Isogenous Asymmetric–Symmetric Acceptors Enable Efficient Ternary Organic Solar Cells with Thin and 300 nm Thick Active Layers Simultaneously

Integrating desirable light absorption, energy levels, and morphology in one matrix is always the aspiration to construct high‐performance organic solar cells (OSCs). Herein, an asymmetric acceptor Y6‐1O is incorporated into the binary blends of acceptor Y7‐BO and donor PM6 to prepare ternary OSCs....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced functional materials Ročník 32; číslo 26
Hlavní autori: Bai, Hai‐Rui, An, Qiaoshi, Jiang, Mengyun, Ryu, Hwa Sook, Yang, Jie, Zhou, Xue‐Jiao, Zhi, Hong‐Fu, Yang, Can, Li, Xiong, Woo, Han Young, Wang, Jin‐Liang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc 01.06.2022
Predmet:
ISSN:1616-301X, 1616-3028
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Integrating desirable light absorption, energy levels, and morphology in one matrix is always the aspiration to construct high‐performance organic solar cells (OSCs). Herein, an asymmetric acceptor Y6‐1O is incorporated into the binary blends of acceptor Y7‐BO and donor PM6 to prepare ternary OSCs. Two isogenous asymmetric–symmetric acceptors with similar chemical skeletons tend to form alloy‐like state in blends due to their good compatibility, which contributes to optimizing the morphology for efficient charge generation and extraction. The complementary absorption of two acceptors helps to improve the photon harvesting of ternary blends, and the higher lowest unoccupied molecular orbital (LUMO) energy level of Y6‐1O offers the chance to uplift the mixed LUMO energy levels of acceptors. Combining the aforesaid benefits, the ternary OSCs with 10 wt% Y6‐1O produce a top‐ranked power conversion efficiency (PCE) of 18.11% with simultaneously elevated short‐circuit current density, open‐circuit voltage, and fill factor in comparison to Y7‐BO‐based binary devices. Furthermore, the optimized ternary OSCs with ≈300 nm active layers obtain a champion PCE of 16.61%, which is the highest value for thick‐film devices reported so far. This work puts forward an avenue for further boosting the performance of OSCs with two isogenous acceptors but different asymmetric structures. The synergistically optimized light absorption, energy levels, and morphology, by incorporating an asymmetric isogenous acceptor Y6‐1O in PM6:Y7‐BO‐based ternary organic solar cells (OSCs), is demonstrated. The optimized ternary OSCs produce a top‐ranked power conversion efficiency (PCE) of 18.11% and with ≈300 nm active layers obtain a champion PCE of 16.61%, which is the highest value for thick‐film devices reported so far.
AbstractList Integrating desirable light absorption, energy levels, and morphology in one matrix is always the aspiration to construct high‐performance organic solar cells (OSCs). Herein, an asymmetric acceptor Y6‐1O is incorporated into the binary blends of acceptor Y7‐BO and donor PM6 to prepare ternary OSCs. Two isogenous asymmetric–symmetric acceptors with similar chemical skeletons tend to form alloy‐like state in blends due to their good compatibility, which contributes to optimizing the morphology for efficient charge generation and extraction. The complementary absorption of two acceptors helps to improve the photon harvesting of ternary blends, and the higher lowest unoccupied molecular orbital (LUMO) energy level of Y6‐1O offers the chance to uplift the mixed LUMO energy levels of acceptors. Combining the aforesaid benefits, the ternary OSCs with 10 wt% Y6‐1O produce a top‐ranked power conversion efficiency (PCE) of 18.11% with simultaneously elevated short‐circuit current density, open‐circuit voltage, and fill factor in comparison to Y7‐BO‐based binary devices. Furthermore, the optimized ternary OSCs with ≈300 nm active layers obtain a champion PCE of 16.61%, which is the highest value for thick‐film devices reported so far. This work puts forward an avenue for further boosting the performance of OSCs with two isogenous acceptors but different asymmetric structures.
Integrating desirable light absorption, energy levels, and morphology in one matrix is always the aspiration to construct high‐performance organic solar cells (OSCs). Herein, an asymmetric acceptor Y6‐1O is incorporated into the binary blends of acceptor Y7‐BO and donor PM6 to prepare ternary OSCs. Two isogenous asymmetric–symmetric acceptors with similar chemical skeletons tend to form alloy‐like state in blends due to their good compatibility, which contributes to optimizing the morphology for efficient charge generation and extraction. The complementary absorption of two acceptors helps to improve the photon harvesting of ternary blends, and the higher lowest unoccupied molecular orbital (LUMO) energy level of Y6‐1O offers the chance to uplift the mixed LUMO energy levels of acceptors. Combining the aforesaid benefits, the ternary OSCs with 10 wt% Y6‐1O produce a top‐ranked power conversion efficiency (PCE) of 18.11% with simultaneously elevated short‐circuit current density, open‐circuit voltage, and fill factor in comparison to Y7‐BO‐based binary devices. Furthermore, the optimized ternary OSCs with ≈300 nm active layers obtain a champion PCE of 16.61%, which is the highest value for thick‐film devices reported so far. This work puts forward an avenue for further boosting the performance of OSCs with two isogenous acceptors but different asymmetric structures. The synergistically optimized light absorption, energy levels, and morphology, by incorporating an asymmetric isogenous acceptor Y6‐1O in PM6:Y7‐BO‐based ternary organic solar cells (OSCs), is demonstrated. The optimized ternary OSCs produce a top‐ranked power conversion efficiency (PCE) of 18.11% and with ≈300 nm active layers obtain a champion PCE of 16.61%, which is the highest value for thick‐film devices reported so far.
Integrating desirable light absorption, energy levels, and morphology in one matrix is always the aspiration to construct high‐performance organic solar cells (OSCs). Herein, an asymmetric acceptor Y6‐1O is incorporated into the binary blends of acceptor Y7‐BO and donor PM6 to prepare ternary OSCs. Two isogenous asymmetric–symmetric acceptors with similar chemical skeletons tend to form alloy‐like state in blends due to their good compatibility, which contributes to optimizing the morphology for efficient charge generation and extraction. The complementary absorption of two acceptors helps to improve the photon harvesting of ternary blends, and the higher lowest unoccupied molecular orbital (LUMO) energy level of Y6‐1O offers the chance to uplift the mixed LUMO energy levels of acceptors. Combining the aforesaid benefits, the ternary OSCs with 10 wt% Y6‐1O produce a top‐ranked power conversion efficiency (PCE) of 18.11% with simultaneously elevated short‐circuit current density, open‐circuit voltage, and fill factor in comparison to Y7‐BO‐based binary devices. Furthermore, the optimized ternary OSCs with ≈300 nm active layers obtain a champion PCE of 16.61%, which is the highest value for thick‐film devices reported so far. This work puts forward an avenue for further boosting the performance of OSCs with two isogenous acceptors but different asymmetric structures.
Author Zhou, Xue‐Jiao
Yang, Can
An, Qiaoshi
Ryu, Hwa Sook
Zhi, Hong‐Fu
Li, Xiong
Woo, Han Young
Wang, Jin‐Liang
Bai, Hai‐Rui
Jiang, Mengyun
Yang, Jie
Author_xml – sequence: 1
  givenname: Hai‐Rui
  surname: Bai
  fullname: Bai, Hai‐Rui
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Qiaoshi
  surname: An
  fullname: An, Qiaoshi
  email: qsan@bit.edu.cn
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Mengyun
  surname: Jiang
  fullname: Jiang, Mengyun
  organization: Beijing Institute of Technology
– sequence: 4
  givenname: Hwa Sook
  surname: Ryu
  fullname: Ryu, Hwa Sook
  organization: Korea University
– sequence: 5
  givenname: Jie
  surname: Yang
  fullname: Yang, Jie
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Xue‐Jiao
  surname: Zhou
  fullname: Zhou, Xue‐Jiao
  organization: Beijing Technology and Business University
– sequence: 7
  givenname: Hong‐Fu
  surname: Zhi
  fullname: Zhi, Hong‐Fu
  organization: Beijing Institute of Technology
– sequence: 8
  givenname: Can
  surname: Yang
  fullname: Yang, Can
  organization: Beijing Institute of Technology
– sequence: 9
  givenname: Xiong
  surname: Li
  fullname: Li, Xiong
  organization: Beijing Technology and Business University
– sequence: 10
  givenname: Han Young
  surname: Woo
  fullname: Woo, Han Young
  email: hywoo@korea.ac.kr
  organization: Korea University
– sequence: 11
  givenname: Jin‐Liang
  orcidid: 0000-0001-5726-3336
  surname: Wang
  fullname: Wang, Jin‐Liang
  email: jinlwang@bit.edu.cn
  organization: Beijing Institute of Technology
BookMark eNqFkM1qGzEUhUVJoPnptmtB13auNMOMZmkcJw24ZGEHshtk-cpRqpFcSU6YXR8hkBfIs_RR-iSVcepCoGR1D5fzHe49x-TAeYeEfGYwZAD8TC51N-TAOYCA-gM5YhWrBgVwcbDX7PYjOY7xHoDVdVEekaer6Ffo_CbSUey7DlMw6vfP59lfTUdK4Tr5EOnEyYVFOtHaKIMu0TkGJ0NPr8NKumydeSsDHaO1kT6adEfnd8ZR6Za0APj14rrtQn3Pkck8IJ3KHnPszHQbm6TDfITtT8mhljbip9d5Qm4uJvPx18H0-vJqPJoOVJFPH3BWlqAXywVvSikLpUslKyka1QDXYiGAL7ey0EyUHBVw1FLURa0ZqkZpUZyQL7vcdfA_NhhTe-83-R0bW14JKHNuXWVXuXOp4GMMqFtlkkzGuxSksS2Ddtt9u-2-3XefseEbbB1Ml6v6P9DsgEdjsX_H3Y7OL779Y_8AKbSdPQ
CitedBy_id crossref_primary_10_1039_D3EE04300B
crossref_primary_10_1016_j_polymer_2023_126605
crossref_primary_10_1016_j_dyepig_2025_113151
crossref_primary_10_1016_j_mser_2024_100916
crossref_primary_10_1002_aenm_202300481
crossref_primary_10_1002_adma_202413125
crossref_primary_10_1016_j_mser_2024_100879
crossref_primary_10_1039_D3PY01383A
crossref_primary_10_1016_j_tsf_2024_140541
crossref_primary_10_1016_j_optmat_2023_113890
crossref_primary_10_1002_ange_202313016
crossref_primary_10_1002_ange_202316495
crossref_primary_10_1002_adfm_202212380
crossref_primary_10_1002_adfm_202313744
crossref_primary_10_1038_s41524_025_01608_3
crossref_primary_10_1002_smll_202308863
crossref_primary_10_1002_adma_202211296
crossref_primary_10_1002_pol_20230432
crossref_primary_10_1002_adfm_202415090
crossref_primary_10_1002_adma_202300531
crossref_primary_10_1016_j_optmat_2023_114735
crossref_primary_10_1002_cptc_202300348
crossref_primary_10_1039_D3EE04169G
crossref_primary_10_1007_s11426_023_1913_3
crossref_primary_10_1002_solr_202300219
crossref_primary_10_1002_adma_202405718
crossref_primary_10_1002_anie_202209454
crossref_primary_10_1016_j_cej_2025_160359
crossref_primary_10_1016_j_orgel_2025_107262
crossref_primary_10_1039_D3NH00122A
crossref_primary_10_1039_D4EE00068D
crossref_primary_10_1002_smll_202308216
crossref_primary_10_1016_j_cej_2024_152558
crossref_primary_10_1016_j_cej_2024_149035
crossref_primary_10_1002_aenm_202300784
crossref_primary_10_1002_adfm_202210534
crossref_primary_10_1039_D3EE00186E
crossref_primary_10_1002_advs_202403334
crossref_primary_10_1016_j_orgel_2023_106988
crossref_primary_10_3390_en16114494
crossref_primary_10_1002_adfm_202300214
crossref_primary_10_1039_D3EE04281B
crossref_primary_10_1002_adfm_202308021
crossref_primary_10_1016_j_cej_2025_159972
crossref_primary_10_1007_s40820_023_01208_0
crossref_primary_10_1002_adfm_202213324
crossref_primary_10_1002_aenm_202406136
crossref_primary_10_1002_solr_202300307
crossref_primary_10_1007_s11426_022_1502_3
crossref_primary_10_1002_cjoc_202400397
crossref_primary_10_1039_D2CP02368G
crossref_primary_10_1002_ange_202209454
crossref_primary_10_1007_s10854_023_10838_4
crossref_primary_10_1002_adfm_202313722
crossref_primary_10_1002_pssa_202400364
crossref_primary_10_1002_adma_202305356
crossref_primary_10_1016_j_jphotochem_2023_115285
crossref_primary_10_1002_aenm_202304477
crossref_primary_10_1002_ange_202415332
crossref_primary_10_1016_j_cej_2024_148728
crossref_primary_10_1002_aenm_202302538
crossref_primary_10_1016_j_cplett_2023_140974
crossref_primary_10_1016_j_cplett_2023_140852
crossref_primary_10_1039_D4ME00188E
crossref_primary_10_1039_D3RA02225K
crossref_primary_10_1002_advs_202404997
crossref_primary_10_1016_j_chemphys_2024_112295
crossref_primary_10_1002_smll_202404734
crossref_primary_10_1002_anie_202313016
crossref_primary_10_1016_j_cej_2024_153183
crossref_primary_10_1016_j_dyepig_2023_111737
crossref_primary_10_1016_j_cej_2023_143938
crossref_primary_10_1002_anie_202316495
crossref_primary_10_1002_cjoc_202300636
crossref_primary_10_1007_s40843_024_3167_7
crossref_primary_10_1007_s10854_023_10888_8
crossref_primary_10_1016_j_jssc_2025_125240
crossref_primary_10_1002_adfm_202304960
crossref_primary_10_1002_adhm_202303222
crossref_primary_10_1002_adfm_202305611
crossref_primary_10_1002_aenm_202301292
crossref_primary_10_1002_solr_202200424
crossref_primary_10_1016_j_nanoen_2023_108501
crossref_primary_10_1002_adma_202307863
crossref_primary_10_1016_j_colsurfa_2022_130818
crossref_primary_10_1002_anie_202415332
crossref_primary_10_1016_j_cej_2023_144063
crossref_primary_10_1039_D5SE00278H
Cites_doi 10.1002/adfm.202000417
10.1039/D1EE02977K
10.1039/D1TA01135A
10.1016/j.nanoen.2020.104964
10.1002/adfm.202108797
10.1038/nenergy.2017.53
10.1002/adfm.202009363
10.1002/aenm.202102596
10.1038/s41560-019-0448-5
10.1016/j.joule.2021.01.011
10.1002/adfm.202107934
10.1016/j.joule.2019.01.004
10.1002/adfm.202110743
10.1038/s41566-018-0104-9
10.1038/nphoton.2015.9
10.1021/jacs.1c00211
10.1002/smll.202104215
10.1016/j.carbon.2020.09.048
10.1002/advs.202004262
10.1038/s41467-020-20580-8
10.1021/jacs.0c07083
10.1002/adma.202102635
10.1021/jacs.0c09800
10.1002/ange.202105861
10.1002/anie.201915030
10.1039/D1EE00496D
10.1038/s41566-019-0573-5
10.1038/s41560-018-0234-9
10.1016/j.scib.2020.01.012
10.1016/j.cej.2021.129276
10.1016/j.scib.2020.08.027
10.1002/adma.201908205
10.1093/nsr/nwz200
10.1002/adfm.201908336
10.1002/adfm.202103283
10.1002/aenm.202003141
10.1002/adfm.202108508
10.1016/j.joule.2021.03.020
10.1002/adfm.202102371
10.1126/science.aat2612
10.1016/j.scib.2020.01.001
10.1039/D1EE01832A
10.1038/s41560-021-00820-x
10.1038/s41578-019-0093-4
10.1002/anie.202104766
10.1016/j.joule.2019.09.010
10.1016/j.joule.2019.01.009
10.1002/adfm.202107827
10.1002/aenm.202001404
10.1002/adfm.201800627
10.1016/j.joule.2021.06.020
10.1002/adma.201502110
10.1039/D0NR04867D
10.1002/adfm.202102413
10.1002/adma.202100830
10.1016/j.joule.2021.04.007
10.1002/anie.202100390
10.1002/adma.202008134
10.1016/j.joule.2020.08.011
10.1021/acsenergylett.8b01808
10.1002/adfm.202103944
10.1039/D1TA04742F
10.1093/nsr/nwaa305
10.1002/anie.202101577
10.1002/adfm.202108289
10.1002/adma.202006794
10.1002/adfm.202107756
10.1021/jacs.6b03495
10.1039/D0EE02516J
10.1021/acsenergylett.1c01289
10.1002/aenm.202102172
10.1002/anie.202102622
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202200807
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202200807
ADFM202200807
Genre article
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3177-21440fbdb294aa3cf4ca6a89c902f8b802dc9023f1842ec02efa8737f1ec9cf83
IEDL.DBID DRFUL
ISICitedReferencesCount 112
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000771897300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Fri Jul 25 04:28:37 EDT 2025
Tue Nov 18 20:41:42 EST 2025
Sat Nov 29 07:16:28 EST 2025
Wed Jan 22 16:22:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3177-21440fbdb294aa3cf4ca6a89c902f8b802dc9023f1842ec02efa8737f1ec9cf83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5726-3336
PQID 2680429476
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2680429476
crossref_citationtrail_10_1002_adfm_202200807
crossref_primary_10_1002_adfm_202200807
wiley_primary_10_1002_adfm_202200807_ADFM202200807
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2018; 361
2021; 8
2021; 6
2018; 28
2019; 4
2021; 5
2017; 2
2019; 3
2020; 142
2020; 59
2020; 14
2020; 13
2008; 10
2020; 12
2020; 10
2020; 32
2021; 143
2020; 76
2015; 9
2021; 14
2020; 7
2018; 3
2020; 4
2021; 32
2021; 31
2015; 27
2021; 12
2021; 33
2021; 11
2020; 30
2022; 12
2021; 171
2022; 15
2016; 138
2022; 32
2021; 133
2020; 65
2018; 12
2021; 60
2022; 428
2022; 18
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_72_1
Spackman M. A. (e_1_2_8_47_1) 2008; 10
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 428
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 143
  start-page: 6123
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 361
  start-page: 1094
  year: 2018
  publication-title: Science
– volume: 5
  start-page: 1548
  year: 2021
  publication-title: Joule
– volume: 3
  start-page: 952
  year: 2018
  publication-title: Nat. Energy
– volume: 8
  year: 2021
  publication-title: Natl. Sci. Rev.
– volume: 5
  start-page: 646
  year: 2021
  publication-title: Joule
– volume: 14
  start-page: 3945
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 1239
  year: 2020
  publication-title: Natl. Sci. Rev.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 131
  year: 2018
  publication-title: Nat. Photonics
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 768
  year: 2019
  publication-title: Nat. Energy
– volume: 59
  start-page: 9004
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 138
  start-page: 7687
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 605
  year: 2021
  publication-title: Nat. Energy
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 2408
  year: 2021
  publication-title: Joule
– volume: 4
  start-page: 2223
  year: 2020
  publication-title: Joule
– volume: 3
  start-page: 3020
  year: 2019
  publication-title: Joule
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 76
  year: 2020
  publication-title: Nano Energy
– volume: 3
  start-page: 1140
  year: 2019
  publication-title: Joule
– volume: 15
  start-page: 320
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 1231
  year: 2021
  publication-title: Joule
– volume: 10
  start-page: 377
  year: 2008
  publication-title: CrystEngComm
– volume: 65
  start-page: 272
  year: 2020
  publication-title: Sci. Bull.
– volume: 13
  start-page: 5039
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 133
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 9
  start-page: 6797
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 65
  start-page: 538
  year: 2020
  publication-title: Sci. Bull.
– volume: 65
  start-page: 1979
  year: 2020
  publication-title: Sci. Bull.
– volume: 3
  start-page: 2967
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 12
  start-page: 309
  year: 2021
  publication-title: Nat. Commun.
– volume: 27
  start-page: 4655
  year: 2015
  publication-title: Adv. Mater.
– volume: 6
  start-page: 2898
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 190
  year: 2015
  publication-title: Nat. Photonics
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 32
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 171
  start-page: 514
  year: 2021
  publication-title: Carbon
– volume: 4
  start-page: 229
  year: 2019
  publication-title: Nat. Rev. Mater.
– volume: 15
  start-page: 855
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 846
  year: 2019
  publication-title: Joule
– volume: 14
  start-page: 300
  year: 2020
  publication-title: Nat. Photonics
– ident: e_1_2_8_23_1
  doi: 10.1002/adfm.202000417
– ident: e_1_2_8_72_1
  doi: 10.1039/D1EE02977K
– ident: e_1_2_8_59_1
  doi: 10.1039/D1TA01135A
– ident: e_1_2_8_52_1
  doi: 10.1016/j.nanoen.2020.104964
– ident: e_1_2_8_16_1
  doi: 10.1002/adfm.202108797
– ident: e_1_2_8_25_1
  doi: 10.1038/nenergy.2017.53
– ident: e_1_2_8_57_1
  doi: 10.1002/adfm.202009363
– ident: e_1_2_8_28_1
  doi: 10.1002/aenm.202102596
– ident: e_1_2_8_2_1
  doi: 10.1038/s41560-019-0448-5
– ident: e_1_2_8_58_1
  doi: 10.1016/j.joule.2021.01.011
– ident: e_1_2_8_24_1
  doi: 10.1002/adfm.202107934
– ident: e_1_2_8_34_1
  doi: 10.1016/j.joule.2019.01.004
– ident: e_1_2_8_60_1
  doi: 10.1002/adfm.202110743
– ident: e_1_2_8_15_1
  doi: 10.1038/s41566-018-0104-9
– ident: e_1_2_8_56_1
  doi: 10.1038/nphoton.2015.9
– ident: e_1_2_8_51_1
  doi: 10.1021/jacs.1c00211
– ident: e_1_2_8_62_1
  doi: 10.1002/smll.202104215
– ident: e_1_2_8_48_1
  doi: 10.1016/j.carbon.2020.09.048
– ident: e_1_2_8_49_1
  doi: 10.1002/advs.202004262
– ident: e_1_2_8_9_1
  doi: 10.1038/s41467-020-20580-8
– ident: e_1_2_8_39_1
  doi: 10.1021/jacs.0c07083
– ident: e_1_2_8_6_1
  doi: 10.1002/adma.202102635
– ident: e_1_2_8_5_1
  doi: 10.1021/jacs.0c09800
– ident: e_1_2_8_22_1
  doi: 10.1002/ange.202105861
– ident: e_1_2_8_44_1
  doi: 10.1002/anie.201915030
– ident: e_1_2_8_50_1
  doi: 10.1039/D1EE00496D
– ident: e_1_2_8_3_1
  doi: 10.1038/s41566-019-0573-5
– ident: e_1_2_8_13_1
  doi: 10.1038/s41560-018-0234-9
– ident: e_1_2_8_26_1
  doi: 10.1016/j.scib.2020.01.012
– ident: e_1_2_8_29_1
  doi: 10.1016/j.cej.2021.129276
– ident: e_1_2_8_32_1
  doi: 10.1016/j.scib.2020.08.027
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.201908205
– ident: e_1_2_8_41_1
  doi: 10.1093/nsr/nwz200
– ident: e_1_2_8_68_1
  doi: 10.1002/adfm.201908336
– ident: e_1_2_8_27_1
  doi: 10.1002/adfm.202103283
– ident: e_1_2_8_42_1
  doi: 10.1002/aenm.202003141
– ident: e_1_2_8_54_1
  doi: 10.1002/adfm.202108508
– ident: e_1_2_8_70_1
  doi: 10.1016/j.joule.2021.03.020
– ident: e_1_2_8_31_1
  doi: 10.1002/adfm.202102371
– ident: e_1_2_8_1_1
  doi: 10.1126/science.aat2612
– ident: e_1_2_8_7_1
  doi: 10.1016/j.scib.2020.01.001
– ident: e_1_2_8_33_1
  doi: 10.1039/D1EE01832A
– volume: 10
  start-page: 377
  year: 2008
  ident: e_1_2_8_47_1
  publication-title: CrystEngComm
– ident: e_1_2_8_10_1
  doi: 10.1038/s41560-021-00820-x
– ident: e_1_2_8_12_1
  doi: 10.1038/s41578-019-0093-4
– ident: e_1_2_8_36_1
  doi: 10.1002/anie.202104766
– ident: e_1_2_8_37_1
  doi: 10.1016/j.joule.2019.09.010
– ident: e_1_2_8_61_1
  doi: 10.1016/j.joule.2019.01.009
– ident: e_1_2_8_8_1
  doi: 10.1002/adfm.202107827
– ident: e_1_2_8_17_1
  doi: 10.1002/aenm.202001404
– ident: e_1_2_8_53_1
  doi: 10.1002/adfm.201800627
– ident: e_1_2_8_11_1
  doi: 10.1016/j.joule.2021.06.020
– ident: e_1_2_8_43_1
  doi: 10.1002/adma.201502110
– ident: e_1_2_8_46_1
  doi: 10.1039/D0NR04867D
– ident: e_1_2_8_38_1
  doi: 10.1002/adfm.202102413
– ident: e_1_2_8_69_1
  doi: 10.1002/adma.202100830
– ident: e_1_2_8_66_1
  doi: 10.1016/j.joule.2021.04.007
– ident: e_1_2_8_73_1
  doi: 10.1002/anie.202100390
– ident: e_1_2_8_40_1
  doi: 10.1002/adma.202008134
– ident: e_1_2_8_19_1
  doi: 10.1016/j.joule.2020.08.011
– ident: e_1_2_8_30_1
  doi: 10.1021/acsenergylett.8b01808
– ident: e_1_2_8_20_1
  doi: 10.1002/adfm.202103944
– ident: e_1_2_8_71_1
  doi: 10.1039/D1TA04742F
– ident: e_1_2_8_14_1
  doi: 10.1093/nsr/nwaa305
– ident: e_1_2_8_4_1
  doi: 10.1002/anie.202101577
– ident: e_1_2_8_65_1
  doi: 10.1002/adfm.202108289
– ident: e_1_2_8_63_1
  doi: 10.1002/adma.202006794
– ident: e_1_2_8_55_1
  doi: 10.1002/adfm.202107756
– ident: e_1_2_8_64_1
  doi: 10.1021/jacs.6b03495
– ident: e_1_2_8_18_1
  doi: 10.1039/D0EE02516J
– ident: e_1_2_8_67_1
  doi: 10.1021/acsenergylett.1c01289
– ident: e_1_2_8_21_1
  doi: 10.1002/aenm.202102172
– ident: e_1_2_8_45_1
  doi: 10.1002/anie.202102622
SSID ssj0017734
Score 2.6529772
Snippet Integrating desirable light absorption, energy levels, and morphology in one matrix is always the aspiration to construct high‐performance organic solar cells...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Asymmetric structures
Circuits
Electromagnetic absorption
Energy conversion efficiency
Energy levels
Light levels
Materials science
Mixtures
Molecular orbitals
Morphology
nonfullerene acceptors
organic solar cells
Photovoltaic cells
Solar cells
ternary strategy
thick films
Title Isogenous Asymmetric–Symmetric Acceptors Enable Efficient Ternary Organic Solar Cells with Thin and 300 nm Thick Active Layers Simultaneously
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202200807
https://www.proquest.com/docview/2680429476
Volume 32
WOSCitedRecordID wos000771897300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSsMwFA4yvdAL_8XplFwIXhXTtDbp5dgPCnOIU9hdSdIEhlsnqwq78xEEX8Bn8VF8EnParpsXIuhNSUsaQk5Ozk_O-Q5CJ_qcSEvYwAlVaBxf2AcPfd_R2hCAJ1c-M1mxCdbt8n4_vF7I4s_xIUqHG3BGdl4DgwuZns1BQ0VsIJOcwgU-pJMvQ2aVNb-Wmzftu055k8BYfrMcuBDj5fZnwI2Enn0f4btgmmubizprJnTaG_-f7iZaLxROXM93yBZa0sk2WluAIdxBr5fpOMdqxfV0OhpBkS31-fLWm7VxXUH0y3iS4laWa4VbGfKEFVj4FhyKkynOkzoV7oGtjBt6OEwxOHkxVAbFIomxR8jHezKCD-reDgkHLe4I0PlxbwCRjSLRdhLD6S66a7duGxdOUanBUVb_YA7grhEjY0lDXwhPGV-JQHBLf0INl5zQGJqesfYk1YpQbQRnHjOuVqEy3NtDlWSc6H2ErVC1OqcEzHDpU-lyHnNGlXA9ExBpdBU5MzJFqoAxh2oawygHYKYRrHRUrnQVnZb9H3IAjx971mZUjwpGTiMacBDZPguqiGb0_WWUqN5sX5VvB3_56RCtQjsPSKuhyuPkSR-hFfX8OEgnx8UG_wJq6f61
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSuQwFD7IKKx74d-67Pi3uRC8KqZpbNLLQWdQHIfFGWHuSpomIDvTkakKc7ePsOAL-Cw-ik9iTtupeiELizclDUkIOUnOyfn5DsC-OaKJI2zoRTqyHlfuIyPOPWMsRXhyzYUtkk2IXk8Oh9GvypsQY2FKfIha4YYno7iv8YCjQvrwFTVUpRZDyRla8DGefJGHgZANWDy57Fx1a1OCEKVpOfTRycsfzpEbKTt8P8J7zvQqbr4VWguu01n9hPmuwUolcpJWuUfWYcFkG_D1DRDhN_h7lk9KtFbSymfjMabZ0s9_HvrzMmlp9H-ZTHPSLqKtSLvAnnAsiwxQpTidkTKsU5M-vpbJsRmNcoJqXoK5QYnKUhJQ-vSYjbFC_3ZD4lVLugqlftK_Rt9GlRk3idFsE6467cHxqVflavC0k0CEh8hr1CZpwiKuVKAt1ypU0u0AyqxMJGUpFgPrXpTMaMqMVVIEwvpGR9rK4Ds0sklmfgBxbNVJnQmihiecJb6UqRRMKz-wIU2saYI3p1OsKyBzzKcxiksIZhbjSsf1SjfhoG5_U0J4fNhyZ072uDrKecxCiUybi7AJrCDwP0aJWyedi_pv6386_YQvp4OLbtw9651vwzLWl-5pO9C4nd6ZXVjS97fX-XSv2u0vqkUCtA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3datswFD6MZJTtYn_dWLZu1cVgV6ayrFjyZUhiVpaGsjSQOyPLEoQmTom7Qe72CIW-QJ-lj7InmY7tOO3FKJTdGFlIQuhIOkfn5zsAX0yXpo6woRfpyHpcuY-MOPeMsRThyTUXtkw2IcZjOZtFp7U3IcbCVPgQjcINT0Z5X-MBNxeZPdqhhqrMYig5Qws-xpO3eTfq8ha0Bz_i6agxJQhRmZZDH528_NkWuZGyo_sj3OdMO3HzrtBacp345X-Y7yt4UYucpFftkdfwxORv4PkdIMJ9uDouVhVaK-kVm-US02zpP7-vJ9sy6Wn0f1mtCzIso63IsMSecCyLnKFKcb0hVVinJhN8LZO-WSwKgmpegrlBicozElB6e5MvsUKfuyHxqiUjhVI_mczRt1Hlxk1isXkL03h41v_m1bkaPO0kEOEh8hq1aZayiCsVaMu1CpV0O4AyK1NJWYbFwLoXJTOaMmOVFIGwvtGRtjJ4B618lZv3QBxbdVJniqjhKWepL2UmBdPKD2xIU2s64G3plOgayBzzaSySCoKZJbjSSbPSHfjatL-oIDz-2fJgS_akPspFwkKJTJuLsAOsJPADoyS9QXzS_H14TKdD2DsdxMnoePz9IzzD6so77QBal-uf5hM81b8u58X6c73Z_wIxTAIv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isogenous+Asymmetric%E2%80%93Symmetric+Acceptors+Enable+Efficient+Ternary+Organic+Solar+Cells+with+Thin+and+300%C2%A0nm+Thick+Active+Layers+Simultaneously&rft.jtitle=Advanced+functional+materials&rft.au=Bai%2C+Hai%E2%80%90Rui&rft.au=An%2C+Qiaoshi&rft.au=Jiang%2C+Mengyun&rft.au=Ryu%2C+Hwa+Sook&rft.date=2022-06-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=26&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202200807&rft.externalDBID=10.1002%252Fadfm.202200807&rft.externalDocID=ADFM202200807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon