Isogenous Asymmetric–Symmetric Acceptors Enable Efficient Ternary Organic Solar Cells with Thin and 300 nm Thick Active Layers Simultaneously
Integrating desirable light absorption, energy levels, and morphology in one matrix is always the aspiration to construct high‐performance organic solar cells (OSCs). Herein, an asymmetric acceptor Y6‐1O is incorporated into the binary blends of acceptor Y7‐BO and donor PM6 to prepare ternary OSCs....
Uložené v:
| Vydané v: | Advanced functional materials Ročník 32; číslo 26 |
|---|---|
| Hlavní autori: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken
Wiley Subscription Services, Inc
01.06.2022
|
| Predmet: | |
| ISSN: | 1616-301X, 1616-3028 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Integrating desirable light absorption, energy levels, and morphology in one matrix is always the aspiration to construct high‐performance organic solar cells (OSCs). Herein, an asymmetric acceptor Y6‐1O is incorporated into the binary blends of acceptor Y7‐BO and donor PM6 to prepare ternary OSCs. Two isogenous asymmetric–symmetric acceptors with similar chemical skeletons tend to form alloy‐like state in blends due to their good compatibility, which contributes to optimizing the morphology for efficient charge generation and extraction. The complementary absorption of two acceptors helps to improve the photon harvesting of ternary blends, and the higher lowest unoccupied molecular orbital (LUMO) energy level of Y6‐1O offers the chance to uplift the mixed LUMO energy levels of acceptors. Combining the aforesaid benefits, the ternary OSCs with 10 wt% Y6‐1O produce a top‐ranked power conversion efficiency (PCE) of 18.11% with simultaneously elevated short‐circuit current density, open‐circuit voltage, and fill factor in comparison to Y7‐BO‐based binary devices. Furthermore, the optimized ternary OSCs with ≈300 nm active layers obtain a champion PCE of 16.61%, which is the highest value for thick‐film devices reported so far. This work puts forward an avenue for further boosting the performance of OSCs with two isogenous acceptors but different asymmetric structures.
The synergistically optimized light absorption, energy levels, and morphology, by incorporating an asymmetric isogenous acceptor Y6‐1O in PM6:Y7‐BO‐based ternary organic solar cells (OSCs), is demonstrated. The optimized ternary OSCs produce a top‐ranked power conversion efficiency (PCE) of 18.11% and with ≈300 nm active layers obtain a champion PCE of 16.61%, which is the highest value for thick‐film devices reported so far. |
|---|---|
| AbstractList | Integrating desirable light absorption, energy levels, and morphology in one matrix is always the aspiration to construct high‐performance organic solar cells (OSCs). Herein, an asymmetric acceptor Y6‐1O is incorporated into the binary blends of acceptor Y7‐BO and donor PM6 to prepare ternary OSCs. Two isogenous asymmetric–symmetric acceptors with similar chemical skeletons tend to form alloy‐like state in blends due to their good compatibility, which contributes to optimizing the morphology for efficient charge generation and extraction. The complementary absorption of two acceptors helps to improve the photon harvesting of ternary blends, and the higher lowest unoccupied molecular orbital (LUMO) energy level of Y6‐1O offers the chance to uplift the mixed LUMO energy levels of acceptors. Combining the aforesaid benefits, the ternary OSCs with 10 wt% Y6‐1O produce a top‐ranked power conversion efficiency (PCE) of 18.11% with simultaneously elevated short‐circuit current density, open‐circuit voltage, and fill factor in comparison to Y7‐BO‐based binary devices. Furthermore, the optimized ternary OSCs with ≈300 nm active layers obtain a champion PCE of 16.61%, which is the highest value for thick‐film devices reported so far. This work puts forward an avenue for further boosting the performance of OSCs with two isogenous acceptors but different asymmetric structures. Integrating desirable light absorption, energy levels, and morphology in one matrix is always the aspiration to construct high‐performance organic solar cells (OSCs). Herein, an asymmetric acceptor Y6‐1O is incorporated into the binary blends of acceptor Y7‐BO and donor PM6 to prepare ternary OSCs. Two isogenous asymmetric–symmetric acceptors with similar chemical skeletons tend to form alloy‐like state in blends due to their good compatibility, which contributes to optimizing the morphology for efficient charge generation and extraction. The complementary absorption of two acceptors helps to improve the photon harvesting of ternary blends, and the higher lowest unoccupied molecular orbital (LUMO) energy level of Y6‐1O offers the chance to uplift the mixed LUMO energy levels of acceptors. Combining the aforesaid benefits, the ternary OSCs with 10 wt% Y6‐1O produce a top‐ranked power conversion efficiency (PCE) of 18.11% with simultaneously elevated short‐circuit current density, open‐circuit voltage, and fill factor in comparison to Y7‐BO‐based binary devices. Furthermore, the optimized ternary OSCs with ≈300 nm active layers obtain a champion PCE of 16.61%, which is the highest value for thick‐film devices reported so far. This work puts forward an avenue for further boosting the performance of OSCs with two isogenous acceptors but different asymmetric structures. The synergistically optimized light absorption, energy levels, and morphology, by incorporating an asymmetric isogenous acceptor Y6‐1O in PM6:Y7‐BO‐based ternary organic solar cells (OSCs), is demonstrated. The optimized ternary OSCs produce a top‐ranked power conversion efficiency (PCE) of 18.11% and with ≈300 nm active layers obtain a champion PCE of 16.61%, which is the highest value for thick‐film devices reported so far. Integrating desirable light absorption, energy levels, and morphology in one matrix is always the aspiration to construct high‐performance organic solar cells (OSCs). Herein, an asymmetric acceptor Y6‐1O is incorporated into the binary blends of acceptor Y7‐BO and donor PM6 to prepare ternary OSCs. Two isogenous asymmetric–symmetric acceptors with similar chemical skeletons tend to form alloy‐like state in blends due to their good compatibility, which contributes to optimizing the morphology for efficient charge generation and extraction. The complementary absorption of two acceptors helps to improve the photon harvesting of ternary blends, and the higher lowest unoccupied molecular orbital (LUMO) energy level of Y6‐1O offers the chance to uplift the mixed LUMO energy levels of acceptors. Combining the aforesaid benefits, the ternary OSCs with 10 wt% Y6‐1O produce a top‐ranked power conversion efficiency (PCE) of 18.11% with simultaneously elevated short‐circuit current density, open‐circuit voltage, and fill factor in comparison to Y7‐BO‐based binary devices. Furthermore, the optimized ternary OSCs with ≈300 nm active layers obtain a champion PCE of 16.61%, which is the highest value for thick‐film devices reported so far. This work puts forward an avenue for further boosting the performance of OSCs with two isogenous acceptors but different asymmetric structures. |
| Author | Zhou, Xue‐Jiao Yang, Can An, Qiaoshi Ryu, Hwa Sook Zhi, Hong‐Fu Li, Xiong Woo, Han Young Wang, Jin‐Liang Bai, Hai‐Rui Jiang, Mengyun Yang, Jie |
| Author_xml | – sequence: 1 givenname: Hai‐Rui surname: Bai fullname: Bai, Hai‐Rui organization: Beijing Institute of Technology – sequence: 2 givenname: Qiaoshi surname: An fullname: An, Qiaoshi email: qsan@bit.edu.cn organization: Beijing Institute of Technology – sequence: 3 givenname: Mengyun surname: Jiang fullname: Jiang, Mengyun organization: Beijing Institute of Technology – sequence: 4 givenname: Hwa Sook surname: Ryu fullname: Ryu, Hwa Sook organization: Korea University – sequence: 5 givenname: Jie surname: Yang fullname: Yang, Jie organization: Beijing Institute of Technology – sequence: 6 givenname: Xue‐Jiao surname: Zhou fullname: Zhou, Xue‐Jiao organization: Beijing Technology and Business University – sequence: 7 givenname: Hong‐Fu surname: Zhi fullname: Zhi, Hong‐Fu organization: Beijing Institute of Technology – sequence: 8 givenname: Can surname: Yang fullname: Yang, Can organization: Beijing Institute of Technology – sequence: 9 givenname: Xiong surname: Li fullname: Li, Xiong organization: Beijing Technology and Business University – sequence: 10 givenname: Han Young surname: Woo fullname: Woo, Han Young email: hywoo@korea.ac.kr organization: Korea University – sequence: 11 givenname: Jin‐Liang orcidid: 0000-0001-5726-3336 surname: Wang fullname: Wang, Jin‐Liang email: jinlwang@bit.edu.cn organization: Beijing Institute of Technology |
| BookMark | eNqFkM1qGzEUhUVJoPnptmtB13auNMOMZmkcJw24ZGEHshtk-cpRqpFcSU6YXR8hkBfIs_RR-iSVcepCoGR1D5fzHe49x-TAeYeEfGYwZAD8TC51N-TAOYCA-gM5YhWrBgVwcbDX7PYjOY7xHoDVdVEekaer6Ffo_CbSUey7DlMw6vfP59lfTUdK4Tr5EOnEyYVFOtHaKIMu0TkGJ0NPr8NKumydeSsDHaO1kT6adEfnd8ZR6Za0APj14rrtQn3Pkck8IJ3KHnPszHQbm6TDfITtT8mhljbip9d5Qm4uJvPx18H0-vJqPJoOVJFPH3BWlqAXywVvSikLpUslKyka1QDXYiGAL7ey0EyUHBVw1FLURa0ZqkZpUZyQL7vcdfA_NhhTe-83-R0bW14JKHNuXWVXuXOp4GMMqFtlkkzGuxSksS2Ddtt9u-2-3XefseEbbB1Ml6v6P9DsgEdjsX_H3Y7OL779Y_8AKbSdPQ |
| CitedBy_id | crossref_primary_10_1039_D3EE04300B crossref_primary_10_1016_j_polymer_2023_126605 crossref_primary_10_1016_j_dyepig_2025_113151 crossref_primary_10_1016_j_mser_2024_100916 crossref_primary_10_1002_aenm_202300481 crossref_primary_10_1002_adma_202413125 crossref_primary_10_1016_j_mser_2024_100879 crossref_primary_10_1039_D3PY01383A crossref_primary_10_1016_j_tsf_2024_140541 crossref_primary_10_1016_j_optmat_2023_113890 crossref_primary_10_1002_ange_202313016 crossref_primary_10_1002_ange_202316495 crossref_primary_10_1002_adfm_202212380 crossref_primary_10_1002_adfm_202313744 crossref_primary_10_1038_s41524_025_01608_3 crossref_primary_10_1002_smll_202308863 crossref_primary_10_1002_adma_202211296 crossref_primary_10_1002_pol_20230432 crossref_primary_10_1002_adfm_202415090 crossref_primary_10_1002_adma_202300531 crossref_primary_10_1016_j_optmat_2023_114735 crossref_primary_10_1002_cptc_202300348 crossref_primary_10_1039_D3EE04169G crossref_primary_10_1007_s11426_023_1913_3 crossref_primary_10_1002_solr_202300219 crossref_primary_10_1002_adma_202405718 crossref_primary_10_1002_anie_202209454 crossref_primary_10_1016_j_cej_2025_160359 crossref_primary_10_1016_j_orgel_2025_107262 crossref_primary_10_1039_D3NH00122A crossref_primary_10_1039_D4EE00068D crossref_primary_10_1002_smll_202308216 crossref_primary_10_1016_j_cej_2024_152558 crossref_primary_10_1016_j_cej_2024_149035 crossref_primary_10_1002_aenm_202300784 crossref_primary_10_1002_adfm_202210534 crossref_primary_10_1039_D3EE00186E crossref_primary_10_1002_advs_202403334 crossref_primary_10_1016_j_orgel_2023_106988 crossref_primary_10_3390_en16114494 crossref_primary_10_1002_adfm_202300214 crossref_primary_10_1039_D3EE04281B crossref_primary_10_1002_adfm_202308021 crossref_primary_10_1016_j_cej_2025_159972 crossref_primary_10_1007_s40820_023_01208_0 crossref_primary_10_1002_adfm_202213324 crossref_primary_10_1002_aenm_202406136 crossref_primary_10_1002_solr_202300307 crossref_primary_10_1007_s11426_022_1502_3 crossref_primary_10_1002_cjoc_202400397 crossref_primary_10_1039_D2CP02368G crossref_primary_10_1002_ange_202209454 crossref_primary_10_1007_s10854_023_10838_4 crossref_primary_10_1002_adfm_202313722 crossref_primary_10_1002_pssa_202400364 crossref_primary_10_1002_adma_202305356 crossref_primary_10_1016_j_jphotochem_2023_115285 crossref_primary_10_1002_aenm_202304477 crossref_primary_10_1002_ange_202415332 crossref_primary_10_1016_j_cej_2024_148728 crossref_primary_10_1002_aenm_202302538 crossref_primary_10_1016_j_cplett_2023_140974 crossref_primary_10_1016_j_cplett_2023_140852 crossref_primary_10_1039_D4ME00188E crossref_primary_10_1039_D3RA02225K crossref_primary_10_1002_advs_202404997 crossref_primary_10_1016_j_chemphys_2024_112295 crossref_primary_10_1002_smll_202404734 crossref_primary_10_1002_anie_202313016 crossref_primary_10_1016_j_cej_2024_153183 crossref_primary_10_1016_j_dyepig_2023_111737 crossref_primary_10_1016_j_cej_2023_143938 crossref_primary_10_1002_anie_202316495 crossref_primary_10_1002_cjoc_202300636 crossref_primary_10_1007_s40843_024_3167_7 crossref_primary_10_1007_s10854_023_10888_8 crossref_primary_10_1016_j_jssc_2025_125240 crossref_primary_10_1002_adfm_202304960 crossref_primary_10_1002_adhm_202303222 crossref_primary_10_1002_adfm_202305611 crossref_primary_10_1002_aenm_202301292 crossref_primary_10_1002_solr_202200424 crossref_primary_10_1016_j_nanoen_2023_108501 crossref_primary_10_1002_adma_202307863 crossref_primary_10_1016_j_colsurfa_2022_130818 crossref_primary_10_1002_anie_202415332 crossref_primary_10_1016_j_cej_2023_144063 crossref_primary_10_1039_D5SE00278H |
| Cites_doi | 10.1002/adfm.202000417 10.1039/D1EE02977K 10.1039/D1TA01135A 10.1016/j.nanoen.2020.104964 10.1002/adfm.202108797 10.1038/nenergy.2017.53 10.1002/adfm.202009363 10.1002/aenm.202102596 10.1038/s41560-019-0448-5 10.1016/j.joule.2021.01.011 10.1002/adfm.202107934 10.1016/j.joule.2019.01.004 10.1002/adfm.202110743 10.1038/s41566-018-0104-9 10.1038/nphoton.2015.9 10.1021/jacs.1c00211 10.1002/smll.202104215 10.1016/j.carbon.2020.09.048 10.1002/advs.202004262 10.1038/s41467-020-20580-8 10.1021/jacs.0c07083 10.1002/adma.202102635 10.1021/jacs.0c09800 10.1002/ange.202105861 10.1002/anie.201915030 10.1039/D1EE00496D 10.1038/s41566-019-0573-5 10.1038/s41560-018-0234-9 10.1016/j.scib.2020.01.012 10.1016/j.cej.2021.129276 10.1016/j.scib.2020.08.027 10.1002/adma.201908205 10.1093/nsr/nwz200 10.1002/adfm.201908336 10.1002/adfm.202103283 10.1002/aenm.202003141 10.1002/adfm.202108508 10.1016/j.joule.2021.03.020 10.1002/adfm.202102371 10.1126/science.aat2612 10.1016/j.scib.2020.01.001 10.1039/D1EE01832A 10.1038/s41560-021-00820-x 10.1038/s41578-019-0093-4 10.1002/anie.202104766 10.1016/j.joule.2019.09.010 10.1016/j.joule.2019.01.009 10.1002/adfm.202107827 10.1002/aenm.202001404 10.1002/adfm.201800627 10.1016/j.joule.2021.06.020 10.1002/adma.201502110 10.1039/D0NR04867D 10.1002/adfm.202102413 10.1002/adma.202100830 10.1016/j.joule.2021.04.007 10.1002/anie.202100390 10.1002/adma.202008134 10.1016/j.joule.2020.08.011 10.1021/acsenergylett.8b01808 10.1002/adfm.202103944 10.1039/D1TA04742F 10.1093/nsr/nwaa305 10.1002/anie.202101577 10.1002/adfm.202108289 10.1002/adma.202006794 10.1002/adfm.202107756 10.1021/jacs.6b03495 10.1039/D0EE02516J 10.1021/acsenergylett.1c01289 10.1002/aenm.202102172 10.1002/anie.202102622 |
| ContentType | Journal Article |
| Copyright | 2022 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.202200807 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adfm_202200807 ADFM202200807 |
| Genre | article |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 O8X 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3177-21440fbdb294aa3cf4ca6a89c902f8b802dc9023f1842ec02efa8737f1ec9cf83 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 112 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000771897300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Fri Jul 25 04:28:37 EDT 2025 Tue Nov 18 20:41:42 EST 2025 Sat Nov 29 07:16:28 EST 2025 Wed Jan 22 16:22:46 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 26 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3177-21440fbdb294aa3cf4ca6a89c902f8b802dc9023f1842ec02efa8737f1ec9cf83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5726-3336 |
| PQID | 2680429476 |
| PQPubID | 2045204 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2680429476 crossref_citationtrail_10_1002_adfm_202200807 crossref_primary_10_1002_adfm_202200807 wiley_primary_10_1002_adfm_202200807_ADFM202200807 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2021; 9 2018; 361 2021; 8 2021; 6 2018; 28 2019; 4 2021; 5 2017; 2 2019; 3 2020; 142 2020; 59 2020; 14 2020; 13 2008; 10 2020; 12 2020; 10 2020; 32 2021; 143 2020; 76 2015; 9 2021; 14 2020; 7 2018; 3 2020; 4 2021; 32 2021; 31 2015; 27 2021; 12 2021; 33 2021; 11 2020; 30 2022; 12 2021; 171 2022; 15 2016; 138 2022; 32 2021; 133 2020; 65 2018; 12 2021; 60 2022; 428 2022; 18 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_72_1 Spackman M. A. (e_1_2_8_47_1) 2008; 10 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
| References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 428 year: 2022 publication-title: Chem. Eng. J. – volume: 143 start-page: 6123 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 18 year: 2022 publication-title: Small – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 361 start-page: 1094 year: 2018 publication-title: Science – volume: 5 start-page: 1548 year: 2021 publication-title: Joule – volume: 3 start-page: 952 year: 2018 publication-title: Nat. Energy – volume: 8 year: 2021 publication-title: Natl. Sci. Rev. – volume: 5 start-page: 646 year: 2021 publication-title: Joule – volume: 14 start-page: 3945 year: 2021 publication-title: Energy Environ. Sci. – volume: 7 start-page: 1239 year: 2020 publication-title: Natl. Sci. Rev. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 131 year: 2018 publication-title: Nat. Photonics – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 4 start-page: 768 year: 2019 publication-title: Nat. Energy – volume: 59 start-page: 9004 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 138 start-page: 7687 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 605 year: 2021 publication-title: Nat. Energy – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 5 start-page: 2408 year: 2021 publication-title: Joule – volume: 4 start-page: 2223 year: 2020 publication-title: Joule – volume: 3 start-page: 3020 year: 2019 publication-title: Joule – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 76 year: 2020 publication-title: Nano Energy – volume: 3 start-page: 1140 year: 2019 publication-title: Joule – volume: 15 start-page: 320 year: 2022 publication-title: Energy Environ. Sci. – volume: 5 start-page: 1231 year: 2021 publication-title: Joule – volume: 10 start-page: 377 year: 2008 publication-title: CrystEngComm – volume: 65 start-page: 272 year: 2020 publication-title: Sci. Bull. – volume: 13 start-page: 5039 year: 2020 publication-title: Energy Environ. Sci. – volume: 133 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 12 year: 2020 publication-title: Nanoscale – volume: 9 start-page: 6797 year: 2021 publication-title: J. Mater. Chem. A – volume: 65 start-page: 538 year: 2020 publication-title: Sci. Bull. – volume: 65 start-page: 1979 year: 2020 publication-title: Sci. Bull. – volume: 3 start-page: 2967 year: 2018 publication-title: ACS Energy Lett. – volume: 12 start-page: 309 year: 2021 publication-title: Nat. Commun. – volume: 27 start-page: 4655 year: 2015 publication-title: Adv. Mater. – volume: 6 start-page: 2898 year: 2021 publication-title: ACS Energy Lett. – volume: 9 start-page: 190 year: 2015 publication-title: Nat. Photonics – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 32 year: 2021 publication-title: Adv. Funct. Mater. – volume: 171 start-page: 514 year: 2021 publication-title: Carbon – volume: 4 start-page: 229 year: 2019 publication-title: Nat. Rev. Mater. – volume: 15 start-page: 855 year: 2022 publication-title: Energy Environ. Sci. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 846 year: 2019 publication-title: Joule – volume: 14 start-page: 300 year: 2020 publication-title: Nat. Photonics – ident: e_1_2_8_23_1 doi: 10.1002/adfm.202000417 – ident: e_1_2_8_72_1 doi: 10.1039/D1EE02977K – ident: e_1_2_8_59_1 doi: 10.1039/D1TA01135A – ident: e_1_2_8_52_1 doi: 10.1016/j.nanoen.2020.104964 – ident: e_1_2_8_16_1 doi: 10.1002/adfm.202108797 – ident: e_1_2_8_25_1 doi: 10.1038/nenergy.2017.53 – ident: e_1_2_8_57_1 doi: 10.1002/adfm.202009363 – ident: e_1_2_8_28_1 doi: 10.1002/aenm.202102596 – ident: e_1_2_8_2_1 doi: 10.1038/s41560-019-0448-5 – ident: e_1_2_8_58_1 doi: 10.1016/j.joule.2021.01.011 – ident: e_1_2_8_24_1 doi: 10.1002/adfm.202107934 – ident: e_1_2_8_34_1 doi: 10.1016/j.joule.2019.01.004 – ident: e_1_2_8_60_1 doi: 10.1002/adfm.202110743 – ident: e_1_2_8_15_1 doi: 10.1038/s41566-018-0104-9 – ident: e_1_2_8_56_1 doi: 10.1038/nphoton.2015.9 – ident: e_1_2_8_51_1 doi: 10.1021/jacs.1c00211 – ident: e_1_2_8_62_1 doi: 10.1002/smll.202104215 – ident: e_1_2_8_48_1 doi: 10.1016/j.carbon.2020.09.048 – ident: e_1_2_8_49_1 doi: 10.1002/advs.202004262 – ident: e_1_2_8_9_1 doi: 10.1038/s41467-020-20580-8 – ident: e_1_2_8_39_1 doi: 10.1021/jacs.0c07083 – ident: e_1_2_8_6_1 doi: 10.1002/adma.202102635 – ident: e_1_2_8_5_1 doi: 10.1021/jacs.0c09800 – ident: e_1_2_8_22_1 doi: 10.1002/ange.202105861 – ident: e_1_2_8_44_1 doi: 10.1002/anie.201915030 – ident: e_1_2_8_50_1 doi: 10.1039/D1EE00496D – ident: e_1_2_8_3_1 doi: 10.1038/s41566-019-0573-5 – ident: e_1_2_8_13_1 doi: 10.1038/s41560-018-0234-9 – ident: e_1_2_8_26_1 doi: 10.1016/j.scib.2020.01.012 – ident: e_1_2_8_29_1 doi: 10.1016/j.cej.2021.129276 – ident: e_1_2_8_32_1 doi: 10.1016/j.scib.2020.08.027 – ident: e_1_2_8_35_1 doi: 10.1002/adma.201908205 – ident: e_1_2_8_41_1 doi: 10.1093/nsr/nwz200 – ident: e_1_2_8_68_1 doi: 10.1002/adfm.201908336 – ident: e_1_2_8_27_1 doi: 10.1002/adfm.202103283 – ident: e_1_2_8_42_1 doi: 10.1002/aenm.202003141 – ident: e_1_2_8_54_1 doi: 10.1002/adfm.202108508 – ident: e_1_2_8_70_1 doi: 10.1016/j.joule.2021.03.020 – ident: e_1_2_8_31_1 doi: 10.1002/adfm.202102371 – ident: e_1_2_8_1_1 doi: 10.1126/science.aat2612 – ident: e_1_2_8_7_1 doi: 10.1016/j.scib.2020.01.001 – ident: e_1_2_8_33_1 doi: 10.1039/D1EE01832A – volume: 10 start-page: 377 year: 2008 ident: e_1_2_8_47_1 publication-title: CrystEngComm – ident: e_1_2_8_10_1 doi: 10.1038/s41560-021-00820-x – ident: e_1_2_8_12_1 doi: 10.1038/s41578-019-0093-4 – ident: e_1_2_8_36_1 doi: 10.1002/anie.202104766 – ident: e_1_2_8_37_1 doi: 10.1016/j.joule.2019.09.010 – ident: e_1_2_8_61_1 doi: 10.1016/j.joule.2019.01.009 – ident: e_1_2_8_8_1 doi: 10.1002/adfm.202107827 – ident: e_1_2_8_17_1 doi: 10.1002/aenm.202001404 – ident: e_1_2_8_53_1 doi: 10.1002/adfm.201800627 – ident: e_1_2_8_11_1 doi: 10.1016/j.joule.2021.06.020 – ident: e_1_2_8_43_1 doi: 10.1002/adma.201502110 – ident: e_1_2_8_46_1 doi: 10.1039/D0NR04867D – ident: e_1_2_8_38_1 doi: 10.1002/adfm.202102413 – ident: e_1_2_8_69_1 doi: 10.1002/adma.202100830 – ident: e_1_2_8_66_1 doi: 10.1016/j.joule.2021.04.007 – ident: e_1_2_8_73_1 doi: 10.1002/anie.202100390 – ident: e_1_2_8_40_1 doi: 10.1002/adma.202008134 – ident: e_1_2_8_19_1 doi: 10.1016/j.joule.2020.08.011 – ident: e_1_2_8_30_1 doi: 10.1021/acsenergylett.8b01808 – ident: e_1_2_8_20_1 doi: 10.1002/adfm.202103944 – ident: e_1_2_8_71_1 doi: 10.1039/D1TA04742F – ident: e_1_2_8_14_1 doi: 10.1093/nsr/nwaa305 – ident: e_1_2_8_4_1 doi: 10.1002/anie.202101577 – ident: e_1_2_8_65_1 doi: 10.1002/adfm.202108289 – ident: e_1_2_8_63_1 doi: 10.1002/adma.202006794 – ident: e_1_2_8_55_1 doi: 10.1002/adfm.202107756 – ident: e_1_2_8_64_1 doi: 10.1021/jacs.6b03495 – ident: e_1_2_8_18_1 doi: 10.1039/D0EE02516J – ident: e_1_2_8_67_1 doi: 10.1021/acsenergylett.1c01289 – ident: e_1_2_8_21_1 doi: 10.1002/aenm.202102172 – ident: e_1_2_8_45_1 doi: 10.1002/anie.202102622 |
| SSID | ssj0017734 |
| Score | 2.6529772 |
| Snippet | Integrating desirable light absorption, energy levels, and morphology in one matrix is always the aspiration to construct high‐performance organic solar cells... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Asymmetric structures Circuits Electromagnetic absorption Energy conversion efficiency Energy levels Light levels Materials science Mixtures Molecular orbitals Morphology nonfullerene acceptors organic solar cells Photovoltaic cells Solar cells ternary strategy thick films |
| Title | Isogenous Asymmetric–Symmetric Acceptors Enable Efficient Ternary Organic Solar Cells with Thin and 300 nm Thick Active Layers Simultaneously |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202200807 https://www.proquest.com/docview/2680429476 |
| Volume | 32 |
| WOSCitedRecordID | wos000771897300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSsMwFA4yvdAL_8XplFwIXhXTtDbp5dgPCnOIU9hdSdIEhlsnqwq78xEEX8Bn8VF8EnParpsXIuhNSUsaQk5Ozk_O-Q5CJ_qcSEvYwAlVaBxf2AcPfd_R2hCAJ1c-M1mxCdbt8n4_vF7I4s_xIUqHG3BGdl4DgwuZns1BQ0VsIJOcwgU-pJMvQ2aVNb-Wmzftu055k8BYfrMcuBDj5fZnwI2Enn0f4btgmmubizprJnTaG_-f7iZaLxROXM93yBZa0sk2WluAIdxBr5fpOMdqxfV0OhpBkS31-fLWm7VxXUH0y3iS4laWa4VbGfKEFVj4FhyKkynOkzoV7oGtjBt6OEwxOHkxVAbFIomxR8jHezKCD-reDgkHLe4I0PlxbwCRjSLRdhLD6S66a7duGxdOUanBUVb_YA7grhEjY0lDXwhPGV-JQHBLf0INl5zQGJqesfYk1YpQbQRnHjOuVqEy3NtDlWSc6H2ErVC1OqcEzHDpU-lyHnNGlXA9ExBpdBU5MzJFqoAxh2oawygHYKYRrHRUrnQVnZb9H3IAjx971mZUjwpGTiMacBDZPguqiGb0_WWUqN5sX5VvB3_56RCtQjsPSKuhyuPkSR-hFfX8OEgnx8UG_wJq6f61 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSuQwFD7IKKx74d-67Pi3uRC8KqZpbNLLQWdQHIfFGWHuSpomIDvTkakKc7ePsOAL-Cw-ik9iTtupeiELizclDUkIOUnOyfn5DsC-OaKJI2zoRTqyHlfuIyPOPWMsRXhyzYUtkk2IXk8Oh9GvypsQY2FKfIha4YYno7iv8YCjQvrwFTVUpRZDyRla8DGefJGHgZANWDy57Fx1a1OCEKVpOfTRycsfzpEbKTt8P8J7zvQqbr4VWguu01n9hPmuwUolcpJWuUfWYcFkG_D1DRDhN_h7lk9KtFbSymfjMabZ0s9_HvrzMmlp9H-ZTHPSLqKtSLvAnnAsiwxQpTidkTKsU5M-vpbJsRmNcoJqXoK5QYnKUhJQ-vSYjbFC_3ZD4lVLugqlftK_Rt9GlRk3idFsE6467cHxqVflavC0k0CEh8hr1CZpwiKuVKAt1ypU0u0AyqxMJGUpFgPrXpTMaMqMVVIEwvpGR9rK4Ds0sklmfgBxbNVJnQmihiecJb6UqRRMKz-wIU2saYI3p1OsKyBzzKcxiksIZhbjSsf1SjfhoG5_U0J4fNhyZ072uDrKecxCiUybi7AJrCDwP0aJWyedi_pv6386_YQvp4OLbtw9651vwzLWl-5pO9C4nd6ZXVjS97fX-XSv2u0vqkUCtA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3datswFD6MZJTtYn_dWLZu1cVgV6ayrFjyZUhiVpaGsjSQOyPLEoQmTom7Qe72CIW-QJ-lj7InmY7tOO3FKJTdGFlIQuhIOkfn5zsAX0yXpo6woRfpyHpcuY-MOPeMsRThyTUXtkw2IcZjOZtFp7U3IcbCVPgQjcINT0Z5X-MBNxeZPdqhhqrMYig5Qws-xpO3eTfq8ha0Bz_i6agxJQhRmZZDH528_NkWuZGyo_sj3OdMO3HzrtBacp345X-Y7yt4UYucpFftkdfwxORv4PkdIMJ9uDouVhVaK-kVm-US02zpP7-vJ9sy6Wn0f1mtCzIso63IsMSecCyLnKFKcb0hVVinJhN8LZO-WSwKgmpegrlBicozElB6e5MvsUKfuyHxqiUjhVI_mczRt1Hlxk1isXkL03h41v_m1bkaPO0kEOEh8hq1aZayiCsVaMu1CpV0O4AyK1NJWYbFwLoXJTOaMmOVFIGwvtGRtjJ4B618lZv3QBxbdVJniqjhKWepL2UmBdPKD2xIU2s64G3plOgayBzzaSySCoKZJbjSSbPSHfjatL-oIDz-2fJgS_akPspFwkKJTJuLsAOsJPADoyS9QXzS_H14TKdD2DsdxMnoePz9IzzD6so77QBal-uf5hM81b8u58X6c73Z_wIxTAIv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isogenous+Asymmetric%E2%80%93Symmetric+Acceptors+Enable+Efficient+Ternary+Organic+Solar+Cells+with+Thin+and+300%C2%A0nm+Thick+Active+Layers+Simultaneously&rft.jtitle=Advanced+functional+materials&rft.au=Bai%2C+Hai%E2%80%90Rui&rft.au=An%2C+Qiaoshi&rft.au=Jiang%2C+Mengyun&rft.au=Ryu%2C+Hwa+Sook&rft.date=2022-06-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=26&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202200807&rft.externalDBID=10.1002%252Fadfm.202200807&rft.externalDocID=ADFM202200807 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |