109/LRA.2020.3048658 10.1109/ICCV48922.2021.00577 10.1007/978-3-319-46723-8_49 10.1109/ICCV48922.2021.01226 10.1109/CVPR.2019.00397 10.1109/CVPR.2019.00733 10.1109/ICCV48922.2021.01228 10.1109/CVPR.2018.00029 10.1609/aaai.v33i01.33018376 10.1109/CVPR42600.2020.00187 10.1111/cgf.13792 10.1109/CVPR46437.2021.00842 10.1109/CVPR.2019.00047 10.1109/CVPR42600.2020.00768 10.1109/CVPR.2019.00100 10.1109/ICCV.2019.00870 10.1109/ICCV48922.2021.01294 10.1109/CVPR.2019.00025 10.1109/CVPR.2019.01054 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 COPYRIGHT 2022 Springer The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: COPYRIGHT 2022 Springer – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PYYUZ Q9U |
| DOI | 10.1007/s11263-022-01588-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1573-1405 |
| EndPage | 1164 |
| ExternalDocumentID | A701892049 10_1007_s11263_022_01588_7 |
| GrantInformation_xml | – fundername: Technische Universität München (1025) |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c3177-869edf4ffd6927cdc2cf1f97675d52f67a68720aae90b135022d4c67dbc63b1c3 |
| IEDL.DBID | M0C |
| ISSN | 0920-5691 |
| IngestDate | Wed Nov 05 00:44:35 EST 2025 Mon Nov 24 15:45:38 EST 2025 Sat Nov 29 06:42:29 EST 2025 Tue Nov 18 21:55:07 EST 2025 Fri Feb 21 02:46:00 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Skip-connection SoftPool Point cloud Completion |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3177-869edf4ffd6927cdc2cf1f97675d52f67a68720aae90b135022d4c67dbc63b1c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4519-9108 |
| OpenAccessLink | https://link.springer.com/10.1007/s11263-022-01588-7 |
| PQID | 2655924570 |
| PQPubID | 1456341 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_2655924570 gale_infotracacademiconefile_A701892049 crossref_primary_10_1007_s11263_022_01588_7 crossref_citationtrail_10_1007_s11263_022_01588_7 springer_journals_10_1007_s11263_022_01588_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20220500 2022-05-00 20220501 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 5 year: 2022 text: 20220500 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | International journal of computer vision |
| PublicationTitleAbbrev | Int J Comput Vis |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | Wang, H., Liu, Q., Yue, X., Lasenby, J., & Kusner, M. J. (2021a). Unsupervised point cloud pre-training via occlusion completion. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 9782–9792). XieHYaoHZhangSZhouSSunWPix2vox++: Multi-scale context-aware 3d object reconstruction from single and multiple imagesInternational Journal of Computer Vision2020128122919293510.1007/s11263-020-01347-6 Yu, X., Rao, Y., Wang, Z., Liu, Z., Lu, J., & Zhou, J. (2021). Pointr: Diverse point cloud completion with geometry-aware transformers. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 12498–12507). Han, Z., Shang, M., Liu, Y. S., & Zwicker, M. (2019). View inter-prediction gan: Unsupervised representation learning for 3d shapes by learning global shape memories to support local view predictions. In Proceedings of the AAAI conference on artificial intelligence (Vol. 33, pp. 8376–8384). Aoki, Y., Goforth, H., Srivatsan, R. A., & Lucey, S. (2019). Pointnetlk: Robust & efficient point cloud registration using pointnet. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 7163–7172). Azad, R., Asadi-Aghbolaghi, M., Fathy, M., & Escalera, S. (2019). Bi-directional ConvLSTM U-net with Densley connected convolutions. In Proceedings of the IEEE/CVF international conference on computer vision workshops (pp. 406–415). PanLECG: Edge-aware point cloud completion with graph convolutionIEEE Robotics and Automation Letters2020534392439810.1109/LRA.2020.2994483 Wu, J., Zhang, C., Xue, T., Freeman, W. T., & Tenenbaum, J. B. (2016). Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. In Proceedings of the 30th international conference on neural information processing systems (pp. 82–90). Yang, Z., Sun, Y., Liu, S., Shen, X., & Jia, J. (2019). STD: Sparse-to-dense 3d object detector for point cloud. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 1951–1960). Li, P., Wang, Q., & Zhang, L. (2013). A novel earth mover’s distance methodology for image matching with gaussian mixture models. In The IEEE international conference on computer vision (ICCV). Li, Y., Bu, R., Sun, M., Wu, W., Di, X., & Chen, B. (2018). Pointcnn: Convolution on x-transformed points. In Advances in neural information processing systems (pp. 820–830). Gong, B., Nie, Y., Lin, Y., Han, X., & Yu, Y. (2021). ME-PCN: Point completion conditioned on mask emptiness. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 12488–12497). Zhou, L., Du, Y., & Wu, J. (2021). 3d shape generation and completion through point-voxel diffusion. arXiv preprint arXiv:2104.03670 Qi, C. R., Litany, O., He, K., & Guibas, L. J. (2019). Deep hough voting for 3d object detection in point clouds. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 9277–9286). Choy, C. B., Xu, D., Gwak, J., Chen, K., & Savarese, S. (2016). 3d-r2n2: A unified approach for single and multi-view 3d object reconstruction. In European conference on computer vision (pp. 628–644). Springer. CortesCVapnikVSupport-vector networksMachine Learning19952032732970831.68098 Wang, L., Huang, Y., Hou, Y., Zhang, S., & Shan, J. (2019a). Graph attention convolution for point cloud semantic segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10296–10305). Xu, X., & Lee, G. H. (2020). Weakly supervised semantic point cloud segmentation: Towards 10x fewer labels. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 13706–13715). Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., & Ronneberger, O. (2016). 3d u-net: Learning dense volumetric segmentation from sparse annotation. In International conference on medical image computing and computer-assisted intervention (pp. 424–432). Springer. Sauder, J., & Sievers, B. (2019). Self-supervised deep learning on point clouds by reconstructing space. arXiv preprint arXiv:1901.08396 Mazaheri, G., Mithun, N. C., Bappy, J. H., & Roy-Chowdhury, A. K. (2019). A skip connection architecture for localization of image manipulations. In CVPR workshops (pp. 119–129). Lei, H., Akhtar, N., Mian, A. (2020). Seggcn: Efficient 3d point cloud segmentation with fuzzy spherical kernel. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11611–11620). Noh, H., Hong, S., Han, B. (2015). Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE international conference on computer vision (pp. 1520–1528). Shu, D. W., Park, S. W., & Kwon, J. (2019). 3d point cloud generative adversarial network based on tree structured graph convolutions. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 3859–3868). Yang, Y., Feng, C., Shen, Y., & Tian, D. (2018b). Foldingnet: Point cloud auto-encoder via deep grid deformation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 206–215). Mao, J., Wang, X., & Li, H.(2019). Interpolated convolutional networks for 3d point cloud understanding. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 1578–1587). Lin, Z. H., Huang, S. Y., & Wang, Y. C. F. (2020). Convolution in the cloud: Learning deformable kernels in 3d graph convolution networks for point cloud analysis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1800–1809). Pan, L., Chen, X., Cai, Z., Zhang, J., Zhao, H., Yi, S., & Liu, Z. (2021). Variational relational point completion network. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8524–8533). Kirillov, A., Wu, Y., He, K., & Girshick, R. (2020). Pointrend: Image segmentation as rendering. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 9799–9808). Yang, B., Wen, H., Wang, S., Clark, R., Markham, A., & Trigoni, N. (2017). 3d object reconstruction from a single depth view with adversarial learning. In Proceedings of the IEEE international conference on computer vision workshops (pp. 679–688). Tchapmi, L. P., Kosaraju, V., Rezatofighi, H., Reid, I., & Savarese, S. (2019). Topnet: Structural point cloud decoder. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 383–392). YangBRosaSMarkhamATrigoniNWenHDense 3d object reconstruction from a single depth viewIEEE Transactions on Pattern Analysis and Machine Intelligence2018412820283410.1109/TPAMI.2018.2868195 Qi, C. R., Yi, L., Su, H., & Guibas, L. J. (2017b). Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Advances in neural information processing systems (NIPS). Zhang, W., Yan, Q., & Xiao, C. (2020b). Detail preserved point cloud completion via separated feature aggregation. arXiv preprint arXiv:2007.02374 Dai, A., Qi, C. R., & Nießner, M. (2017). Shape completion using 3d-encoder-predictor CNNS and shape synthesis. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (Vol. 3). Wang, X., Ang Jr, M. H., & Lee, G. H. (2020a). Cascaded refinement network for point cloud completion. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR). Gao, H., Tao, X., Shen, X., & Jia, J. (2019). Dynamic scene deblurring with parameter selective sharing and nested skip connections. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 3848–3856). Wang, Y., Tan, D. J., Navab, N., & Tombari, F. (2019b). Forknet: Multi-branch volumetric semantic completion from a single depth image. In Proceedings of the IEEE international conference on computer vision (pp. 8608–8617). Park, J. J., Florence, P., Straub, J., Newcombe, R., & Lovegrove, S. (2018). Deepsdf: Learning continuous signed distance functions for shape representation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 165–174). Xie, H., Yao, H., Sun, X., Zhou, S., & Zhang, S. (2019). Pix2vox: Context-aware 3d reconstruction from single and multi-view images. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 2690–2698). Xie, H., Yao, H., Zhou, S., Mao, J., Zhang, S., & Sun, W. (2020b). GRNET: Gridding residual network for dense point cloud completion. In A. Vedaldi, H. Bischof, T. Brox, & J. M. Frahm (Eds.), Computer vision—ECCV 2020 (pp. 365–381). Springer. Shi, W., & Rajkumar, R. (2020). Point-GNN: Graph neural network for 3d object detection in a point cloud. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1711–1719). Sharma, A., Grau, O., & Fritz, M. (2016). VCONV-DAE: Deep volumetric shape learning without object labels. In European conference on computer vision (pp. 236–250). Springer. Zhirong W., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. (2015). 3d shapenets: A deep representation for volumetric shapes. In 2015 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1912–1920). Mo, K., Zhu, S., Chang, A. X., Yi, L., Tripathi, S., Guibas, L. J., & Su, H. (2019). PartNet: A large-scale benchmark for fine-grained and hierarchical part-level 3D object understanding. In The IEEE conference on computer vision and pattern recognition (CVPR). Huang, T., Zou, H., Cui, J., Yang, X., Wang, M., Zhao, X., Zhang, J., Yuan, Y., Xu, Y., & Liu, Y. (2021). RFNET: Recurrent forward network for dense point cloud completion. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 12508–12517). Chibane, J., Alldieck, T., & Pons-Moll, G. (2020). Implicit functions in feature space for 3d shape reconstruction and completion. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 6970–6981). Groueix, T., Fisher, M., Kim, V. G., Russell, B. C., & Aubry, M. (2018). A Papier-Mâché approach to learning 3d 1588_CR48 1588_CR49 1588_CR46 1588_CR1 1588_CR47 1588_CR44 1588_CR45 1588_CR42 1588_CR43 1588_CR6 1588_CR40 1588_CR41 1588_CR8 1588_CR9 1588_CR2 1588_CR3 1588_CR4 1588_CR5 C Cortes (1588_CR7) 1995; 20 1588_CR39 1588_CR37 1588_CR38 1588_CR35 1588_CR36 1588_CR33 1588_CR34 1588_CR31 B Yang (1588_CR56) 2018; 41 1588_CR32 1588_CR30 1588_CR28 1588_CR29 1588_CR26 1588_CR24 1588_CR25 1588_CR22 1588_CR66 1588_CR23 1588_CR67 1588_CR20 1588_CR64 1588_CR21 1588_CR65 1588_CR62 1588_CR63 1588_CR60 1588_CR61 H Xie (1588_CR53) 2020; 128 1588_CR19 1588_CR17 1588_CR18 1588_CR15 1588_CR59 1588_CR16 1588_CR13 1588_CR57 1588_CR14 1588_CR58 1588_CR11 L Pan (1588_CR27) 2020; 5 1588_CR55 1588_CR12 1588_CR10 1588_CR54 1588_CR51 1588_CR52 1588_CR50 |
| References_xml | – reference: Sauder, J., & Sievers, B. (2019). Self-supervised deep learning on point clouds by reconstructing space. arXiv preprint arXiv:1901.08396 – reference: Yuan, W., Khot, T., Held, D., Mertz, C., & Hebert, M. (2018). PCN: Point completion network. In 2018 international conference on 3D vision (3DV) (pp. 728–737). IEEE. – reference: XieHYaoHZhangSZhouSSunWPix2vox++: Multi-scale context-aware 3d object reconstruction from single and multiple imagesInternational Journal of Computer Vision2020128122919293510.1007/s11263-020-01347-6 – reference: Han, Z., Shang, M., Liu, Y. S., & Zwicker, M. (2019). View inter-prediction gan: Unsupervised representation learning for 3d shapes by learning global shape memories to support local view predictions. In Proceedings of the AAAI conference on artificial intelligence (Vol. 33, pp. 8376–8384). – reference: Kim, J., Lee, J. K., & Lee, K. M. (2016). Deeply-recursive convolutional network for image super-resolution. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1637–1645). – reference: Wu, J., Zhang, C., Xue, T., Freeman, W. T., & Tenenbaum, J. B. (2016). Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. In Proceedings of the 30th international conference on neural information processing systems (pp. 82–90). – reference: YangBRosaSMarkhamATrigoniNWenHDense 3d object reconstruction from a single depth viewIEEE Transactions on Pattern Analysis and Machine Intelligence2018412820283410.1109/TPAMI.2018.2868195 – reference: Yang, Y., Feng, C., Shen, Y., & Tian, D. (2018b). Foldingnet: Point cloud auto-encoder via deep grid deformation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 206–215). – reference: Chibane, J., Alldieck, T., & Pons-Moll, G. (2020). Implicit functions in feature space for 3d shape reconstruction and completion. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 6970–6981). – reference: Liu, M., Sheng, L., Yang, S., Shao, J., & Hu, S. M. (2020). Morphing and sampling network for dense point cloud completion. In Proceedings of the AAAI conference on artificial intelligence (vol. 34, pp. 11596–11603). – reference: Xie, H., Yao, H., Zhou, S., Mao, J., Zhang, S., & Sun, W. (2020b). GRNET: Gridding residual network for dense point cloud completion. In A. Vedaldi, H. Bischof, T. Brox, & J. M. Frahm (Eds.), Computer vision—ECCV 2020 (pp. 365–381). Springer. – reference: Groueix, T., Fisher, M., Kim, V. G., Russell, B. C., & Aubry, M. (2018). A Papier-Mâché approach to learning 3d surface generation. In The IEEE conference on computer vision and pattern recognition (CVPR). – reference: Li, Y., Bu, R., Sun, M., Wu, W., Di, X., & Chen, B. (2018). Pointcnn: Convolution on x-transformed points. In Advances in neural information processing systems (pp. 820–830). – reference: Yang, B., Wen, H., Wang, S., Clark, R., Markham, A., & Trigoni, N. (2017). 3d object reconstruction from a single depth view with adversarial learning. In Proceedings of the IEEE international conference on computer vision workshops (pp. 679–688). – reference: Wang, Y., Tan, D. J., Navab, N., & Tombari, F. (2020b). Softpoolnet: Shape descriptor for point cloud completion and classification. In A. Vedaldi, H. Bischof, T. Brox, & J. M. Frahm (Eds.), Computer vision—ECCV 2020 (pp. 70–85). Springer. – reference: Kirillov, A., Wu, Y., He, K., & Girshick, R. (2020). Pointrend: Image segmentation as rendering. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 9799–9808). – reference: Lim, I., Ibing, M., & Kobbelt, L. (2019). A convolutional decoder for point clouds using adaptive instance normalization. In Computer graphics forum (Vol. 38, pp. 99–108). Wiley Online Library. – reference: Shen, Y., Feng, C., Yang, Y., & Tian, D. (2018). Mining point cloud local structures by kernel correlation and graph pooling. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4548–4557). – reference: Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., & Xiao, J. (2015). Shapenet: An information-rich 3d model repository. arXiv preprint arXiv:1512.03012. – reference: Tchapmi, L. P., Kosaraju, V., Rezatofighi, H., Reid, I., & Savarese, S. (2019). Topnet: Structural point cloud decoder. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 383–392). – reference: Yang, Z., Sun, Y., Liu, S., Shen, X., & Jia, J. (2019). STD: Sparse-to-dense 3d object detector for point cloud. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 1951–1960). – reference: Yang, B., Wang, S., Markham, A., & Trigoni, N. (2020). Robust attentional aggregation of deep feature sets for multi-view 3d reconstruction. International Journal of Computer Vision,128(1), 53–73. – reference: Shi, W., & Rajkumar, R. (2020). Point-GNN: Graph neural network for 3d object detection in a point cloud. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1711–1719). – reference: Zhou, L., Du, Y., & Wu, J. (2021). 3d shape generation and completion through point-voxel diffusion. arXiv preprint arXiv:2104.03670 – reference: Yang, F., Sun, Q., Jin, H., & Zhou, Z. (2020). Superpixel segmentation with fully convolutional networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 13964–13973) – reference: Lin, Z. H., Huang, S. Y., & Wang, Y. C. F. (2020). Convolution in the cloud: Learning deformable kernels in 3d graph convolution networks for point cloud analysis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1800–1809). – reference: Xiang, P., Wen, X., Liu, Y. S., Cao, Y. P., Wan, P., Zheng, W., & Han, Z. (2021). Snowflakenet: Point cloud completion by snowflake point deconvolution with skip-transformer. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 5499–5509). – reference: Yu, X., Rao, Y., Wang, Z., Liu, Z., Lu, J., & Zhou, J. (2021). Pointr: Diverse point cloud completion with geometry-aware transformers. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 12498–12507). – reference: Wen, X., Li, T., Han, Z., & Liu, Y. S. (2020a). Point cloud completion by skip-attention network with hierarchical folding. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR). – reference: Zhang, J., Chen, W., Wang, Y., Vasudevan, R., & Johnson-Roberson, M. (2020a). Point set voting for partial point cloud analysis. arXiv preprint arXiv:2007.04537 – reference: Gong, B., Nie, Y., Lin, Y., Han, X., & Yu, Y. (2021). ME-PCN: Point completion conditioned on mask emptiness. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 12488–12497). – reference: Lei, H., Akhtar, N., Mian, A. (2020). Seggcn: Efficient 3d point cloud segmentation with fuzzy spherical kernel. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11611–11620). – reference: Aoki, Y., Goforth, H., Srivatsan, R. A., & Lucey, S. (2019). Pointnetlk: Robust & efficient point cloud registration using pointnet. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 7163–7172). – reference: Wen, X., Han, Z., Cao, Y. P., Wan, P., Zheng, W., & Liu, Y. S. (2021). Cycle4completion: Unpaired point cloud completion using cycle transformation with missing region coding. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 13080–13089). – reference: Qi, C. R., Yi, L., Su, H., & Guibas, L. J. (2017b). Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Advances in neural information processing systems (NIPS). – reference: Li, P., Wang, Q., & Zhang, L. (2013). A novel earth mover’s distance methodology for image matching with gaussian mixture models. In The IEEE international conference on computer vision (ICCV). – reference: Mao, J., Wang, X., & Li, H.(2019). Interpolated convolutional networks for 3d point cloud understanding. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 1578–1587). – reference: Mo, K., Zhu, S., Chang, A. X., Yi, L., Tripathi, S., Guibas, L. J., & Su, H. (2019). PartNet: A large-scale benchmark for fine-grained and hierarchical part-level 3D object understanding. In The IEEE conference on computer vision and pattern recognition (CVPR). – reference: Pan, L., Chen, X., Cai, Z., Zhang, J., Zhao, H., Yi, S., & Liu, Z. (2021). Variational relational point completion network. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8524–8533). – reference: Choy, C. B., Xu, D., Gwak, J., Chen, K., & Savarese, S. (2016). 3d-r2n2: A unified approach for single and multi-view 3d object reconstruction. In European conference on computer vision (pp. 628–644). Springer. – reference: Zhang, W., Yan, Q., & Xiao, C. (2020b). Detail preserved point cloud completion via separated feature aggregation. arXiv preprint arXiv:2007.02374 – reference: Huang, Z., Yu, Y., Xu, J., Ni, F., & Le, X. (2020). PF-NET: Point fractal network for 3d point cloud completion. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 7662–7670). – reference: Azad, R., Asadi-Aghbolaghi, M., Fathy, M., & Escalera, S. (2019). Bi-directional ConvLSTM U-net with Densley connected convolutions. In Proceedings of the IEEE/CVF international conference on computer vision workshops (pp. 406–415). – reference: CortesCVapnikVSupport-vector networksMachine Learning19952032732970831.68098 – reference: Park, J. J., Florence, P., Straub, J., Newcombe, R., & Lovegrove, S. (2018). Deepsdf: Learning continuous signed distance functions for shape representation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 165–174). – reference: Shu, D. W., Park, S. W., & Kwon, J. (2019). 3d point cloud generative adversarial network based on tree structured graph convolutions. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 3859–3868). – reference: Wen, X., Xiang, P., Han, Z., Cao, Y. P., Wan, P., Zheng, W., & Liu, Y. S. (2020b). PMP-NET: Point cloud completion by learning multi-step point moving paths. arXiv preprint arXiv:2012.03408 – reference: PanLECG: Edge-aware point cloud completion with graph convolutionIEEE Robotics and Automation Letters2020534392439810.1109/LRA.2020.2994483 – reference: Dai, A., Qi, C. R., & Nießner, M. (2017). Shape completion using 3d-encoder-predictor CNNS and shape synthesis. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (Vol. 3). – reference: Xu, X., & Lee, G. H. (2020). Weakly supervised semantic point cloud segmentation: Towards 10x fewer labels. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 13706–13715). – reference: Tatarchenko, M., Richter, S. R., Ranftl, R., Li, Z., Koltun, V., & Brox, T. (2019). What do single-view 3d reconstruction networks learn? In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 3405–3414). – reference: Wang, X., Ang Jr, M. H., & Lee, G. H. (2020a). Cascaded refinement network for point cloud completion. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR). – reference: Noh, H., Hong, S., Han, B. (2015). Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE international conference on computer vision (pp. 1520–1528). – reference: Wang, Y., Tan, D. J., Navab, N., & Tombari, F. (2019b). Forknet: Multi-branch volumetric semantic completion from a single depth image. In Proceedings of the IEEE international conference on computer vision (pp. 8608–8617). – reference: Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., & Ronneberger, O. (2016). 3d u-net: Learning dense volumetric segmentation from sparse annotation. In International conference on medical image computing and computer-assisted intervention (pp. 424–432). Springer. – reference: Huang, T., Zou, H., Cui, J., Yang, X., Wang, M., Zhao, X., Zhang, J., Yuan, Y., Xu, Y., & Liu, Y. (2021). RFNET: Recurrent forward network for dense point cloud completion. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 12508–12517). – reference: Sharma, A., Grau, O., & Fritz, M. (2016). VCONV-DAE: Deep volumetric shape learning without object labels. In European conference on computer vision (pp. 236–250). Springer. – reference: Gao, H., Tao, X., Shen, X., & Jia, J. (2019). Dynamic scene deblurring with parameter selective sharing and nested skip connections. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 3848–3856). – reference: Wang, H., Liu, Q., Yue, X., Lasenby, J., & Kusner, M. J. (2021a). Unsupervised point cloud pre-training via occlusion completion. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 9782–9792). – reference: Zhirong W., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. (2015). 3d shapenets: A deep representation for volumetric shapes. In 2015 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1912–1920). – reference: Park, J., Zhou, Q.Y., Koltun, V. (2017). Colored point cloud registration revisited. In Proceedings of the IEEE international conference on computer vision (pp. 143–152). – reference: Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017a). Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 652–660). – reference: Qi, C. R., Litany, O., He, K., & Guibas, L. J. (2019). Deep hough voting for 3d object detection in point clouds. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 9277–9286). – reference: Wang, L., Huang, Y., Hou, Y., Zhang, S., & Shan, J. (2019a). Graph attention convolution for point cloud semantic segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10296–10305). – reference: Wang, X., Ang, M. H., & Lee, G. H. (2021b). Voxel-based network for shape completion by leveraging edge generation. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 13189–13198). – reference: Mazaheri, G., Mithun, N. C., Bappy, J. H., & Roy-Chowdhury, A. K. (2019). A skip connection architecture for localization of image manipulations. In CVPR workshops (pp. 119–129). – reference: Xie, H., Yao, H., Sun, X., Zhou, S., & Zhang, S. (2019). Pix2vox: Context-aware 3d reconstruction from single and multi-view images. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 2690–2698). – ident: 1588_CR32 – ident: 1588_CR23 doi: 10.1109/ICCV.2019.00166 – ident: 1588_CR66 doi: 10.1109/CVPR.2015.7298801 – ident: 1588_CR55 doi: 10.1109/CVPR42600.2020.01372 – ident: 1588_CR2 doi: 10.1109/ICCVW.2019.00052 – ident: 1588_CR43 doi: 10.1109/CVPR42600.2020.00087 – ident: 1588_CR4 doi: 10.1109/CVPR42600.2020.00700 – ident: 1588_CR8 doi: 10.1109/CVPR.2017.693 – ident: 1588_CR29 doi: 10.1109/ICCV.2017.25 – ident: 1588_CR38 doi: 10.1109/ICCV.2019.00396 – ident: 1588_CR47 doi: 10.1109/CVPR46437.2021.01288 – ident: 1588_CR51 doi: 10.1109/ICCV48922.2021.00545 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 1588_CR7 publication-title: Machine Learning – ident: 1588_CR54 doi: 10.1007/978-3-030-58545-7_21 – ident: 1588_CR61 doi: 10.1109/ICCV.2019.00204 – ident: 1588_CR17 doi: 10.1109/CVPR42600.2020.01163 – ident: 1588_CR37 doi: 10.1109/CVPR42600.2020.00178 – volume: 128 start-page: 2919 issue: 12 year: 2020 ident: 1588_CR53 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-020-01347-6 – ident: 1588_CR59 doi: 10.1109/CVPR42600.2020.01398 – ident: 1588_CR35 doi: 10.1007/978-3-319-49409-8_20 – ident: 1588_CR41 doi: 10.1109/ICCV48922.2021.00964 – volume: 41 start-page: 2820 year: 2018 ident: 1588_CR56 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2018.2868195 – ident: 1588_CR62 doi: 10.1109/ICCV48922.2021.01227 – ident: 1588_CR15 doi: 10.1109/CVPR.2016.181 – ident: 1588_CR65 doi: 10.1007/978-3-030-58595-2_31 – ident: 1588_CR24 – volume: 5 start-page: 4392 issue: 3 year: 2020 ident: 1588_CR27 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2020.2994483 – ident: 1588_CR36 doi: 10.1109/CVPR.2018.00478 – ident: 1588_CR39 doi: 10.1109/CVPR.2019.00352 – ident: 1588_CR58 doi: 10.1109/ICCVW.2017.86 – ident: 1588_CR18 doi: 10.1109/ICCV.2013.212 – ident: 1588_CR26 doi: 10.1109/ICCV.2015.178 – ident: 1588_CR46 doi: 10.1007/978-3-030-58580-8_5 – ident: 1588_CR57 doi: 10.1007/s11263-019-01217-w – ident: 1588_CR31 doi: 10.1109/ICCV.2019.00937 – ident: 1588_CR34 – ident: 1588_CR49 doi: 10.1109/CVPR46437.2021.00736 – ident: 1588_CR22 doi: 10.1609/aaai.v34i07.6827 – ident: 1588_CR48 doi: 10.1109/CVPR42600.2020.00201 – ident: 1588_CR11 doi: 10.1109/CVPR.2018.00030 – ident: 1588_CR63 doi: 10.1109/3DV.2018.00088 – ident: 1588_CR5 doi: 10.1007/978-3-319-46484-8_38 – ident: 1588_CR19 – ident: 1588_CR52 doi: 10.1109/ICCV.2019.00278 – ident: 1588_CR16 doi: 10.1109/CVPR42600.2020.00982 – ident: 1588_CR64 doi: 10.1109/LRA.2020.3048658 – ident: 1588_CR67 doi: 10.1109/ICCV48922.2021.00577 – ident: 1588_CR6 doi: 10.1007/978-3-319-46723-8_49 – ident: 1588_CR10 doi: 10.1109/ICCV48922.2021.01226 – ident: 1588_CR9 doi: 10.1109/CVPR.2019.00397 – ident: 1588_CR1 doi: 10.1109/CVPR.2019.00733 – ident: 1588_CR3 – ident: 1588_CR13 doi: 10.1109/ICCV48922.2021.01228 – ident: 1588_CR60 doi: 10.1109/CVPR.2018.00029 – ident: 1588_CR12 doi: 10.1609/aaai.v33i01.33018376 – ident: 1588_CR21 doi: 10.1109/CVPR42600.2020.00187 – ident: 1588_CR33 – ident: 1588_CR20 doi: 10.1111/cgf.13792 – ident: 1588_CR28 doi: 10.1109/CVPR46437.2021.00842 – ident: 1588_CR40 doi: 10.1109/CVPR.2019.00047 – ident: 1588_CR14 doi: 10.1109/CVPR42600.2020.00768 – ident: 1588_CR25 doi: 10.1109/CVPR.2019.00100 – ident: 1588_CR45 doi: 10.1109/ICCV.2019.00870 – ident: 1588_CR44 doi: 10.1109/ICCV48922.2021.01294 – ident: 1588_CR30 doi: 10.1109/CVPR.2019.00025 – ident: 1588_CR42 doi: 10.1109/CVPR.2019.01054 – ident: 1588_CR50 |
| SSID | ssj0002823 |
| Score | 2.4978356 |
| Snippet | We propose a novel convolutional operator for the task of point cloud completion. One striking characteristic of our approach is that, conversely to related... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1145 |
| SubjectTerms | Artificial Intelligence Cloud computing Coders Computer Imaging Computer Science Feature extraction Image Processing and Computer Vision Neural networks Operators (mathematics) Pattern Recognition Pattern Recognition and Graphics Permutations Special Issue on 3D Computer Vision Vision |
| SummonAdditionalLinks | – databaseName: Springer LINK dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTsMwDLZgcODCP2IwUA5IHKBSm7bJwm0aIA5omhggbtGStBIS6tA6OPMOvCFPgpOmm_iV4FalqZPGTmwr9meAA5oYwxTngRaRQgdFqECFqQnSHJWjrW0eOiil20ve67Xv7kTfJ4WVdbR7fSXpTupZsltE3Z2jDSVIkb98HhZQ3bVtwYarwe30_EUnoiogj45RykTkU2W-p_FBHX0-lL_cjjqlc77yv-muwrI3Mkmnkoo1mMuKdVjxBifx27nEprqmQ922Ad0Bnst9B8x5QjoFOSts0vv47eX1NHNPpFcFjhO0dkl_dF9MSPdh9GSIpWWRvEfFJtycn113LwJfaCHQaD6glmIiM3mS54YJyrXRVOdRLizOi0lpzviQtTkNh8NMhCqKU_wpk2jGjdIsVpGOt6BRjIpsGwjDF6lJkEQWJgqtHRQGpjTaeXGsWKibENXrLbVHIbfFMB7kDD_ZLpzEMaRbOMmbcDT95rHC4Pi196Flo7QbFCnroc8zwPlZqCvZ4WHURtlIRBNaNael37mlpAx9LJqkPGzCcc3Z2eufx935W_ddWKJOOGzsZAsak_FTtgeL-nlyX473nUS_A_UR7HY priority: 102 providerName: Springer Nature |
| Title | SoftPool++: An Encoder–Decoder Network for Point Cloud Completion |
| URI | https://link.springer.com/article/10.1007/s11263-022-01588-7 https://www.proquest.com/docview/2655924570 |
| Volume | 130 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1573-1405 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002823 issn: 0920-5691 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcNQHBy598FAX2pUPSBwgwnFie91LtSxbVSqsohZK4WKt7USqVCXt7pYz_9A_7JcwdpyuANELFyuxk7HlGc-M7XkAvGK5c8JImViVGtygKJMYyl3CKxSOPrc5DaGUzj7KyWRwfq6KeOA2j2aVHU8MjNo11p-Rv2MCdV-Wc0kPrq4TnzXK367GFBqrsO41G2_S94mO7jkxbifaVPK4ReJCpdFppnWdS1m4wfSGCRypRf4mmP5kz3_dkwbxc7j5vwPfgo2oeJJhSynbsFLWT2AzKqEkLvE5VnV5Hrq6pzA6RV5dhGCd-2RYk3HtHeFndz9vP5ThiUxaY3KCGjApmot6QUaXzY0jHpaP7t3Uz-DL4fjz6CiJyRcSiyoFSi6hSlflVeWEYtI6y2yVVsrHfnGcVUJOxUAyOp2Wipo04ziTLrdCOmNFZlKbPYe1uqnLHSACG7jLEURJc4MaEBKIMBZ1vywzgtoepN3Maxsjk_sEGZd6GVPZY0tjHzpgS8sevLn_56qNy_Hg1689QrVftAjZTqPvAY7Ph7_SQ0nTAVJJrnqw22FRx9U810sU9uBtRwfL5n_3--JhaC_hMQsU6O0nd2FtMbsp9-CR_bG4mM_6sCq_fuvD-vvxpDjBt2OZ9AN9Y1nw71ienJ79Allc--U |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1PT9RAFH_B1UQvIKhxEXUOEg_a2E7bmR0TQjYLBLLrZhPRcBt3ZtqEhLTr7gLxxnfge_Ch-CS-N23ZqJEbB27NtH3Tdn7vX-f9AXjHE-eEkTKwKjLooCgTmDB1QZqjcqTe5qEvpfR9IIfDztGRGi3BVZMLQ2GVjUz0gtqVlv6Rf-ICbV-epDLcnvwMqGsU7a42LTQqWPSzX-foss22DnZwfTc539s97O0HdVeBwKKuRJEsVObyJM-dUFxaZ7nNo1xRUROX8lzIsehIHo7HmQpNFKeo5FxihXTGithENka6D-BhEnck8VVfBjeSH92XqnU9umSpUFGdpFOl6kXc75hSIESK6JR_KMK_1cE_-7Je3e2t3LcP9RSWa8OadStOWIWlrFiDldrIZrUIm-FQ08eiGXsGva-oi0a-GOln1i3YbkGJ_tPri8udzB-xYRUsz9DCZ6PyuJiz3kl56hjRourlZfEcvt3J272AVlEW2UtgAk-kLkESWZgYtPCQAYSxaNvGsRGhbUPUrLS2deV1agByohc1owkdGufQHh1atuHDzT2Tqu7IrVe_JwBpEkpI2Y7r3Ap8PirvpbsyjDqIykS1YaNBja6l1UwvINOGjw3uFqf_P-_67dTewuP9wy8DPTgY9l_BE-7RT7GiG9CaT0-z1_DIns2PZ9M3no8Y_LhrPP4GRxBTgA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RqKpegP4gFmjrQ6se2ojEie11JYRWu6yKQKtI_RHqxaztREJCCd1dWnHjHXgbHocn6dhxWLVVuXHoLXKScRJ_np94_A3Aa5pZy7UQkZGJxgBF6kjHzEasROPoapvHnkrp66EYjbpHRzJfgOt2L4xLq2x1olfUtjbuH_k25ej70oyJeLsMaRH5YLh79j1yFaTcSmtbTqOByEFx8RPDt-nO_gDH-g2lw73P_Y9RqDAQGbSbqJ65LGyZlaXlkgpjDTVlUkpHcGIZLbkY866g8XhcyFgnKUODZzPDhdWGpzoxKcp9AEsCY0yXTpizb7dWAEOZpow9hmeMyyRs2Gm27SXUr566pAiGSBW_GcU_TcNfa7Te9A1X_uePtgrLweEmvWaGPIGFonoKK8H5JkG1TbGprW_Rtj2D_ie0UbknKf1AehXZqxwBwOTm8mpQ-CMyapLoCXr-JK9Pqhnpn9bnljhZjtW8rp7Dl3t5uzVYrOqqWAfC8QSzGYoo4kyj54cTg2uDPm-aah6bDiTtqCsTGNldYZBTNeeSdkhR2IfySFGiA-9u7zlr-EjuvPqtA5Nyygolm3HYc4HP52i_VE_ESRcRmskObLUIUkGLTdUcPh1432Jwfvrf_W7cLe0VPEIYqsP90cEmPKZ-IrgU0i1YnE3Oixfw0PyYnUwnL_2UInB833D8BbxYXKQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SoftPool%2B%2B%3A+An+Encoder%E2%80%93Decoder+Network+for+Point+Cloud+Completion&rft.jtitle=International+journal+of+computer+vision&rft.au=Wang%2C+Yida&rft.au=Tan%2C+David+Joseph&rft.au=Navab+Nassir&rft.au=Tombari+Federico&rft.date=2022-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=130&rft.issue=5&rft.spage=1145&rft.epage=1164&rft_id=info:doi/10.1007%2Fs11263-022-01588-7&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon |