3D Metaphotonic Nanostructures with Intrinsic Chirality

Chirality is a universal geometric property in both micro‐ and macroworlds. Recently, optical chiral effects have drawn increased attention due to their great potential in fundamental studies and practical applications. Significantly, the optical chiral response of artificial structures can be enhan...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials Vol. 28; no. 45
Main Authors: Qiu, Meng, Zhang, Lei, Tang, Zhixiang, Jin, Wei, Qiu, Cheng‐Wei, Lei, Dang Yuan
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 07.11.2018
Subjects:
ISSN:1616-301X, 1616-3028
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Chirality is a universal geometric property in both micro‐ and macroworlds. Recently, optical chiral effects have drawn increased attention due to their great potential in fundamental studies and practical applications. Significantly, the optical chiral response of artificial structures can be enhanced by orders of magnitude compared to that of their naturally occurring counterparts. These man‐made structures generally exhibit two types of optical chirality: extrinsic chirality and intrinsic chirality. The former relies on external illumination conditions, while the latter arises from the geometric characteristics of 3D objects. Herein, this review mainly focuses on the intrinsic chirality of artificial structures and discusses the existing realizations based on their design principles. In particular, an overview is given of the recent demonstrations of nonlinear optical effects in chiral structures and active chiral structures. Lastly, some promising prospects for future studies in the field are outlined. 3D metaphotonic structures with intrinsic chirality support both optical rotation and circular dichroism, which are orders of magnitude higher than that of their naturally occurring counterparts. They have drawn increased attention due to their potential in fundamental studies in physics, chemistry and biology, and in practical applications, such as negative refractive index media, molecule sensors, and modulators.
AbstractList Chirality is a universal geometric property in both micro‐ and macroworlds. Recently, optical chiral effects have drawn increased attention due to their great potential in fundamental studies and practical applications. Significantly, the optical chiral response of artificial structures can be enhanced by orders of magnitude compared to that of their naturally occurring counterparts. These man‐made structures generally exhibit two types of optical chirality: extrinsic chirality and intrinsic chirality. The former relies on external illumination conditions, while the latter arises from the geometric characteristics of 3D objects. Herein, this review mainly focuses on the intrinsic chirality of artificial structures and discusses the existing realizations based on their design principles. In particular, an overview is given of the recent demonstrations of nonlinear optical effects in chiral structures and active chiral structures. Lastly, some promising prospects for future studies in the field are outlined.
Chirality is a universal geometric property in both micro‐ and macroworlds. Recently, optical chiral effects have drawn increased attention due to their great potential in fundamental studies and practical applications. Significantly, the optical chiral response of artificial structures can be enhanced by orders of magnitude compared to that of their naturally occurring counterparts. These man‐made structures generally exhibit two types of optical chirality: extrinsic chirality and intrinsic chirality. The former relies on external illumination conditions, while the latter arises from the geometric characteristics of 3D objects. Herein, this review mainly focuses on the intrinsic chirality of artificial structures and discusses the existing realizations based on their design principles. In particular, an overview is given of the recent demonstrations of nonlinear optical effects in chiral structures and active chiral structures. Lastly, some promising prospects for future studies in the field are outlined. 3D metaphotonic structures with intrinsic chirality support both optical rotation and circular dichroism, which are orders of magnitude higher than that of their naturally occurring counterparts. They have drawn increased attention due to their potential in fundamental studies in physics, chemistry and biology, and in practical applications, such as negative refractive index media, molecule sensors, and modulators.
Author Qiu, Meng
Tang, Zhixiang
Zhang, Lei
Qiu, Cheng‐Wei
Jin, Wei
Lei, Dang Yuan
Author_xml – sequence: 1
  givenname: Meng
  surname: Qiu
  fullname: Qiu, Meng
  organization: The Hong Kong Polytechnic University
– sequence: 2
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  organization: Xi'an Jiaotong University
– sequence: 3
  givenname: Zhixiang
  surname: Tang
  fullname: Tang, Zhixiang
  organization: Hunan University
– sequence: 4
  givenname: Wei
  surname: Jin
  fullname: Jin, Wei
  organization: The Hong Kong Polytechnic University
– sequence: 5
  givenname: Cheng‐Wei
  orcidid: 0000-0003-0274-9982
  surname: Qiu
  fullname: Qiu, Cheng‐Wei
  email: chengwei.qiu@nus.edu.sg
  organization: NUS Suzhou Research Institute (NUSRI)
– sequence: 6
  givenname: Dang Yuan
  surname: Lei
  fullname: Lei, Dang Yuan
  email: dangyuan.lei@polyu.edu.hk
  organization: The Hong Kong Polytechnic University
BookMark eNqFkMFrwjAUxsNwMHW77lzYue69JG3sUXRugm6XDXYLaZtipDYuSRH_eysOB4Ox03vwvt_7-L4B6TW20YTcI4wQgD6qstqOKOAYGHJxRfqYYhozoOPeZcfPGzLwfgOAQjDeJ4LNopUOare2wTamiF5VY31wbRFap320N2EdLZrgTOO763RtnKpNONyS60rVXt99zyH5mD-9T1_i5dvzYjpZxgXrHGLK0lKBVgqTtMRMc0GrsaoANWa0LHhOeVkKBSCyRGidYJXnmOpUCY00Lyo2JA_nvztnv1rtg9zY1jWdpaRIswQh5aJTjc6qwlnvna7kzpmtcgeJIE_lyFM58lJOB_BfQGGCCsZ2SZWp_8ayM7Y3tT78YyIns_nqhz0CKKd7fQ
CitedBy_id crossref_primary_10_1039_D3NR00055A
crossref_primary_10_1038_s41467_023_37048_0
crossref_primary_10_1103_PhysRevApplied_23_064027
crossref_primary_10_1002_adpr_202000050
crossref_primary_10_1016_j_jcis_2024_08_215
crossref_primary_10_1364_PRJ_507081
crossref_primary_10_1002_adma_201907983
crossref_primary_10_1016_j_optlastec_2024_111995
crossref_primary_10_1002_ange_201902673
crossref_primary_10_1016_j_scib_2021_04_007
crossref_primary_10_1002_lpor_202500080
crossref_primary_10_1016_j_jcis_2022_06_160
crossref_primary_10_1002_adom_201901233
crossref_primary_10_1002_adom_202000012
crossref_primary_10_1002_adom_202101191
crossref_primary_10_1002_adma_202206700
crossref_primary_10_1109_MAP_2019_2955698
crossref_primary_10_1002_adma_201907151
crossref_primary_10_1016_j_mtnano_2025_100664
crossref_primary_10_1002_adfm_202412985
crossref_primary_10_1002_smll_201900483
crossref_primary_10_1021_acsanm_4c04748
crossref_primary_10_1364_AO_387150
crossref_primary_10_1002_lpor_202100526
crossref_primary_10_1063_5_0147417
crossref_primary_10_1002_adom_201801477
crossref_primary_10_1002_lpor_202501164
crossref_primary_10_1515_nanoph_2019_0061
crossref_primary_10_1007_s40820_022_01005_1
crossref_primary_10_1002_adom_202002002
crossref_primary_10_1039_C9NR09722H
crossref_primary_10_1002_adom_202300853
crossref_primary_10_1016_j_molstruc_2020_128362
crossref_primary_10_1016_j_trechm_2021_02_004
crossref_primary_10_1021_acsphotonics_5c00363
crossref_primary_10_1016_j_optlastec_2025_112473
crossref_primary_10_1063_5_0238859
crossref_primary_10_1039_D0NR01928C
crossref_primary_10_1039_D5TC02438B
crossref_primary_10_1002_adom_202202865
crossref_primary_10_1002_adom_202200249
crossref_primary_10_1002_adom_202400593
crossref_primary_10_1016_j_optcom_2020_126405
crossref_primary_10_1088_0256_307X_42_3_034202
crossref_primary_10_1016_j_snb_2021_130122
crossref_primary_10_1515_nanoph_2020_0130
crossref_primary_10_1515_nanoph_2019_0079
crossref_primary_10_1002_andp_201900398
crossref_primary_10_1002_cplu_202500481
crossref_primary_10_1109_JLT_2024_3458988
crossref_primary_10_1002_lpor_202401268
crossref_primary_10_1016_j_optlaseng_2022_106959
crossref_primary_10_1002_adma_202001330
crossref_primary_10_1002_andp_201900073
crossref_primary_10_3390_sym11040474
crossref_primary_10_1002_lpor_201800312
crossref_primary_10_1016_j_eml_2021_101562
crossref_primary_10_3390_app131910590
crossref_primary_10_1515_nanoph_2018_0183
crossref_primary_10_1038_s41467_021_21565_x
crossref_primary_10_1002_chem_202400436
crossref_primary_10_1063_5_0085981
crossref_primary_10_1364_PRJ_424477
crossref_primary_10_1002_adom_202202658
crossref_primary_10_1002_anie_201814282
crossref_primary_10_1088_1361_6463_ac6e9f
crossref_primary_10_1021_acsmaterialslett_5c00465
crossref_primary_10_1002_adma_202107325
crossref_primary_10_1002_adom_201900247
crossref_primary_10_1016_j_mtchem_2025_102889
crossref_primary_10_1088_1361_6463_ad6f20
crossref_primary_10_3390_photonics9060402
crossref_primary_10_1002_lpor_202200370
crossref_primary_10_29026_oea_2022_200098
crossref_primary_10_3390_cryst11050518
crossref_primary_10_3788_COL202523_053605
crossref_primary_10_1002_adfm_202201927
crossref_primary_10_1038_s42254_025_00829_1
crossref_primary_10_1002_adma_201907077
crossref_primary_10_1002_anie_201902673
crossref_primary_10_1002_aic_17438
crossref_primary_10_1002_pssr_202100571
crossref_primary_10_1103_PhysRevApplied_16_L031001
crossref_primary_10_1016_j_optcom_2022_128122
crossref_primary_10_1002_adma_202107917
crossref_primary_10_1088_1361_6528_ac297f
crossref_primary_10_1002_adma_202002570
crossref_primary_10_1002_adom_201900617
crossref_primary_10_3389_fnano_2024_1392694
crossref_primary_10_1002_ange_201814282
crossref_primary_10_1002_lpor_202500129
crossref_primary_10_1016_j_cis_2021_102376
crossref_primary_10_1038_s41377_020_00367_8
Cites_doi 10.1021/nl403705k
10.1063/1.439524
10.1103/PhysRevLett.107.257401
10.1021/nl3041355
10.1021/nl9021623
10.1038/ncomms1877
10.1126/science.1104467
10.1021/jz200279x
10.1364/OME.1.000046
10.1063/1.4829740
10.1021/acsnano.5b04552
10.1002/adfm.201602800
10.1103/PhysRevLett.95.123904
10.1103/PhysRevLett.115.057401
10.1021/jacs.6b00958
10.1364/OL.35.001593
10.1016/j.colsurfa.2010.11.015
10.1002/adom.201300323
10.1038/ncomms9102
10.1038/srep05864
10.1021/nn2023478
10.1088/0957-4484/27/41/412001
10.1039/9781839168932
10.1002/adma.201300840
10.1364/OL.32.000856
10.1021/ja511333q
10.1021/acs.nanolett.5b04270
10.1364/OL.34.000632
10.1021/ja209861x
10.1103/PhysRevB.81.235126
10.1103/PhysRevLett.104.127401
10.1364/OL.34.002501
10.1103/PhysRevB.49.14643
10.1021/la304122f
10.1103/PhysRevLett.95.227401
10.1103/PhysRevB.79.035407
10.1364/OE.22.019936
10.1126/science.288.5470.1404
10.1038/nature21037
10.1021/nl4013776
10.1021/nl9041033
10.1103/PhysRevLett.104.253902
10.1103/PhysRev.104.254
10.1021/acs.nanolett.5b03970
10.1002/adma.201501816
10.1021/nl402782d
10.1038/lsa.2017.158
10.1021/nl900726s
10.1364/OE.23.033065
10.1021/ph5002632
10.1021/ja3066336
10.1007/978-3-540-76886-9
10.1038/nphoton.2009.4
10.1021/cr200061k
10.1002/adfm.201502429
10.1126/science.1210713
10.1021/nl5042325
10.1103/PhysRevE.70.016608
10.1016/B978-012121682-5/50010-9
10.1103/PhysRevLett.97.177401
10.1021/ja5018199
10.1002/chem.200401081
10.1021/ja808570g
10.1038/s41586-018-0034-1
10.1103/PhysRevLett.104.163901
10.1063/1.4876964
10.1038/s41467-017-02268-8
10.1080/10587259408039274
10.1103/PhysRevB.89.125105
10.1186/s40580-015-0058-2
10.1103/PhysRevLett.102.023901
10.1063/1.1724854
10.1103/PhysRev.161.1483
10.1021/ac504017f
10.1364/OL.40.003986
10.1021/ja501642p
10.1103/PhysRevB.79.121104
10.1021/nl202565e
10.1364/OE.21.026244
10.1002/adma.201004114
10.1109/MAP.1988.6086107
10.1002/adom.201500194
10.1021/jacs.5b10309
10.1126/science.1177031
10.1016/j.photonics.2014.10.002
10.1038/ncomms3948
10.1038/ncomms6435
10.1021/nl501032j
10.1103/PhysRevB.79.035321
10.1063/1.3693181
10.1364/OE.18.014553
10.1038/ncomms5441
10.1021/nn304283y
10.1038/nmat4031
10.1021/nl300769x
10.1038/ncomms7484
10.1038/ncomms1908
10.1063/1.2745203
10.1126/science.1172051
10.1002/chir.20179
10.1103/PhysRevLett.102.113902
10.1002/0471784192
10.1038/ncomms9422
10.1038/ncomms10591
10.1002/adma.201606864
10.1021/ja00408a061
10.1515/nanoph-2016-0005
10.1038/ncomms1528
10.1021/acs.nanolett.5b05105
10.1002/adma.201100543
10.1126/science.1089171
10.1021/nn402370x
10.1002/adma.201402293
10.1038/nature10889
10.1039/c3nr06006c
10.1038/ncomms3689
10.1021/j100109a022
10.1002/chir.20056
10.1021/nl101231b
10.1063/1.1342210
10.1088/0957-4484/27/11/115703
10.1038/nmat3685
10.1021/nl404572u
10.1021/nl1038242
10.1063/1.3021082
10.1002/adma.201401021
10.1021/acsphotonics.5b00354
10.1163/156939303322226356
10.1002/adma.201203424
10.1063/1.4789529
10.1021/ja506790w
10.1021/nl400538y
10.1002/adfm.201403161
10.1002/adma.201703410
10.1073/pnas.0909616107
10.1103/PhysRevB.83.035105
10.1038/s41467-017-01337-2
10.1021/ph500318p
10.1021/ph500293u
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201803147
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201803147
ADFM201803147
Genre reviewArticle
GrantInformation_xml – fundername: Hong Kong Polytechnic University
  funderid: 1‐ZVG4
– fundername: NSFC
  funderid: 11604256
– fundername: NSFC
  funderid: 61571186
– fundername: National Natural Science Foundation of China
  funderid: 11474240
– fundername: Young Talent Recruiting Plans of Xi'an Jiaotong University
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMMB
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3177-236da0eaa156d19e472f8af01e192dc4b24dd7a007957ee51fbb16e6a7e12bcf3
IEDL.DBID DRFUL
ISICitedReferencesCount 138
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449706700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Sun Nov 30 05:26:52 EST 2025
Sat Nov 29 07:25:22 EST 2025
Tue Nov 18 22:11:22 EST 2025
Wed Jan 22 16:38:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3177-236da0eaa156d19e472f8af01e192dc4b24dd7a007957ee51fbb16e6a7e12bcf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0274-9982
PQID 2129510647
PQPubID 2045204
PageCount 16
ParticipantIDs proquest_journals_2129510647
crossref_primary_10_1002_adfm_201803147
crossref_citationtrail_10_1002_adfm_201803147
wiley_primary_10_1002_adfm_201803147_ADFM201803147
PublicationCentury 2000
PublicationDate November 7, 2018
PublicationDateYYYYMMDD 2018-11-07
PublicationDate_xml – month: 11
  year: 2018
  text: November 7, 2018
  day: 07
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1994; 256
2010; 10
2012; 483
2013; 4
2010; 107
2010; 18
1967; 161
2010; 104
2014; 26
1997; 1
2013; 7
2013; 8
2012; 12
2014; 136
2011; 111
1964; 40
2014; 22
2014; 137
2018; 7
2012; 134
2015; 138
2014; 14
2014; 13
2012; 24
1956; 104
2012; 100
2011; 2
2010; 35
2011; 1
2011; 83
2007; 90
2013; 103
2013; 102
2004; 306
2016; 16
2011; 5
2011; 134
2011; 374
2016; 5
2009; 79
2016; 7
2015; 115
2005; 95
2009; 102
2017; 541
2016; 27
2005; 17
2016; 26
2005; 11
2013; 29
2017; 8
2013; 25
2013; 21
1981; 103
2011; 11
2003; 17
1988; 30
2007; 32
2014; 1
2014; 5
2014; 4
2004; 70
2014; 2
2000
2013; 13
2015; 40
1980; 72
2013; 12
2011; 23
2000; 288
2014; 6
2009; 325
2015; 2
2015; 13
2011; 334
2015; 15
2015; 6
2006; 97
2015; 5
2015; 3
2010
2008
2006
1994; 49
2017; 29
2003
2009; 131
2010; 81
2015; 9
2008; 93
2014; 89
2014; 87
2009; 34
2015; 23
2015; 25
2015; 27
2012; 3
2011; 107
2018; 556
2004; 16
1993; 97
2009; 9
2016; 138
2003; 302
2012; 6
2009; 3
2001; 78
2014; 104
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
Yokoyama A. (e_1_2_8_126_1) 2014; 4
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
Landau L. D. (e_1_2_8_6_1) 2013
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
Ogier R. (e_1_2_8_125_1) 2015; 5
Nordén B. (e_1_2_8_4_1) 1997
e_1_2_8_80_1
e_1_2_8_131_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
Berova N. (e_1_2_8_7_1) 2000
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 134
  start-page: 146
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: OP321
  year: 2012
  publication-title: Adv. Mater.
– volume: 9
  start-page: 2153
  year: 2009
  publication-title: Nano Lett.
– volume: 15
  start-page: 8336
  year: 2015
  publication-title: Nano Lett.
– volume: 13
  start-page: 6238
  year: 2013
  publication-title: Nano Lett.
– volume: 79
  start-page: 35321
  year: 2009
  publication-title: Phys. Rev. B
– volume: 23
  start-page: 3018
  year: 2011
  publication-title: Adv. Mater.
– volume: 29
  start-page: 867
  year: 2013
  publication-title: Langmuir
– volume: 34
  start-page: 632
  year: 2009
  publication-title: Opt. Lett.
– volume: 6
  start-page: 6484
  year: 2015
  publication-title: Nat. Commun.
– volume: 10
  start-page: 2580
  year: 2010
  publication-title: Nano Lett.
– volume: 161
  start-page: 1483
  year: 1967
  publication-title: Phys. Rev.
– volume: 27
  start-page: 5610
  year: 2015
  publication-title: Adv. Mater.
– volume: 14
  start-page: 2934
  year: 2014
  publication-title: Nano Lett.
– volume: 12
  start-page: 2542
  year: 2012
  publication-title: Nano Lett.
– volume: 131
  start-page: 8455
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 115
  start-page: 57401
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 14
  start-page: 1021
  year: 2014
  publication-title: Nano Lett.
– volume: 136
  start-page: 6446
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 5435
  year: 2014
  publication-title: Nat. Commun.
– volume: 104
  start-page: 163901
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: 1253
  year: 2015
  publication-title: ACS Photonics
– volume: 25
  start-page: 5816
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 1189
  year: 2014
  publication-title: ACS Photonics
– volume: 9
  start-page: 3945
  year: 2009
  publication-title: Nano Lett.
– volume: 7
  start-page: 6321
  year: 2013
  publication-title: ACS Nano
– volume: 13
  start-page: 3256
  year: 2013
  publication-title: Nano Lett.
– volume: 17
  start-page: 421
  year: 2005
  publication-title: Chirality
– volume: 306
  start-page: 1353
  year: 2004
  publication-title: Science
– volume: 97
  start-page: 1383
  year: 1993
  publication-title: J. Phys. Chem.
– volume: 23
  start-page: 33065
  year: 2015
  publication-title: Opt. Express
– volume: 10
  start-page: 2342
  year: 2010
  publication-title: Nano Lett.
– year: 2008
– volume: 8
  year: 2013
– volume: 8
  start-page: 2007
  year: 2017
  publication-title: Nat. Commun.
– volume: 4
  start-page: 2948
  year: 2013
  publication-title: Nat. Commun.
– volume: 25
  start-page: 850
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 4074
  year: 2014
  publication-title: Adv. Mater.
– volume: 104
  start-page: 253902
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 942
  year: 2012
  publication-title: Nat. Commun.
– volume: 81
  start-page: 235126
  year: 2010
  publication-title: Phys. Rev. B
– volume: 78
  start-page: 498
  year: 2001
  publication-title: Appl. Phys. Lett.
– volume: 134
  start-page: 15114
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 157
  year: 2009
  publication-title: Nat. Photonics
– volume: 13
  start-page: 2128
  year: 2013
  publication-title: Nano Lett.
– volume: 95
  start-page: 227401
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 556
  start-page: 360
  year: 2018
  publication-title: Nature
– volume: 103
  start-page: 213101
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 288
  start-page: 1404
  year: 2000
  publication-title: Science
– volume: 83
  start-page: 35105
  year: 2011
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 2077
  year: 2014
  publication-title: Nanoscale
– volume: 104
  start-page: 254
  year: 1956
  publication-title: Phys. Rev.
– volume: 6
  start-page: 10355
  year: 2012
  publication-title: ACS Nano
– volume: 11
  start-page: 6053
  year: 2005
  publication-title: Chem. Eur. J.
– volume: 79
  start-page: 35407
  year: 2009
  publication-title: Phys. Rev. B
– volume: 374
  start-page: 77
  year: 2011
  publication-title: Colloids Surf., A
– volume: 11
  start-page: 701
  year: 2011
  publication-title: Nano Lett.
– volume: 2
  start-page: 517
  year: 2011
  publication-title: Nat. Commun.
– volume: 104
  start-page: 127401
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 95
  start-page: 123904
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 18
  start-page: 14553
  year: 2010
  publication-title: Opt. Express
– year: 2010
– volume: 9
  start-page: 10377
  year: 2015
  publication-title: ACS Nano
– volume: 90
  start-page: 223113
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 541
  start-page: 473
  year: 2017
  publication-title: Nature
– volume: 107
  start-page: 11676
  year: 2010
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 325
  start-page: 1513
  year: 2009
  publication-title: Science
– volume: 2
  start-page: 105
  year: 2014
  publication-title: ACS Photonics
– volume: 1
  start-page: 46
  year: 2011
  publication-title: Opt. Mater. Express
– volume: 72
  start-page: 3396
  year: 1980
  publication-title: J. Chem. Phys.
– volume: 29
  start-page: 1606864
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 510
  year: 2016
  publication-title: Nanophotonics
– volume: 102
  start-page: 43103
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 13
  start-page: 862
  year: 2014
  publication-title: Nat. Mater.
– volume: 49
  start-page: 14643
  year: 1994
  publication-title: Phys. Rev. B
– volume: 302
  start-page: 419
  year: 2003
  publication-title: Science
– volume: 25
  start-page: 3409
  year: 2013
  publication-title: Adv. Mater.
– volume: 138
  start-page: 306
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 334
  start-page: 333
  year: 2011
  publication-title: Science
– volume: 7
  start-page: 10591
  year: 2016
  publication-title: Nat. Commun.
– volume: 136
  start-page: 4788
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 154
  year: 2014
  publication-title: Adv. Opt. Mater.
– volume: 40
  start-page: 160
  year: 1964
  publication-title: J. Chem. Phys.
– volume: 4
  start-page: 2689
  year: 2013
  publication-title: Nat. Commun.
– volume: 16
  start-page: 422
  year: 2004
  publication-title: Chirality
– volume: 12
  start-page: 802
  year: 2013
  publication-title: Nat. Mater.
– volume: 13
  start-page: 600
  year: 2013
  publication-title: Nano Lett.
– volume: 17
  start-page: 695
  year: 2003
  publication-title: J. Electromagn. Waves Appl.
– volume: 23
  start-page: 2657
  year: 2011
  publication-title: Adv. Mater.
– volume: 87
  start-page: 357
  year: 2014
  publication-title: Anal. Chem.
– volume: 103
  start-page: 5590
  year: 1981
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 41019
  year: 2015
  publication-title: Phys. Rev. X
– volume: 107
  start-page: 257401
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 100
  start-page: 101109
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 137
  start-page: 457
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 256
  start-page: 439
  year: 1994
  publication-title: Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A
– volume: 2
  start-page: 846
  year: 2011
  publication-title: J. Phys. Chem. Lett.
– volume: 3
  start-page: 1411
  year: 2015
  publication-title: Adv. Opt. Mater.
– volume: 79
  start-page: 121104
  year: 2009
  publication-title: Phys. Rev. B
– volume: 27
  start-page: 115703
  year: 2016
  publication-title: Nanotechnology
– volume: 29
  start-page: 1703410
  year: 2017
  publication-title: Adv. Mater.
– volume: 102
  start-page: 113902
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: 24
  year: 2015
  publication-title: Nano Convergence
– volume: 325
  start-page: 449
  year: 2009
  publication-title: Science
– volume: 5
  start-page: 4441
  year: 2014
  publication-title: Nat. Commun.
– volume: 70
  start-page: 16608
  year: 2004
  publication-title: Phys. Rev. E
– volume: 26
  start-page: 7807
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 40
  start-page: 3986
  year: 2015
  publication-title: Opt. Lett.
– volume: 5
  start-page: 7411
  year: 2011
  publication-title: ACS Nano
– volume: 7
  start-page: 17158
  year: 2018
  publication-title: Light Sci. Appl.
– volume: 89
  start-page: 125105
  year: 2014
  publication-title: Phys. Rev. B
– volume: 21
  start-page: 26244
  year: 2013
  publication-title: Opt. Express
– volume: 11
  start-page: 4400
  year: 2011
  publication-title: Nano Lett.
– volume: 26
  start-page: 6157
  year: 2014
  publication-title: Adv. Mater.
– volume: 102
  start-page: 23901
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 870
  year: 2012
  publication-title: Nat. Commun.
– year: 2003
– volume: 1
  year: 1997
– year: 2000
– volume: 15
  start-page: 8392
  year: 2015
  publication-title: Nano Lett.
– volume: 1
  start-page: 1074
  year: 2014
  publication-title: ACS Photonics
– volume: 27
  start-page: 412001
  year: 2016
  publication-title: Nanotechnology
– volume: 4
  start-page: 5864
  year: 2014
  publication-title: Sci. Rep.
– volume: 93
  start-page: 191911
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 30
  start-page: 6
  year: 1988
  publication-title: IEEE Antennas Propag. Soc. Newsl.
– volume: 32
  start-page: 856
  year: 2007
  publication-title: Opt. Lett.
– volume: 35
  start-page: 1593
  year: 2010
  publication-title: Opt. Lett.
– volume: 15
  start-page: 4255
  year: 2015
  publication-title: Nano Lett.
– volume: 136
  start-page: 16104
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 104
  start-page: 193107
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 11005
  year: 2014
  publication-title: Phys. Rev. X
– volume: 6
  start-page: 8102
  year: 2015
  publication-title: Nat. Commun.
– volume: 111
  start-page: 3913
  year: 2011
  publication-title: Chem. Rev.
– volume: 13
  start-page: 5277
  year: 2013
  publication-title: Nano Lett.
– year: 2006
– volume: 13
  start-page: 50
  year: 2015
  publication-title: Photonics and Nanostruct. Fundam. Appl.
– volume: 138
  start-page: 5495
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1847
  year: 2017
  publication-title: Nat. Commun.
– volume: 483
  start-page: 311
  year: 2012
  publication-title: Nature
– volume: 6
  start-page: 8422
  year: 2015
  publication-title: Nat. Commun.
– volume: 97
  start-page: 177401
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 34
  start-page: 2501
  year: 2009
  publication-title: Opt. Lett.
– volume: 22
  start-page: 19936
  year: 2014
  publication-title: Opt. Express
– volume: 16
  start-page: 1462
  year: 2016
  publication-title: Nano Lett.
– ident: e_1_2_8_39_1
  doi: 10.1021/nl403705k
– ident: e_1_2_8_16_1
  doi: 10.1063/1.439524
– ident: e_1_2_8_130_1
  doi: 10.1103/PhysRevLett.107.257401
– ident: e_1_2_8_36_1
  doi: 10.1021/nl3041355
– ident: e_1_2_8_128_1
  doi: 10.1021/nl9021623
– ident: e_1_2_8_103_1
  doi: 10.1038/ncomms1877
– ident: e_1_2_8_44_1
  doi: 10.1126/science.1104467
– ident: e_1_2_8_53_1
  doi: 10.1021/jz200279x
– ident: e_1_2_8_131_1
  doi: 10.1364/OME.1.000046
– ident: e_1_2_8_73_1
  doi: 10.1063/1.4829740
– ident: e_1_2_8_106_1
  doi: 10.1021/acsnano.5b04552
– ident: e_1_2_8_85_1
  doi: 10.1002/adfm.201602800
– ident: e_1_2_8_45_1
  doi: 10.1103/PhysRevLett.95.123904
– ident: e_1_2_8_124_1
  doi: 10.1103/PhysRevLett.115.057401
– ident: e_1_2_8_116_1
  doi: 10.1021/jacs.6b00958
– ident: e_1_2_8_96_1
  doi: 10.1364/OL.35.001593
– ident: e_1_2_8_27_1
  doi: 10.1016/j.colsurfa.2010.11.015
– ident: e_1_2_8_76_1
  doi: 10.1002/adom.201300323
– ident: e_1_2_8_142_1
  doi: 10.1038/ncomms9102
– ident: e_1_2_8_55_1
  doi: 10.1038/srep05864
– volume-title: Circular Dichroism and Linear Dichroism
  year: 1997
  ident: e_1_2_8_4_1
– ident: e_1_2_8_90_1
  doi: 10.1021/nn2023478
– ident: e_1_2_8_41_1
  doi: 10.1088/0957-4484/27/41/412001
– ident: e_1_2_8_5_1
  doi: 10.1039/9781839168932
– ident: e_1_2_8_139_1
  doi: 10.1002/adma.201300840
– ident: e_1_2_8_51_1
  doi: 10.1364/OL.32.000856
– ident: e_1_2_8_107_1
  doi: 10.1021/ja511333q
– ident: e_1_2_8_138_1
  doi: 10.1021/acs.nanolett.5b04270
– ident: e_1_2_8_34_1
  doi: 10.1364/OL.34.000632
– ident: e_1_2_8_119_1
  doi: 10.1021/ja209861x
– volume-title: Circular Dichroism: Principles and Applications
  year: 2000
  ident: e_1_2_8_7_1
– ident: e_1_2_8_59_1
  doi: 10.1103/PhysRevB.81.235126
– ident: e_1_2_8_129_1
  doi: 10.1103/PhysRevLett.104.127401
– ident: e_1_2_8_94_1
  doi: 10.1364/OL.34.002501
– volume: 5
  start-page: 41019
  year: 2015
  ident: e_1_2_8_125_1
  publication-title: Phys. Rev. X
– ident: e_1_2_8_122_1
  doi: 10.1103/PhysRevB.49.14643
– ident: e_1_2_8_86_1
  doi: 10.1021/la304122f
– ident: e_1_2_8_22_1
  doi: 10.1103/PhysRevLett.95.227401
– ident: e_1_2_8_47_1
  doi: 10.1103/PhysRevB.79.035407
– ident: e_1_2_8_66_1
  doi: 10.1364/OE.22.019936
– ident: e_1_2_8_17_1
  doi: 10.1126/science.288.5470.1404
– ident: e_1_2_8_28_1
  doi: 10.1038/nature21037
– ident: e_1_2_8_105_1
  doi: 10.1021/nl4013776
– ident: e_1_2_8_11_1
  doi: 10.1021/nl9041033
– ident: e_1_2_8_97_1
  doi: 10.1103/PhysRevLett.104.253902
– ident: e_1_2_8_2_1
  doi: 10.1103/PhysRev.104.254
– ident: e_1_2_8_35_1
  doi: 10.1021/acs.nanolett.5b03970
– ident: e_1_2_8_91_1
  doi: 10.1002/adma.201501816
– ident: e_1_2_8_84_1
  doi: 10.1021/nl402782d
– ident: e_1_2_8_88_1
  doi: 10.1038/lsa.2017.158
– ident: e_1_2_8_113_1
  doi: 10.1021/nl900726s
– ident: e_1_2_8_81_1
  doi: 10.1364/OE.23.033065
– ident: e_1_2_8_115_1
  doi: 10.1021/ph5002632
– ident: e_1_2_8_112_1
  doi: 10.1021/ja3066336
– ident: e_1_2_8_3_1
  doi: 10.1007/978-3-540-76886-9
– ident: e_1_2_8_95_1
  doi: 10.1038/nphoton.2009.4
– ident: e_1_2_8_14_1
  doi: 10.1021/cr200061k
– ident: e_1_2_8_24_1
  doi: 10.1002/adfm.201502429
– ident: e_1_2_8_12_1
  doi: 10.1126/science.1210713
– ident: e_1_2_8_134_1
  doi: 10.1021/nl5042325
– ident: e_1_2_8_62_1
  doi: 10.1103/PhysRevE.70.016608
– ident: e_1_2_8_120_1
  doi: 10.1016/B978-012121682-5/50010-9
– ident: e_1_2_8_46_1
  doi: 10.1103/PhysRevLett.97.177401
– ident: e_1_2_8_118_1
  doi: 10.1021/ja5018199
– ident: e_1_2_8_18_1
  doi: 10.1002/chem.200401081
– ident: e_1_2_8_111_1
  doi: 10.1021/ja808570g
– ident: e_1_2_8_87_1
  doi: 10.1038/s41586-018-0034-1
– ident: e_1_2_8_42_1
  doi: 10.1103/PhysRevLett.104.163901
– ident: e_1_2_8_80_1
  doi: 10.1063/1.4876964
– ident: e_1_2_8_30_1
  doi: 10.1038/s41467-017-02268-8
– ident: e_1_2_8_19_1
  doi: 10.1080/10587259408039274
– ident: e_1_2_8_93_1
  doi: 10.1103/PhysRevB.89.125105
– ident: e_1_2_8_58_1
  doi: 10.1186/s40580-015-0058-2
– ident: e_1_2_8_49_1
  doi: 10.1103/PhysRevLett.102.023901
– ident: e_1_2_8_15_1
  doi: 10.1063/1.1724854
– ident: e_1_2_8_1_1
  doi: 10.1103/PhysRev.161.1483
– ident: e_1_2_8_26_1
  doi: 10.1021/ac504017f
– ident: e_1_2_8_68_1
  doi: 10.1364/OL.40.003986
– ident: e_1_2_8_104_1
  doi: 10.1021/ja501642p
– ident: e_1_2_8_48_1
  doi: 10.1103/PhysRevB.79.121104
– ident: e_1_2_8_89_1
  doi: 10.1021/nl202565e
– ident: e_1_2_8_65_1
  doi: 10.1364/OE.21.026244
– ident: e_1_2_8_75_1
  doi: 10.1002/adma.201004114
– ident: e_1_2_8_40_1
  doi: 10.1109/MAP.1988.6086107
– ident: e_1_2_8_69_1
  doi: 10.1002/adom.201500194
– ident: e_1_2_8_144_1
  doi: 10.1021/jacs.5b10309
– ident: e_1_2_8_54_1
  doi: 10.1126/science.1177031
– ident: e_1_2_8_82_1
  doi: 10.1016/j.photonics.2014.10.002
– ident: e_1_2_8_140_1
  doi: 10.1038/ncomms3948
– ident: e_1_2_8_56_1
  doi: 10.1038/ncomms6435
– ident: e_1_2_8_83_1
  doi: 10.1021/nl501032j
– ident: e_1_2_8_60_1
  doi: 10.1103/PhysRevB.79.035321
– ident: e_1_2_8_64_1
  doi: 10.1063/1.3693181
– ident: e_1_2_8_63_1
  doi: 10.1364/OE.18.014553
– ident: e_1_2_8_92_1
  doi: 10.1038/ncomms5441
– ident: e_1_2_8_38_1
  doi: 10.1021/nn304283y
– ident: e_1_2_8_137_1
  doi: 10.1038/nmat4031
– ident: e_1_2_8_37_1
  doi: 10.1021/nl300769x
– ident: e_1_2_8_77_1
  doi: 10.1038/ncomms7484
– ident: e_1_2_8_133_1
  doi: 10.1038/ncomms1908
– ident: e_1_2_8_50_1
  doi: 10.1063/1.2745203
– ident: e_1_2_8_9_1
  doi: 10.1126/science.1172051
– ident: e_1_2_8_123_1
  doi: 10.1002/chir.20179
– ident: e_1_2_8_33_1
  doi: 10.1103/PhysRevLett.102.113902
– ident: e_1_2_8_61_1
  doi: 10.1002/0471784192
– ident: e_1_2_8_136_1
  doi: 10.1038/ncomms9422
– ident: e_1_2_8_141_1
  doi: 10.1038/ncomms10591
– ident: e_1_2_8_143_1
  doi: 10.1002/adma.201606864
– ident: e_1_2_8_20_1
  doi: 10.1021/ja00408a061
– ident: e_1_2_8_67_1
  doi: 10.1515/nanoph-2016-0005
– ident: e_1_2_8_10_1
  doi: 10.1038/ncomms1528
– ident: e_1_2_8_135_1
  doi: 10.1021/acs.nanolett.5b05105
– ident: e_1_2_8_70_1
  doi: 10.1002/adma.201100543
– ident: e_1_2_8_13_1
  doi: 10.1126/science.1089171
– ident: e_1_2_8_78_1
  doi: 10.1021/nn402370x
– ident: e_1_2_8_132_1
  doi: 10.1002/adma.201402293
– ident: e_1_2_8_117_1
  doi: 10.1038/nature10889
– ident: e_1_2_8_102_1
  doi: 10.1039/c3nr06006c
– ident: e_1_2_8_108_1
  doi: 10.1038/ncomms3689
– volume: 4
  start-page: 11005
  year: 2014
  ident: e_1_2_8_126_1
  publication-title: Phys. Rev. X
– ident: e_1_2_8_121_1
  doi: 10.1021/j100109a022
– ident: e_1_2_8_21_1
  doi: 10.1002/chir.20056
– ident: e_1_2_8_109_1
  doi: 10.1021/nl101231b
– ident: e_1_2_8_52_1
  doi: 10.1063/1.1342210
– ident: e_1_2_8_74_1
  doi: 10.1088/0957-4484/27/11/115703
– ident: e_1_2_8_71_1
  doi: 10.1038/nmat3685
– ident: e_1_2_8_98_1
  doi: 10.1021/nl404572u
– ident: e_1_2_8_29_1
  doi: 10.1021/nl1038242
– ident: e_1_2_8_32_1
  doi: 10.1063/1.3021082
– volume-title: Electrodynamics of Continuous Media
  year: 2013
  ident: e_1_2_8_6_1
– ident: e_1_2_8_127_1
  doi: 10.1002/adma.201401021
– ident: e_1_2_8_100_1
  doi: 10.1021/acsphotonics.5b00354
– ident: e_1_2_8_43_1
  doi: 10.1163/156939303322226356
– ident: e_1_2_8_79_1
  doi: 10.1002/adma.201203424
– ident: e_1_2_8_99_1
  doi: 10.1063/1.4789529
– ident: e_1_2_8_25_1
  doi: 10.1021/ja506790w
– ident: e_1_2_8_114_1
  doi: 10.1021/nl400538y
– ident: e_1_2_8_23_1
  doi: 10.1002/adfm.201403161
– ident: e_1_2_8_31_1
  doi: 10.1002/adma.201703410
– ident: e_1_2_8_8_1
  doi: 10.1073/pnas.0909616107
– ident: e_1_2_8_57_1
  doi: 10.1103/PhysRevB.83.035105
– ident: e_1_2_8_101_1
  doi: 10.1038/s41467-017-01337-2
– ident: e_1_2_8_72_1
  doi: 10.1021/ph500318p
– ident: e_1_2_8_110_1
  doi: 10.1021/ph500293u
SSID ssj0017734
Score 2.6095479
SecondaryResourceType review_article
Snippet Chirality is a universal geometric property in both micro‐ and macroworlds. Recently, optical chiral effects have drawn increased attention due to their great...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms chiral materials
Chirality
Materials science
metamaterials
nanofabrication
nano‐optics
Optical properties
plasmonic systems
Title 3D Metaphotonic Nanostructures with Intrinsic Chirality
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201803147
https://www.proquest.com/docview/2129510647
Volume 28
WOSCitedRecordID wos000449706700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6edCD3-J0Sg-Cp7AmTZv2ODaHghsiDnYr-WSCdGOr_v2-tF23HUTQW0tfQ3kfeb8kfb-H0J2v_cQqkmCuA4qZlgwnofSxkVzRIPJNIGTRbIKPRvFkkrxsVPGX_BD1hpuLjGK-dgEu5LKzJg0V2rpKchI7Ana-i5oUnJc1ULP_Ohg_1ycJnJcnyxFx_3iRyYq40aed7RG2E9MabW5i1iLpDI7-_7nH6LACnF639JATtGOyU3SwQUN4hnjQ94YmF_PpLHdMuR5MubOSWPYTVuOe26v1nrIcpMGmXm_6vijQ-zkaDx7eeo-4aqiAFcAEjkH5WvhGCFi0aZIYxqmNhfWJAZynFZOUac0FwIYk5MaExEpJIhMJbgiVygYXqJHNMnOJvJDIgPqARYSyjMkgsVIAcgQwqMG-sW4hvNJmqiq2cdf04iMteZJp6hSS1gppoftafl7ybPwo2V4ZJ63ibZlCAnZQMXKPaWGGX0ZJu_3BsL67-stL12jfXReFibyNGmAWc4P21Ff-vlzcVn74DWgG3P4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8IwFH9RMFEPfhtR1B1MPDWsXbduRwISiECMgYTb0q5dIDGDwPTvt93GgIMxMR63vTbL-2h_fe37FeDJlnYQRzhATDoEUSkoClxhIyVYRBzPVg4X2WUTbDj0J5PgrThNaGphcn6IMuFmIiMbr02Am4R0Y8MaymVsSsmxbxjY2T5UqfYltwLV9ntn3C-3EhjLt5Y9bA554cmaudEmjd0edmemDdzcBq3ZrNM5_Yf_PYOTAnJazdxHzmFPJRdwvEVEeAnMaVsDlfLFdJ4arlxLD7rznFr2U6_HLZOttXpJqqW1Va3WdLbM8PsVjDsvo1YXFVcqoEgDBYa0-iW3Fed62SZxoCgjsc9jGyuN9GREBaFSMq6BQ-AypVwcC4E95XGmMBFR7FxDJZkn6gYsFwuH2BqN8CimVDhBLLjGjhoOSm1hX9YArdUZRgXfuLn24iPMmZJJaBQSlgqpwXMpv8iZNn6UrK-tExYRtwr1FGzAomc-k8wOv_QSNtudQfl0-5dGj3DYHQ36Yb83fL2DI_M-K1NkdahoE6l7OIi-0tlq-VA45Te3rODu
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60FdGDb7FaNQfB02J289jkWFqDxbYUsdDbsk9akLS00d_vbpKm7UEE8ZhkdgkzOzvfPuYbAB5c6cZaoBgS6WHoS-7DOOAuVJwI7IWu8hjPi02QwSAaj-NheZvQ5sIU_BDVhpv1jHy-tg6u5lI_rVlDmdQ2lRxFloGd7IK6H8Sh8c165y0Z9aqjBEKKo-UQ2UteaLxibnTx03YP25FpDTc3QWsedZLjf_jfE3BUQk6nVYyRU7Cj0jNwuEFEeA6I13H6KmPzySyzXLmOmXRnBbXsp1mPO3a31ummmZE2VnXak-kix-8XYJQ8v7dfYFlSAQoDFAg06pfMVYyZZZtEsfIJ1hHTLlIG6Unhc-xLSZgBDnFAlAqQ5hyFKmREIcyF9i5BLZ2l6go4AeIedg0aYUL7PvdizZnBjgYOSmPhSDYAXKmTipJv3Ja9-KAFUzKmViG0UkgDPFby84Jp40fJ5so6tPS4JTUh2ILF0H7GuR1-6YW2Okm_err-S6N7sD_sJLTXHbzegAP7Os9SJE1QMxZSt2BPfGXT5eKuHJPfbrLgaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Metaphotonic+Nanostructures+with+Intrinsic+Chirality&rft.jtitle=Advanced+functional+materials&rft.au=Qiu%2C+Meng&rft.au=Zhang%2C+Lei&rft.au=Tang%2C+Zhixiang&rft.au=Jin%2C+Wei&rft.date=2018-11-07&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=45&rft_id=info:doi/10.1002%2Fadfm.201803147&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201803147
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon