3D Metaphotonic Nanostructures with Intrinsic Chirality
Chirality is a universal geometric property in both micro‐ and macroworlds. Recently, optical chiral effects have drawn increased attention due to their great potential in fundamental studies and practical applications. Significantly, the optical chiral response of artificial structures can be enhan...
Saved in:
| Published in: | Advanced functional materials Vol. 28; no. 45 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc
07.11.2018
|
| Subjects: | |
| ISSN: | 1616-301X, 1616-3028 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Chirality is a universal geometric property in both micro‐ and macroworlds. Recently, optical chiral effects have drawn increased attention due to their great potential in fundamental studies and practical applications. Significantly, the optical chiral response of artificial structures can be enhanced by orders of magnitude compared to that of their naturally occurring counterparts. These man‐made structures generally exhibit two types of optical chirality: extrinsic chirality and intrinsic chirality. The former relies on external illumination conditions, while the latter arises from the geometric characteristics of 3D objects. Herein, this review mainly focuses on the intrinsic chirality of artificial structures and discusses the existing realizations based on their design principles. In particular, an overview is given of the recent demonstrations of nonlinear optical effects in chiral structures and active chiral structures. Lastly, some promising prospects for future studies in the field are outlined.
3D metaphotonic structures with intrinsic chirality support both optical rotation and circular dichroism, which are orders of magnitude higher than that of their naturally occurring counterparts. They have drawn increased attention due to their potential in fundamental studies in physics, chemistry and biology, and in practical applications, such as negative refractive index media, molecule sensors, and modulators. |
|---|---|
| AbstractList | Chirality is a universal geometric property in both micro‐ and macroworlds. Recently, optical chiral effects have drawn increased attention due to their great potential in fundamental studies and practical applications. Significantly, the optical chiral response of artificial structures can be enhanced by orders of magnitude compared to that of their naturally occurring counterparts. These man‐made structures generally exhibit two types of optical chirality: extrinsic chirality and intrinsic chirality. The former relies on external illumination conditions, while the latter arises from the geometric characteristics of 3D objects. Herein, this review mainly focuses on the intrinsic chirality of artificial structures and discusses the existing realizations based on their design principles. In particular, an overview is given of the recent demonstrations of nonlinear optical effects in chiral structures and active chiral structures. Lastly, some promising prospects for future studies in the field are outlined. Chirality is a universal geometric property in both micro‐ and macroworlds. Recently, optical chiral effects have drawn increased attention due to their great potential in fundamental studies and practical applications. Significantly, the optical chiral response of artificial structures can be enhanced by orders of magnitude compared to that of their naturally occurring counterparts. These man‐made structures generally exhibit two types of optical chirality: extrinsic chirality and intrinsic chirality. The former relies on external illumination conditions, while the latter arises from the geometric characteristics of 3D objects. Herein, this review mainly focuses on the intrinsic chirality of artificial structures and discusses the existing realizations based on their design principles. In particular, an overview is given of the recent demonstrations of nonlinear optical effects in chiral structures and active chiral structures. Lastly, some promising prospects for future studies in the field are outlined. 3D metaphotonic structures with intrinsic chirality support both optical rotation and circular dichroism, which are orders of magnitude higher than that of their naturally occurring counterparts. They have drawn increased attention due to their potential in fundamental studies in physics, chemistry and biology, and in practical applications, such as negative refractive index media, molecule sensors, and modulators. |
| Author | Qiu, Meng Tang, Zhixiang Zhang, Lei Qiu, Cheng‐Wei Jin, Wei Lei, Dang Yuan |
| Author_xml | – sequence: 1 givenname: Meng surname: Qiu fullname: Qiu, Meng organization: The Hong Kong Polytechnic University – sequence: 2 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: Xi'an Jiaotong University – sequence: 3 givenname: Zhixiang surname: Tang fullname: Tang, Zhixiang organization: Hunan University – sequence: 4 givenname: Wei surname: Jin fullname: Jin, Wei organization: The Hong Kong Polytechnic University – sequence: 5 givenname: Cheng‐Wei orcidid: 0000-0003-0274-9982 surname: Qiu fullname: Qiu, Cheng‐Wei email: chengwei.qiu@nus.edu.sg organization: NUS Suzhou Research Institute (NUSRI) – sequence: 6 givenname: Dang Yuan surname: Lei fullname: Lei, Dang Yuan email: dangyuan.lei@polyu.edu.hk organization: The Hong Kong Polytechnic University |
| BookMark | eNqFkMFrwjAUxsNwMHW77lzYue69JG3sUXRugm6XDXYLaZtipDYuSRH_eysOB4Ox03vwvt_7-L4B6TW20YTcI4wQgD6qstqOKOAYGHJxRfqYYhozoOPeZcfPGzLwfgOAQjDeJ4LNopUOare2wTamiF5VY31wbRFap320N2EdLZrgTOO763RtnKpNONyS60rVXt99zyH5mD-9T1_i5dvzYjpZxgXrHGLK0lKBVgqTtMRMc0GrsaoANWa0LHhOeVkKBSCyRGidYJXnmOpUCY00Lyo2JA_nvztnv1rtg9zY1jWdpaRIswQh5aJTjc6qwlnvna7kzpmtcgeJIE_lyFM58lJOB_BfQGGCCsZ2SZWp_8ayM7Y3tT78YyIns_nqhz0CKKd7fQ |
| CitedBy_id | crossref_primary_10_1039_D3NR00055A crossref_primary_10_1038_s41467_023_37048_0 crossref_primary_10_1103_PhysRevApplied_23_064027 crossref_primary_10_1002_adpr_202000050 crossref_primary_10_1016_j_jcis_2024_08_215 crossref_primary_10_1364_PRJ_507081 crossref_primary_10_1002_adma_201907983 crossref_primary_10_1016_j_optlastec_2024_111995 crossref_primary_10_1002_ange_201902673 crossref_primary_10_1016_j_scib_2021_04_007 crossref_primary_10_1002_lpor_202500080 crossref_primary_10_1016_j_jcis_2022_06_160 crossref_primary_10_1002_adom_201901233 crossref_primary_10_1002_adom_202000012 crossref_primary_10_1002_adom_202101191 crossref_primary_10_1002_adma_202206700 crossref_primary_10_1109_MAP_2019_2955698 crossref_primary_10_1002_adma_201907151 crossref_primary_10_1016_j_mtnano_2025_100664 crossref_primary_10_1002_adfm_202412985 crossref_primary_10_1002_smll_201900483 crossref_primary_10_1021_acsanm_4c04748 crossref_primary_10_1364_AO_387150 crossref_primary_10_1002_lpor_202100526 crossref_primary_10_1063_5_0147417 crossref_primary_10_1002_adom_201801477 crossref_primary_10_1002_lpor_202501164 crossref_primary_10_1515_nanoph_2019_0061 crossref_primary_10_1007_s40820_022_01005_1 crossref_primary_10_1002_adom_202002002 crossref_primary_10_1039_C9NR09722H crossref_primary_10_1002_adom_202300853 crossref_primary_10_1016_j_molstruc_2020_128362 crossref_primary_10_1016_j_trechm_2021_02_004 crossref_primary_10_1021_acsphotonics_5c00363 crossref_primary_10_1016_j_optlastec_2025_112473 crossref_primary_10_1063_5_0238859 crossref_primary_10_1039_D0NR01928C crossref_primary_10_1039_D5TC02438B crossref_primary_10_1002_adom_202202865 crossref_primary_10_1002_adom_202200249 crossref_primary_10_1002_adom_202400593 crossref_primary_10_1016_j_optcom_2020_126405 crossref_primary_10_1088_0256_307X_42_3_034202 crossref_primary_10_1016_j_snb_2021_130122 crossref_primary_10_1515_nanoph_2020_0130 crossref_primary_10_1515_nanoph_2019_0079 crossref_primary_10_1002_andp_201900398 crossref_primary_10_1002_cplu_202500481 crossref_primary_10_1109_JLT_2024_3458988 crossref_primary_10_1002_lpor_202401268 crossref_primary_10_1016_j_optlaseng_2022_106959 crossref_primary_10_1002_adma_202001330 crossref_primary_10_1002_andp_201900073 crossref_primary_10_3390_sym11040474 crossref_primary_10_1002_lpor_201800312 crossref_primary_10_1016_j_eml_2021_101562 crossref_primary_10_3390_app131910590 crossref_primary_10_1515_nanoph_2018_0183 crossref_primary_10_1038_s41467_021_21565_x crossref_primary_10_1002_chem_202400436 crossref_primary_10_1063_5_0085981 crossref_primary_10_1364_PRJ_424477 crossref_primary_10_1002_adom_202202658 crossref_primary_10_1002_anie_201814282 crossref_primary_10_1088_1361_6463_ac6e9f crossref_primary_10_1021_acsmaterialslett_5c00465 crossref_primary_10_1002_adma_202107325 crossref_primary_10_1002_adom_201900247 crossref_primary_10_1016_j_mtchem_2025_102889 crossref_primary_10_1088_1361_6463_ad6f20 crossref_primary_10_3390_photonics9060402 crossref_primary_10_1002_lpor_202200370 crossref_primary_10_29026_oea_2022_200098 crossref_primary_10_3390_cryst11050518 crossref_primary_10_3788_COL202523_053605 crossref_primary_10_1002_adfm_202201927 crossref_primary_10_1038_s42254_025_00829_1 crossref_primary_10_1002_adma_201907077 crossref_primary_10_1002_anie_201902673 crossref_primary_10_1002_aic_17438 crossref_primary_10_1002_pssr_202100571 crossref_primary_10_1103_PhysRevApplied_16_L031001 crossref_primary_10_1016_j_optcom_2022_128122 crossref_primary_10_1002_adma_202107917 crossref_primary_10_1088_1361_6528_ac297f crossref_primary_10_1002_adma_202002570 crossref_primary_10_1002_adom_201900617 crossref_primary_10_3389_fnano_2024_1392694 crossref_primary_10_1002_ange_201814282 crossref_primary_10_1002_lpor_202500129 crossref_primary_10_1016_j_cis_2021_102376 crossref_primary_10_1038_s41377_020_00367_8 |
| Cites_doi | 10.1021/nl403705k 10.1063/1.439524 10.1103/PhysRevLett.107.257401 10.1021/nl3041355 10.1021/nl9021623 10.1038/ncomms1877 10.1126/science.1104467 10.1021/jz200279x 10.1364/OME.1.000046 10.1063/1.4829740 10.1021/acsnano.5b04552 10.1002/adfm.201602800 10.1103/PhysRevLett.95.123904 10.1103/PhysRevLett.115.057401 10.1021/jacs.6b00958 10.1364/OL.35.001593 10.1016/j.colsurfa.2010.11.015 10.1002/adom.201300323 10.1038/ncomms9102 10.1038/srep05864 10.1021/nn2023478 10.1088/0957-4484/27/41/412001 10.1039/9781839168932 10.1002/adma.201300840 10.1364/OL.32.000856 10.1021/ja511333q 10.1021/acs.nanolett.5b04270 10.1364/OL.34.000632 10.1021/ja209861x 10.1103/PhysRevB.81.235126 10.1103/PhysRevLett.104.127401 10.1364/OL.34.002501 10.1103/PhysRevB.49.14643 10.1021/la304122f 10.1103/PhysRevLett.95.227401 10.1103/PhysRevB.79.035407 10.1364/OE.22.019936 10.1126/science.288.5470.1404 10.1038/nature21037 10.1021/nl4013776 10.1021/nl9041033 10.1103/PhysRevLett.104.253902 10.1103/PhysRev.104.254 10.1021/acs.nanolett.5b03970 10.1002/adma.201501816 10.1021/nl402782d 10.1038/lsa.2017.158 10.1021/nl900726s 10.1364/OE.23.033065 10.1021/ph5002632 10.1021/ja3066336 10.1007/978-3-540-76886-9 10.1038/nphoton.2009.4 10.1021/cr200061k 10.1002/adfm.201502429 10.1126/science.1210713 10.1021/nl5042325 10.1103/PhysRevE.70.016608 10.1016/B978-012121682-5/50010-9 10.1103/PhysRevLett.97.177401 10.1021/ja5018199 10.1002/chem.200401081 10.1021/ja808570g 10.1038/s41586-018-0034-1 10.1103/PhysRevLett.104.163901 10.1063/1.4876964 10.1038/s41467-017-02268-8 10.1080/10587259408039274 10.1103/PhysRevB.89.125105 10.1186/s40580-015-0058-2 10.1103/PhysRevLett.102.023901 10.1063/1.1724854 10.1103/PhysRev.161.1483 10.1021/ac504017f 10.1364/OL.40.003986 10.1021/ja501642p 10.1103/PhysRevB.79.121104 10.1021/nl202565e 10.1364/OE.21.026244 10.1002/adma.201004114 10.1109/MAP.1988.6086107 10.1002/adom.201500194 10.1021/jacs.5b10309 10.1126/science.1177031 10.1016/j.photonics.2014.10.002 10.1038/ncomms3948 10.1038/ncomms6435 10.1021/nl501032j 10.1103/PhysRevB.79.035321 10.1063/1.3693181 10.1364/OE.18.014553 10.1038/ncomms5441 10.1021/nn304283y 10.1038/nmat4031 10.1021/nl300769x 10.1038/ncomms7484 10.1038/ncomms1908 10.1063/1.2745203 10.1126/science.1172051 10.1002/chir.20179 10.1103/PhysRevLett.102.113902 10.1002/0471784192 10.1038/ncomms9422 10.1038/ncomms10591 10.1002/adma.201606864 10.1021/ja00408a061 10.1515/nanoph-2016-0005 10.1038/ncomms1528 10.1021/acs.nanolett.5b05105 10.1002/adma.201100543 10.1126/science.1089171 10.1021/nn402370x 10.1002/adma.201402293 10.1038/nature10889 10.1039/c3nr06006c 10.1038/ncomms3689 10.1021/j100109a022 10.1002/chir.20056 10.1021/nl101231b 10.1063/1.1342210 10.1088/0957-4484/27/11/115703 10.1038/nmat3685 10.1021/nl404572u 10.1021/nl1038242 10.1063/1.3021082 10.1002/adma.201401021 10.1021/acsphotonics.5b00354 10.1163/156939303322226356 10.1002/adma.201203424 10.1063/1.4789529 10.1021/ja506790w 10.1021/nl400538y 10.1002/adfm.201403161 10.1002/adma.201703410 10.1073/pnas.0909616107 10.1103/PhysRevB.83.035105 10.1038/s41467-017-01337-2 10.1021/ph500318p 10.1021/ph500293u |
| ContentType | Journal Article |
| Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.201803147 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adfm_201803147 ADFM201803147 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: Hong Kong Polytechnic University funderid: 1‐ZVG4 – fundername: NSFC funderid: 11604256 – fundername: NSFC funderid: 61571186 – fundername: National Natural Science Foundation of China funderid: 11474240 – fundername: Young Talent Recruiting Plans of Xi'an Jiaotong University |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMMB AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF O8X 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3177-236da0eaa156d19e472f8af01e192dc4b24dd7a007957ee51fbb16e6a7e12bcf3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 138 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449706700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Sun Nov 30 05:26:52 EST 2025 Sat Nov 29 07:25:22 EST 2025 Tue Nov 18 22:11:22 EST 2025 Wed Jan 22 16:38:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 45 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3177-236da0eaa156d19e472f8af01e192dc4b24dd7a007957ee51fbb16e6a7e12bcf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0274-9982 |
| PQID | 2129510647 |
| PQPubID | 2045204 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2129510647 crossref_primary_10_1002_adfm_201803147 crossref_citationtrail_10_1002_adfm_201803147 wiley_primary_10_1002_adfm_201803147_ADFM201803147 |
| PublicationCentury | 2000 |
| PublicationDate | November 7, 2018 |
| PublicationDateYYYYMMDD | 2018-11-07 |
| PublicationDate_xml | – month: 11 year: 2018 text: November 7, 2018 day: 07 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 1994; 256 2010; 10 2012; 483 2013; 4 2010; 107 2010; 18 1967; 161 2010; 104 2014; 26 1997; 1 2013; 7 2013; 8 2012; 12 2014; 136 2011; 111 1964; 40 2014; 22 2014; 137 2018; 7 2012; 134 2015; 138 2014; 14 2014; 13 2012; 24 1956; 104 2012; 100 2011; 2 2010; 35 2011; 1 2011; 83 2007; 90 2013; 103 2013; 102 2004; 306 2016; 16 2011; 5 2011; 134 2011; 374 2016; 5 2009; 79 2016; 7 2015; 115 2005; 95 2009; 102 2017; 541 2016; 27 2005; 17 2016; 26 2005; 11 2013; 29 2017; 8 2013; 25 2013; 21 1981; 103 2011; 11 2003; 17 1988; 30 2007; 32 2014; 1 2014; 5 2014; 4 2004; 70 2014; 2 2000 2013; 13 2015; 40 1980; 72 2013; 12 2011; 23 2000; 288 2014; 6 2009; 325 2015; 2 2015; 13 2011; 334 2015; 15 2015; 6 2006; 97 2015; 5 2015; 3 2010 2008 2006 1994; 49 2017; 29 2003 2009; 131 2010; 81 2015; 9 2008; 93 2014; 89 2014; 87 2009; 34 2015; 23 2015; 25 2015; 27 2012; 3 2011; 107 2018; 556 2004; 16 1993; 97 2009; 9 2016; 138 2003; 302 2012; 6 2009; 3 2001; 78 2014; 104 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 Yokoyama A. (e_1_2_8_126_1) 2014; 4 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 Landau L. D. (e_1_2_8_6_1) 2013 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 Ogier R. (e_1_2_8_125_1) 2015; 5 Nordén B. (e_1_2_8_4_1) 1997 e_1_2_8_80_1 e_1_2_8_131_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 Berova N. (e_1_2_8_7_1) 2000 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 |
| References_xml | – volume: 134 start-page: 146 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: OP321 year: 2012 publication-title: Adv. Mater. – volume: 9 start-page: 2153 year: 2009 publication-title: Nano Lett. – volume: 15 start-page: 8336 year: 2015 publication-title: Nano Lett. – volume: 13 start-page: 6238 year: 2013 publication-title: Nano Lett. – volume: 79 start-page: 35321 year: 2009 publication-title: Phys. Rev. B – volume: 23 start-page: 3018 year: 2011 publication-title: Adv. Mater. – volume: 29 start-page: 867 year: 2013 publication-title: Langmuir – volume: 34 start-page: 632 year: 2009 publication-title: Opt. Lett. – volume: 6 start-page: 6484 year: 2015 publication-title: Nat. Commun. – volume: 10 start-page: 2580 year: 2010 publication-title: Nano Lett. – volume: 161 start-page: 1483 year: 1967 publication-title: Phys. Rev. – volume: 27 start-page: 5610 year: 2015 publication-title: Adv. Mater. – volume: 14 start-page: 2934 year: 2014 publication-title: Nano Lett. – volume: 12 start-page: 2542 year: 2012 publication-title: Nano Lett. – volume: 131 start-page: 8455 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 115 start-page: 57401 year: 2015 publication-title: Phys. Rev. Lett. – volume: 14 start-page: 1021 year: 2014 publication-title: Nano Lett. – volume: 136 start-page: 6446 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 5435 year: 2014 publication-title: Nat. Commun. – volume: 104 start-page: 163901 year: 2010 publication-title: Phys. Rev. Lett. – volume: 2 start-page: 1253 year: 2015 publication-title: ACS Photonics – volume: 25 start-page: 5816 year: 2015 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 1189 year: 2014 publication-title: ACS Photonics – volume: 9 start-page: 3945 year: 2009 publication-title: Nano Lett. – volume: 7 start-page: 6321 year: 2013 publication-title: ACS Nano – volume: 13 start-page: 3256 year: 2013 publication-title: Nano Lett. – volume: 17 start-page: 421 year: 2005 publication-title: Chirality – volume: 306 start-page: 1353 year: 2004 publication-title: Science – volume: 97 start-page: 1383 year: 1993 publication-title: J. Phys. Chem. – volume: 23 start-page: 33065 year: 2015 publication-title: Opt. Express – volume: 10 start-page: 2342 year: 2010 publication-title: Nano Lett. – year: 2008 – volume: 8 year: 2013 – volume: 8 start-page: 2007 year: 2017 publication-title: Nat. Commun. – volume: 4 start-page: 2948 year: 2013 publication-title: Nat. Commun. – volume: 25 start-page: 850 year: 2015 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 4074 year: 2014 publication-title: Adv. Mater. – volume: 104 start-page: 253902 year: 2010 publication-title: Phys. Rev. Lett. – volume: 3 start-page: 942 year: 2012 publication-title: Nat. Commun. – volume: 81 start-page: 235126 year: 2010 publication-title: Phys. Rev. B – volume: 78 start-page: 498 year: 2001 publication-title: Appl. Phys. Lett. – volume: 134 start-page: 15114 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 157 year: 2009 publication-title: Nat. Photonics – volume: 13 start-page: 2128 year: 2013 publication-title: Nano Lett. – volume: 95 start-page: 227401 year: 2005 publication-title: Phys. Rev. Lett. – volume: 556 start-page: 360 year: 2018 publication-title: Nature – volume: 103 start-page: 213101 year: 2013 publication-title: Appl. Phys. Lett. – volume: 288 start-page: 1404 year: 2000 publication-title: Science – volume: 83 start-page: 35105 year: 2011 publication-title: Phys. Rev. B – volume: 6 start-page: 2077 year: 2014 publication-title: Nanoscale – volume: 104 start-page: 254 year: 1956 publication-title: Phys. Rev. – volume: 6 start-page: 10355 year: 2012 publication-title: ACS Nano – volume: 11 start-page: 6053 year: 2005 publication-title: Chem. Eur. J. – volume: 79 start-page: 35407 year: 2009 publication-title: Phys. Rev. B – volume: 374 start-page: 77 year: 2011 publication-title: Colloids Surf., A – volume: 11 start-page: 701 year: 2011 publication-title: Nano Lett. – volume: 2 start-page: 517 year: 2011 publication-title: Nat. Commun. – volume: 104 start-page: 127401 year: 2010 publication-title: Phys. Rev. Lett. – volume: 95 start-page: 123904 year: 2005 publication-title: Phys. Rev. Lett. – volume: 18 start-page: 14553 year: 2010 publication-title: Opt. Express – year: 2010 – volume: 9 start-page: 10377 year: 2015 publication-title: ACS Nano – volume: 90 start-page: 223113 year: 2007 publication-title: Appl. Phys. Lett. – volume: 541 start-page: 473 year: 2017 publication-title: Nature – volume: 107 start-page: 11676 year: 2010 publication-title: Proc. Natl. Acad. Sci. USA – volume: 325 start-page: 1513 year: 2009 publication-title: Science – volume: 2 start-page: 105 year: 2014 publication-title: ACS Photonics – volume: 1 start-page: 46 year: 2011 publication-title: Opt. Mater. Express – volume: 72 start-page: 3396 year: 1980 publication-title: J. Chem. Phys. – volume: 29 start-page: 1606864 year: 2017 publication-title: Adv. Mater. – volume: 5 start-page: 510 year: 2016 publication-title: Nanophotonics – volume: 102 start-page: 43103 year: 2013 publication-title: Appl. Phys. Lett. – volume: 13 start-page: 862 year: 2014 publication-title: Nat. Mater. – volume: 49 start-page: 14643 year: 1994 publication-title: Phys. Rev. B – volume: 302 start-page: 419 year: 2003 publication-title: Science – volume: 25 start-page: 3409 year: 2013 publication-title: Adv. Mater. – volume: 138 start-page: 306 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 334 start-page: 333 year: 2011 publication-title: Science – volume: 7 start-page: 10591 year: 2016 publication-title: Nat. Commun. – volume: 136 start-page: 4788 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 154 year: 2014 publication-title: Adv. Opt. Mater. – volume: 40 start-page: 160 year: 1964 publication-title: J. Chem. Phys. – volume: 4 start-page: 2689 year: 2013 publication-title: Nat. Commun. – volume: 16 start-page: 422 year: 2004 publication-title: Chirality – volume: 12 start-page: 802 year: 2013 publication-title: Nat. Mater. – volume: 13 start-page: 600 year: 2013 publication-title: Nano Lett. – volume: 17 start-page: 695 year: 2003 publication-title: J. Electromagn. Waves Appl. – volume: 23 start-page: 2657 year: 2011 publication-title: Adv. Mater. – volume: 87 start-page: 357 year: 2014 publication-title: Anal. Chem. – volume: 103 start-page: 5590 year: 1981 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 41019 year: 2015 publication-title: Phys. Rev. X – volume: 107 start-page: 257401 year: 2011 publication-title: Phys. Rev. Lett. – volume: 100 start-page: 101109 year: 2012 publication-title: Appl. Phys. Lett. – volume: 137 start-page: 457 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 256 start-page: 439 year: 1994 publication-title: Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A – volume: 2 start-page: 846 year: 2011 publication-title: J. Phys. Chem. Lett. – volume: 3 start-page: 1411 year: 2015 publication-title: Adv. Opt. Mater. – volume: 79 start-page: 121104 year: 2009 publication-title: Phys. Rev. B – volume: 27 start-page: 115703 year: 2016 publication-title: Nanotechnology – volume: 29 start-page: 1703410 year: 2017 publication-title: Adv. Mater. – volume: 102 start-page: 113902 year: 2009 publication-title: Phys. Rev. Lett. – volume: 2 start-page: 24 year: 2015 publication-title: Nano Convergence – volume: 325 start-page: 449 year: 2009 publication-title: Science – volume: 5 start-page: 4441 year: 2014 publication-title: Nat. Commun. – volume: 70 start-page: 16608 year: 2004 publication-title: Phys. Rev. E – volume: 26 start-page: 7807 year: 2016 publication-title: Adv. Funct. Mater. – volume: 40 start-page: 3986 year: 2015 publication-title: Opt. Lett. – volume: 5 start-page: 7411 year: 2011 publication-title: ACS Nano – volume: 7 start-page: 17158 year: 2018 publication-title: Light Sci. Appl. – volume: 89 start-page: 125105 year: 2014 publication-title: Phys. Rev. B – volume: 21 start-page: 26244 year: 2013 publication-title: Opt. Express – volume: 11 start-page: 4400 year: 2011 publication-title: Nano Lett. – volume: 26 start-page: 6157 year: 2014 publication-title: Adv. Mater. – volume: 102 start-page: 23901 year: 2009 publication-title: Phys. Rev. Lett. – volume: 3 start-page: 870 year: 2012 publication-title: Nat. Commun. – year: 2003 – volume: 1 year: 1997 – year: 2000 – volume: 15 start-page: 8392 year: 2015 publication-title: Nano Lett. – volume: 1 start-page: 1074 year: 2014 publication-title: ACS Photonics – volume: 27 start-page: 412001 year: 2016 publication-title: Nanotechnology – volume: 4 start-page: 5864 year: 2014 publication-title: Sci. Rep. – volume: 93 start-page: 191911 year: 2008 publication-title: Appl. Phys. Lett. – volume: 30 start-page: 6 year: 1988 publication-title: IEEE Antennas Propag. Soc. Newsl. – volume: 32 start-page: 856 year: 2007 publication-title: Opt. Lett. – volume: 35 start-page: 1593 year: 2010 publication-title: Opt. Lett. – volume: 15 start-page: 4255 year: 2015 publication-title: Nano Lett. – volume: 136 start-page: 16104 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 104 start-page: 193107 year: 2014 publication-title: Appl. Phys. Lett. – volume: 4 start-page: 11005 year: 2014 publication-title: Phys. Rev. X – volume: 6 start-page: 8102 year: 2015 publication-title: Nat. Commun. – volume: 111 start-page: 3913 year: 2011 publication-title: Chem. Rev. – volume: 13 start-page: 5277 year: 2013 publication-title: Nano Lett. – year: 2006 – volume: 13 start-page: 50 year: 2015 publication-title: Photonics and Nanostruct. Fundam. Appl. – volume: 138 start-page: 5495 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1847 year: 2017 publication-title: Nat. Commun. – volume: 483 start-page: 311 year: 2012 publication-title: Nature – volume: 6 start-page: 8422 year: 2015 publication-title: Nat. Commun. – volume: 97 start-page: 177401 year: 2006 publication-title: Phys. Rev. Lett. – volume: 34 start-page: 2501 year: 2009 publication-title: Opt. Lett. – volume: 22 start-page: 19936 year: 2014 publication-title: Opt. Express – volume: 16 start-page: 1462 year: 2016 publication-title: Nano Lett. – ident: e_1_2_8_39_1 doi: 10.1021/nl403705k – ident: e_1_2_8_16_1 doi: 10.1063/1.439524 – ident: e_1_2_8_130_1 doi: 10.1103/PhysRevLett.107.257401 – ident: e_1_2_8_36_1 doi: 10.1021/nl3041355 – ident: e_1_2_8_128_1 doi: 10.1021/nl9021623 – ident: e_1_2_8_103_1 doi: 10.1038/ncomms1877 – ident: e_1_2_8_44_1 doi: 10.1126/science.1104467 – ident: e_1_2_8_53_1 doi: 10.1021/jz200279x – ident: e_1_2_8_131_1 doi: 10.1364/OME.1.000046 – ident: e_1_2_8_73_1 doi: 10.1063/1.4829740 – ident: e_1_2_8_106_1 doi: 10.1021/acsnano.5b04552 – ident: e_1_2_8_85_1 doi: 10.1002/adfm.201602800 – ident: e_1_2_8_45_1 doi: 10.1103/PhysRevLett.95.123904 – ident: e_1_2_8_124_1 doi: 10.1103/PhysRevLett.115.057401 – ident: e_1_2_8_116_1 doi: 10.1021/jacs.6b00958 – ident: e_1_2_8_96_1 doi: 10.1364/OL.35.001593 – ident: e_1_2_8_27_1 doi: 10.1016/j.colsurfa.2010.11.015 – ident: e_1_2_8_76_1 doi: 10.1002/adom.201300323 – ident: e_1_2_8_142_1 doi: 10.1038/ncomms9102 – ident: e_1_2_8_55_1 doi: 10.1038/srep05864 – volume-title: Circular Dichroism and Linear Dichroism year: 1997 ident: e_1_2_8_4_1 – ident: e_1_2_8_90_1 doi: 10.1021/nn2023478 – ident: e_1_2_8_41_1 doi: 10.1088/0957-4484/27/41/412001 – ident: e_1_2_8_5_1 doi: 10.1039/9781839168932 – ident: e_1_2_8_139_1 doi: 10.1002/adma.201300840 – ident: e_1_2_8_51_1 doi: 10.1364/OL.32.000856 – ident: e_1_2_8_107_1 doi: 10.1021/ja511333q – ident: e_1_2_8_138_1 doi: 10.1021/acs.nanolett.5b04270 – ident: e_1_2_8_34_1 doi: 10.1364/OL.34.000632 – ident: e_1_2_8_119_1 doi: 10.1021/ja209861x – volume-title: Circular Dichroism: Principles and Applications year: 2000 ident: e_1_2_8_7_1 – ident: e_1_2_8_59_1 doi: 10.1103/PhysRevB.81.235126 – ident: e_1_2_8_129_1 doi: 10.1103/PhysRevLett.104.127401 – ident: e_1_2_8_94_1 doi: 10.1364/OL.34.002501 – volume: 5 start-page: 41019 year: 2015 ident: e_1_2_8_125_1 publication-title: Phys. Rev. X – ident: e_1_2_8_122_1 doi: 10.1103/PhysRevB.49.14643 – ident: e_1_2_8_86_1 doi: 10.1021/la304122f – ident: e_1_2_8_22_1 doi: 10.1103/PhysRevLett.95.227401 – ident: e_1_2_8_47_1 doi: 10.1103/PhysRevB.79.035407 – ident: e_1_2_8_66_1 doi: 10.1364/OE.22.019936 – ident: e_1_2_8_17_1 doi: 10.1126/science.288.5470.1404 – ident: e_1_2_8_28_1 doi: 10.1038/nature21037 – ident: e_1_2_8_105_1 doi: 10.1021/nl4013776 – ident: e_1_2_8_11_1 doi: 10.1021/nl9041033 – ident: e_1_2_8_97_1 doi: 10.1103/PhysRevLett.104.253902 – ident: e_1_2_8_2_1 doi: 10.1103/PhysRev.104.254 – ident: e_1_2_8_35_1 doi: 10.1021/acs.nanolett.5b03970 – ident: e_1_2_8_91_1 doi: 10.1002/adma.201501816 – ident: e_1_2_8_84_1 doi: 10.1021/nl402782d – ident: e_1_2_8_88_1 doi: 10.1038/lsa.2017.158 – ident: e_1_2_8_113_1 doi: 10.1021/nl900726s – ident: e_1_2_8_81_1 doi: 10.1364/OE.23.033065 – ident: e_1_2_8_115_1 doi: 10.1021/ph5002632 – ident: e_1_2_8_112_1 doi: 10.1021/ja3066336 – ident: e_1_2_8_3_1 doi: 10.1007/978-3-540-76886-9 – ident: e_1_2_8_95_1 doi: 10.1038/nphoton.2009.4 – ident: e_1_2_8_14_1 doi: 10.1021/cr200061k – ident: e_1_2_8_24_1 doi: 10.1002/adfm.201502429 – ident: e_1_2_8_12_1 doi: 10.1126/science.1210713 – ident: e_1_2_8_134_1 doi: 10.1021/nl5042325 – ident: e_1_2_8_62_1 doi: 10.1103/PhysRevE.70.016608 – ident: e_1_2_8_120_1 doi: 10.1016/B978-012121682-5/50010-9 – ident: e_1_2_8_46_1 doi: 10.1103/PhysRevLett.97.177401 – ident: e_1_2_8_118_1 doi: 10.1021/ja5018199 – ident: e_1_2_8_18_1 doi: 10.1002/chem.200401081 – ident: e_1_2_8_111_1 doi: 10.1021/ja808570g – ident: e_1_2_8_87_1 doi: 10.1038/s41586-018-0034-1 – ident: e_1_2_8_42_1 doi: 10.1103/PhysRevLett.104.163901 – ident: e_1_2_8_80_1 doi: 10.1063/1.4876964 – ident: e_1_2_8_30_1 doi: 10.1038/s41467-017-02268-8 – ident: e_1_2_8_19_1 doi: 10.1080/10587259408039274 – ident: e_1_2_8_93_1 doi: 10.1103/PhysRevB.89.125105 – ident: e_1_2_8_58_1 doi: 10.1186/s40580-015-0058-2 – ident: e_1_2_8_49_1 doi: 10.1103/PhysRevLett.102.023901 – ident: e_1_2_8_15_1 doi: 10.1063/1.1724854 – ident: e_1_2_8_1_1 doi: 10.1103/PhysRev.161.1483 – ident: e_1_2_8_26_1 doi: 10.1021/ac504017f – ident: e_1_2_8_68_1 doi: 10.1364/OL.40.003986 – ident: e_1_2_8_104_1 doi: 10.1021/ja501642p – ident: e_1_2_8_48_1 doi: 10.1103/PhysRevB.79.121104 – ident: e_1_2_8_89_1 doi: 10.1021/nl202565e – ident: e_1_2_8_65_1 doi: 10.1364/OE.21.026244 – ident: e_1_2_8_75_1 doi: 10.1002/adma.201004114 – ident: e_1_2_8_40_1 doi: 10.1109/MAP.1988.6086107 – ident: e_1_2_8_69_1 doi: 10.1002/adom.201500194 – ident: e_1_2_8_144_1 doi: 10.1021/jacs.5b10309 – ident: e_1_2_8_54_1 doi: 10.1126/science.1177031 – ident: e_1_2_8_82_1 doi: 10.1016/j.photonics.2014.10.002 – ident: e_1_2_8_140_1 doi: 10.1038/ncomms3948 – ident: e_1_2_8_56_1 doi: 10.1038/ncomms6435 – ident: e_1_2_8_83_1 doi: 10.1021/nl501032j – ident: e_1_2_8_60_1 doi: 10.1103/PhysRevB.79.035321 – ident: e_1_2_8_64_1 doi: 10.1063/1.3693181 – ident: e_1_2_8_63_1 doi: 10.1364/OE.18.014553 – ident: e_1_2_8_92_1 doi: 10.1038/ncomms5441 – ident: e_1_2_8_38_1 doi: 10.1021/nn304283y – ident: e_1_2_8_137_1 doi: 10.1038/nmat4031 – ident: e_1_2_8_37_1 doi: 10.1021/nl300769x – ident: e_1_2_8_77_1 doi: 10.1038/ncomms7484 – ident: e_1_2_8_133_1 doi: 10.1038/ncomms1908 – ident: e_1_2_8_50_1 doi: 10.1063/1.2745203 – ident: e_1_2_8_9_1 doi: 10.1126/science.1172051 – ident: e_1_2_8_123_1 doi: 10.1002/chir.20179 – ident: e_1_2_8_33_1 doi: 10.1103/PhysRevLett.102.113902 – ident: e_1_2_8_61_1 doi: 10.1002/0471784192 – ident: e_1_2_8_136_1 doi: 10.1038/ncomms9422 – ident: e_1_2_8_141_1 doi: 10.1038/ncomms10591 – ident: e_1_2_8_143_1 doi: 10.1002/adma.201606864 – ident: e_1_2_8_20_1 doi: 10.1021/ja00408a061 – ident: e_1_2_8_67_1 doi: 10.1515/nanoph-2016-0005 – ident: e_1_2_8_10_1 doi: 10.1038/ncomms1528 – ident: e_1_2_8_135_1 doi: 10.1021/acs.nanolett.5b05105 – ident: e_1_2_8_70_1 doi: 10.1002/adma.201100543 – ident: e_1_2_8_13_1 doi: 10.1126/science.1089171 – ident: e_1_2_8_78_1 doi: 10.1021/nn402370x – ident: e_1_2_8_132_1 doi: 10.1002/adma.201402293 – ident: e_1_2_8_117_1 doi: 10.1038/nature10889 – ident: e_1_2_8_102_1 doi: 10.1039/c3nr06006c – ident: e_1_2_8_108_1 doi: 10.1038/ncomms3689 – volume: 4 start-page: 11005 year: 2014 ident: e_1_2_8_126_1 publication-title: Phys. Rev. X – ident: e_1_2_8_121_1 doi: 10.1021/j100109a022 – ident: e_1_2_8_21_1 doi: 10.1002/chir.20056 – ident: e_1_2_8_109_1 doi: 10.1021/nl101231b – ident: e_1_2_8_52_1 doi: 10.1063/1.1342210 – ident: e_1_2_8_74_1 doi: 10.1088/0957-4484/27/11/115703 – ident: e_1_2_8_71_1 doi: 10.1038/nmat3685 – ident: e_1_2_8_98_1 doi: 10.1021/nl404572u – ident: e_1_2_8_29_1 doi: 10.1021/nl1038242 – ident: e_1_2_8_32_1 doi: 10.1063/1.3021082 – volume-title: Electrodynamics of Continuous Media year: 2013 ident: e_1_2_8_6_1 – ident: e_1_2_8_127_1 doi: 10.1002/adma.201401021 – ident: e_1_2_8_100_1 doi: 10.1021/acsphotonics.5b00354 – ident: e_1_2_8_43_1 doi: 10.1163/156939303322226356 – ident: e_1_2_8_79_1 doi: 10.1002/adma.201203424 – ident: e_1_2_8_99_1 doi: 10.1063/1.4789529 – ident: e_1_2_8_25_1 doi: 10.1021/ja506790w – ident: e_1_2_8_114_1 doi: 10.1021/nl400538y – ident: e_1_2_8_23_1 doi: 10.1002/adfm.201403161 – ident: e_1_2_8_31_1 doi: 10.1002/adma.201703410 – ident: e_1_2_8_8_1 doi: 10.1073/pnas.0909616107 – ident: e_1_2_8_57_1 doi: 10.1103/PhysRevB.83.035105 – ident: e_1_2_8_101_1 doi: 10.1038/s41467-017-01337-2 – ident: e_1_2_8_72_1 doi: 10.1021/ph500318p – ident: e_1_2_8_110_1 doi: 10.1021/ph500293u |
| SSID | ssj0017734 |
| Score | 2.6095479 |
| SecondaryResourceType | review_article |
| Snippet | Chirality is a universal geometric property in both micro‐ and macroworlds. Recently, optical chiral effects have drawn increased attention due to their great... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | chiral materials Chirality Materials science metamaterials nanofabrication nano‐optics Optical properties plasmonic systems |
| Title | 3D Metaphotonic Nanostructures with Intrinsic Chirality |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201803147 https://www.proquest.com/docview/2129510647 |
| Volume | 28 |
| WOSCitedRecordID | wos000449706700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6edCD3-J0Sg-Cp7AmTZv2ODaHghsiDnYr-WSCdGOr_v2-tF23HUTQW0tfQ3kfeb8kfb-H0J2v_cQqkmCuA4qZlgwnofSxkVzRIPJNIGTRbIKPRvFkkrxsVPGX_BD1hpuLjGK-dgEu5LKzJg0V2rpKchI7Ana-i5oUnJc1ULP_Ohg_1ycJnJcnyxFx_3iRyYq40aed7RG2E9MabW5i1iLpDI7-_7nH6LACnF639JATtGOyU3SwQUN4hnjQ94YmF_PpLHdMuR5MubOSWPYTVuOe26v1nrIcpMGmXm_6vijQ-zkaDx7eeo-4aqiAFcAEjkH5WvhGCFi0aZIYxqmNhfWJAZynFZOUac0FwIYk5MaExEpJIhMJbgiVygYXqJHNMnOJvJDIgPqARYSyjMkgsVIAcgQwqMG-sW4hvNJmqiq2cdf04iMteZJp6hSS1gppoftafl7ybPwo2V4ZJ63ibZlCAnZQMXKPaWGGX0ZJu_3BsL67-stL12jfXReFibyNGmAWc4P21Ff-vlzcVn74DWgG3P4 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8IwFH9RMFEPfhtR1B1MPDWsXbduRwISiECMgYTb0q5dIDGDwPTvt93GgIMxMR63vTbL-2h_fe37FeDJlnYQRzhATDoEUSkoClxhIyVYRBzPVg4X2WUTbDj0J5PgrThNaGphcn6IMuFmIiMbr02Am4R0Y8MaymVsSsmxbxjY2T5UqfYltwLV9ntn3C-3EhjLt5Y9bA554cmaudEmjd0edmemDdzcBq3ZrNM5_Yf_PYOTAnJazdxHzmFPJRdwvEVEeAnMaVsDlfLFdJ4arlxLD7rznFr2U6_HLZOttXpJqqW1Va3WdLbM8PsVjDsvo1YXFVcqoEgDBYa0-iW3Fed62SZxoCgjsc9jGyuN9GREBaFSMq6BQ-AypVwcC4E95XGmMBFR7FxDJZkn6gYsFwuH2BqN8CimVDhBLLjGjhoOSm1hX9YArdUZRgXfuLn24iPMmZJJaBQSlgqpwXMpv8iZNn6UrK-tExYRtwr1FGzAomc-k8wOv_QSNtudQfl0-5dGj3DYHQ36Yb83fL2DI_M-K1NkdahoE6l7OIi-0tlq-VA45Te3rODu |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60FdGDb7FaNQfB02J289jkWFqDxbYUsdDbsk9akLS00d_vbpKm7UEE8ZhkdgkzOzvfPuYbAB5c6cZaoBgS6WHoS-7DOOAuVJwI7IWu8hjPi02QwSAaj-NheZvQ5sIU_BDVhpv1jHy-tg6u5lI_rVlDmdQ2lRxFloGd7IK6H8Sh8c165y0Z9aqjBEKKo-UQ2UteaLxibnTx03YP25FpDTc3QWsedZLjf_jfE3BUQk6nVYyRU7Cj0jNwuEFEeA6I13H6KmPzySyzXLmOmXRnBbXsp1mPO3a31ummmZE2VnXak-kix-8XYJQ8v7dfYFlSAQoDFAg06pfMVYyZZZtEsfIJ1hHTLlIG6Unhc-xLSZgBDnFAlAqQ5hyFKmREIcyF9i5BLZ2l6go4AeIedg0aYUL7PvdizZnBjgYOSmPhSDYAXKmTipJv3Ja9-KAFUzKmViG0UkgDPFby84Jp40fJ5so6tPS4JTUh2ILF0H7GuR1-6YW2Okm_err-S6N7sD_sJLTXHbzegAP7Os9SJE1QMxZSt2BPfGXT5eKuHJPfbrLgaQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Metaphotonic+Nanostructures+with+Intrinsic+Chirality&rft.jtitle=Advanced+functional+materials&rft.au=Qiu%2C+Meng&rft.au=Zhang%2C+Lei&rft.au=Tang%2C+Zhixiang&rft.au=Jin%2C+Wei&rft.date=2018-11-07&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=45&rft_id=info:doi/10.1002%2Fadfm.201803147&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201803147 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |