Progress of Prussian Blue and Its Analogues as Cathode Materials for Potassium Ion Batteries
Environmental pollution and the energy crisis have promoted the development of clean energy as well as new‐generation energy storage systems. Potassium ion batteries (PIBs) have emerged as a possible alternative to lithium‐ion batteries due to their abundant reserves, low cost, and impressive electr...
Saved in:
| Published in: | European journal of inorganic chemistry Vol. 26; no. 25 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Weinheim
Wiley Subscription Services, Inc
01.09.2023
|
| Subjects: | |
| ISSN: | 1434-1948, 1099-0682 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Environmental pollution and the energy crisis have promoted the development of clean energy as well as new‐generation energy storage systems. Potassium ion batteries (PIBs) have emerged as a possible alternative to lithium‐ion batteries due to their abundant reserves, low cost, and impressive electrochemical performance. However, the search for suitable cathode materials has become particularly crucial. Recently, Prussian blue (PB) has been investigated as a potential cathode material for PIBs, which has an open three‐dimensional framework to accommodate a large volume of potassium ions and adjustable composition for different applications. In this review, Prussian blue and its analogues (PBAs) and their application in PIBs were summarized detailly. We presented the composition, structure, potassium ion storage mechanism, preparation process of PBAs, and then focus on the performance optimization methods of the PBAs, including transition metal doping and conductive material adding into PBAs. Finally, the challenges as well as the outlook on the future development of PBAs were proposed for further application in this battery system.
In potassium ion batteries with Prussian blue and its analogs as cathodes, the performance of the batteries can be optimized by various pairs of methods. These include improving the preparation process, doping with a variety of transition metals, and compounding with conductive materials. The enhancement of performance helps to promote the large‐scale application of potassium ion batteries. |
|---|---|
| AbstractList | Environmental pollution and the energy crisis have promoted the development of clean energy as well as new‐generation energy storage systems. Potassium ion batteries (PIBs) have emerged as a possible alternative to lithium‐ion batteries due to their abundant reserves, low cost, and impressive electrochemical performance. However, the search for suitable cathode materials has become particularly crucial. Recently, Prussian blue (PB) has been investigated as a potential cathode material for PIBs, which has an open three‐dimensional framework to accommodate a large volume of potassium ions and adjustable composition for different applications. In this review, Prussian blue and its analogues (PBAs) and their application in PIBs were summarized detailly. We presented the composition, structure, potassium ion storage mechanism, preparation process of PBAs, and then focus on the performance optimization methods of the PBAs, including transition metal doping and conductive material adding into PBAs. Finally, the challenges as well as the outlook on the future development of PBAs were proposed for further application in this battery system. Environmental pollution and the energy crisis have promoted the development of clean energy as well as new‐generation energy storage systems. Potassium ion batteries (PIBs) have emerged as a possible alternative to lithium‐ion batteries due to their abundant reserves, low cost, and impressive electrochemical performance. However, the search for suitable cathode materials has become particularly crucial. Recently, Prussian blue (PB) has been investigated as a potential cathode material for PIBs, which has an open three‐dimensional framework to accommodate a large volume of potassium ions and adjustable composition for different applications. In this review, Prussian blue and its analogues (PBAs) and their application in PIBs were summarized detailly. We presented the composition, structure, potassium ion storage mechanism, preparation process of PBAs, and then focus on the performance optimization methods of the PBAs, including transition metal doping and conductive material adding into PBAs. Finally, the challenges as well as the outlook on the future development of PBAs were proposed for further application in this battery system. In potassium ion batteries with Prussian blue and its analogs as cathodes, the performance of the batteries can be optimized by various pairs of methods. These include improving the preparation process, doping with a variety of transition metals, and compounding with conductive materials. The enhancement of performance helps to promote the large‐scale application of potassium ion batteries. |
| Author | Tian, Shinuo Fang, Minghao Liu, Xu Yang, Shujie Liu, Yan'gai Bai, Yue YuChi, Ke'er Qian, Xi Ma, Bin Min, Xin Huang, Zhaohui |
| Author_xml | – sequence: 1 givenname: Yue surname: Bai fullname: Bai, Yue organization: China University of Geosciences (Beijing) – sequence: 2 givenname: Ke'er surname: YuChi fullname: YuChi, Ke'er organization: China University of Geosciences (Beijing) – sequence: 3 givenname: Xu surname: Liu fullname: Liu, Xu organization: China University of Geosciences (Beijing) – sequence: 4 givenname: Shinuo surname: Tian fullname: Tian, Shinuo organization: China University of Geosciences (Beijing) – sequence: 5 givenname: Shujie surname: Yang fullname: Yang, Shujie organization: China University of Geosciences (Beijing) – sequence: 6 givenname: Xi surname: Qian fullname: Qian, Xi organization: China University of Geosciences (Beijing) – sequence: 7 givenname: Bin surname: Ma fullname: Ma, Bin organization: Qinghai University – sequence: 8 givenname: Minghao surname: Fang fullname: Fang, Minghao organization: China University of Geosciences (Beijing) – sequence: 9 givenname: Yan'gai surname: Liu fullname: Liu, Yan'gai organization: China University of Geosciences (Beijing) – sequence: 10 givenname: Zhaohui surname: Huang fullname: Huang, Zhaohui organization: China University of Geosciences (Beijing) – sequence: 11 givenname: Xin orcidid: 0000-0003-3953-2699 surname: Min fullname: Min, Xin email: minx@cugb.edu.cn organization: China University of Geosciences (Beijing) |
| BookMark | eNqFkE1LAzEQhoNUsK1ePQc8b51kv5JjXaquVOxBb8KSzWZrynZTkyzSf29KRUEQTzPDPM8wvBM06k2vELokMCMA9FpttJxRoHEYkuwEjQlwHkHG6Cj0SZxEhCfsDE2c2wBADHE2Rq8ra9ZWOYdNi1d2cE6LHt90g8Kib3DpHZ73ojPrQTksHC6EfzONwo_CK6tF53BrLF4ZL4I5bHFpgi38YancOTptA6IuvuoUvdwunov7aPl0VxbzZSRjkmdRK1WdpipvaSx4o0TDkgRaTkBJmTeUsUaCpHXNWVqLDGgua9KkXOUNawWFNJ6iq-PdnTXv4VFfbcxgw9uuoizlKSeUQaCSIyWtcc6qtpLaC69N763QXUWgOuRYHXKsvnMM2uyXtrN6K-z-b4EfhQ_dqf0_dLV4KIsf9xPKIIiY |
| CitedBy_id | crossref_primary_10_1002_ejic_202300576 crossref_primary_10_1016_j_jallcom_2025_182014 crossref_primary_10_1016_j_jpcs_2025_112762 crossref_primary_10_1016_j_cclet_2025_111185 crossref_primary_10_1149_1945_7111_ad4b5f crossref_primary_10_1016_j_matre_2025_100331 crossref_primary_10_1002_bte2_20240006 crossref_primary_10_1016_j_cplett_2024_141522 crossref_primary_10_1039_D4TC04475D crossref_primary_10_1021_acsnano_4c10091 crossref_primary_10_1016_j_est_2025_116995 crossref_primary_10_1016_j_est_2025_116700 crossref_primary_10_1016_j_pnsc_2024_10_008 crossref_primary_10_1149_1945_7111_ad6d93 crossref_primary_10_1002_batt_202400448 crossref_primary_10_1002_aenm_202400702 crossref_primary_10_1016_j_jechem_2025_03_089 crossref_primary_10_1021_acs_chemmater_5c00213 |
| Cites_doi | 10.1016/j.scib.2017.01.030 10.1016/j.flatc.2022.100350 10.1039/C9CC06248C 10.1002/cssc.201800057 10.1002/smll.202006424 10.1002/celc.201801277 10.1038/ncomms2139 10.1021/acs.chemrev.9b00531 10.1002/adfm.202006970 10.1149/1.2127289 10.1016/j.isci.2018.04.008 10.1126/science.aat7439 10.1016/j.bios.2017.04.036 10.1002/aenm.202000943 10.1038/natrevmats.2018.13 10.1021/acsami.6b10884 10.1021/ic50177a008 10.1007/s10853-022-07430-2 10.1039/C7TA00220C 10.1038/s41560-019-0388-0 10.1016/j.materresbull.2016.06.008 10.3390/ma12071103 10.1021/acsami.9b04579 10.1016/j.ensm.2017.06.002 10.1039/D2TA08573A 10.1039/C9QM00674E 10.1016/j.ensm.2021.01.006 10.1039/C3EE44004D 10.1002/chem.201504444 10.1039/C9TA11221A 10.1002/smll.201900470 10.1039/D2CC02974J 10.1002/anie.202103475 10.1016/j.jelechem.2005.07.008 10.1016/j.apsusc.2009.03.048 10.1021/acs.chemmater.7b01764 10.1039/D0EE02917C 10.1016/j.electacta.2020.136199 10.1016/S0378-7753(98)00228-6 10.1016/j.cej.2021.133777 10.1143/APEX.5.041801 10.1038/nmat1849 10.1149/1.1357316 10.1021/nl403669a 10.1016/j.cej.2018.09.012 10.1038/s41893-021-00810-7 10.1016/j.cej.2021.133926 10.1002/adfm.201909486 10.1021/acsaem.2c02288 10.1021/acs.chemmater.5b01132 10.1002/asia.201900784 10.1149/2.060202jes 10.1021/acs.chemrev.9b00463 10.1038/s41467-019-12626-3 10.1002/celc.201700410 10.1021/jp2118949 10.1002/adfm.201706125 10.1246/bcsj.47.813 10.1039/C6CS00776G 10.1002/aenm.201401869 10.1021/acsaem.9b01097 10.1039/C7TA00132K 10.1002/adfm.201600747 10.1016/j.jpowsour.2003.08.007 10.1039/D2TA02694E 10.1002/bte2.20220027 10.1021/acsami.1c18032 10.1021/ja105482k 10.1002/adfm.202215027 10.1002/anie.201607194 10.1002/aenm.201702856 10.1016/j.nanoen.2022.107424 10.1021/acs.inorgchem.8b03081 10.1016/j.jpcs.2018.06.014 10.1016/j.elecom.2017.02.012 10.1126/science.1212741 10.1002/sstr.202000054 10.1016/j.cej.2020.125269 10.1007/BF01092684 10.1021/acsenergylett.0c01393 10.1007/s12274-023-5692-0 10.1039/C7TA00484B 10.1039/C7TA04172A 10.1016/j.joule.2018.07.017 10.1039/C9NJ02085C 10.1021/nl203193q 10.1016/j.electacta.2020.136243 10.1016/j.trechm.2019.04.007 10.1002/adma.202108384 10.1016/j.jpowsour.2020.229276 10.1098/rsos.201779 10.1021/ar00126a001 10.1039/C7TA08139A 10.1002/aenm.201801413 10.1016/j.jelechem.2022.116468 10.1016/j.jcis.2022.05.023 10.1007/s12274-018-1979-y 10.3390/cryst11080895 10.1038/s41467-023-38065-9 10.1002/cnma.201500021 10.1021/acsanm.8b02122 10.1002/smll.202207080 10.1093/nsr/nwad118 10.1039/C9CS00131J 10.1016/j.cej.2019.123050 10.1039/D0TA06979E 10.1021/jacs.5b06809 10.1002/EXP.20210239 10.1002/adfm.201604307 10.1002/slct.201801333 10.1021/jacs.6b12598 10.1021/ja512383b 10.1016/j.jechem.2023.04.007 10.1016/j.electacta.2018.03.181 10.1016/j.jcis.2016.05.056 10.1016/j.mtener.2022.100982 10.1021/acssuschemeng.9b04012 10.1016/j.elecom.2015.09.002 10.1021/acsami.5b12620 10.1021/acsnano.0c02047 10.1016/j.electacta.2015.02.002 10.1039/C5CC01180A 10.1021/acssuschemeng.9b01454 10.1039/C9NR04415A 10.1002/aenm.201702384 10.1016/j.ensm.2019.07.003 10.1002/ejic.202100349 10.1002/anie.201702711 10.1021/acsenergylett.7b00179 10.1002/advs.201600289 10.1016/S0925-4005(99)00161-6 10.1016/j.jallcom.2022.164049 10.1002/admi.201500856 10.1149/1.2131575 10.1002/adfm.200901478 |
| ContentType | Journal Article |
| Copyright | 2023 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/ejic.202300246 |
| DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1099-0682 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_ejic_202300246 EJIC202300246 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: Qinghai province funderid: 2022-HZ-807 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABLJU ABPVW ACAHQ ACCFJ ACCZN ACNCT ACPOU ACSCC ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA HBH HGLYW HHY HHZ HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WH7 WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT .Y3 31~ 53G AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AI. AIDQK AIDYY AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 MVM O8X UQL VH1 XOL ZCG ZY4 1OB 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3176-fceb55e7f23a9dead8440f910ecc7d288dc0c2bb985ba6027cb1d59e7d8fa2053 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 41 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001034854000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1434-1948 |
| IngestDate | Wed Aug 13 10:43:27 EDT 2025 Sat Nov 29 07:16:24 EST 2025 Tue Nov 18 22:11:22 EST 2025 Wed Jan 22 16:14:04 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 25 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3176-fceb55e7f23a9dead8440f910ecc7d288dc0c2bb985ba6027cb1d59e7d8fa2053 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3953-2699 |
| PQID | 2859591280 |
| PQPubID | 2030176 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2859591280 crossref_citationtrail_10_1002_ejic_202300246 crossref_primary_10_1002_ejic_202300246 wiley_primary_10_1002_ejic_202300246_EJIC202300246 |
| PublicationCentury | 2000 |
| PublicationDate | September 1, 2023 2023-09-00 20230901 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: September 1, 2023 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | European journal of inorganic chemistry |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2019; 11 2019; 10 2019; 12 2019; 15 2019; 14 2022; 25 2020; 14 2001; 148 2023; 83 1974; 47 2018; 8 2018; 3 2018; 2 2018; 5 2015; 137 2005; 584 2019; 22 2017; 77 2022; 34 1999; 56 2007; 6 2022; 32 2009; 19 2017; 62 2019; 7 2018; 28 2019; 4 2020; 382 2019; 2 2015; 51 2019; 1 2022; 918 1986; 19 2017; 139 2016; 3 2015; 60 2020; 30 2022; 5 2020; 396 2019; 43 1977; 16 2017; 56 2022; 904 2022; 10 2022; 99 2022; 2 2018; 11 2021; 60 2012; 116 1992; 22 2022; 623 2016; 26 2016; 8 2016; 22 2017; 5 2018; 362 2011; 159 2018; 122 2017; 2 2004; 126 2023; 33 2017; 4 1999; 81–82 2020; 120 2019; 55 2017; 46 2019; 58 2011; 11 2023; 2 2021; 484 2017; 9 2020; 8 2021; 36 2020; 5 2020; 4 2021; 31 2013; 13 2020; 49 2019; 356 2016; 83 2016; 478 2014; 7 2023; 10 2021; 8 2015; 1 2022; 431 2011; 334 2015; 160 2023; 14 2015; 5 2023; 11 2021; 2 2017; 27 2023; 16 2023; 19 2020; 349 2009; 255 1981; 128 2017; 29 2020; 345 2016; 55 2022; 433 2021; 14 2021; 13 2017; 96 2015; 27 2012; 3 2018; 272 2021; 11 2021 2021; 17 2010; 132 2022; 57 2022; 58 1978; 125 2012; 5 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_132_1 e_1_2_8_5_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_87_1 e_1_2_8_64_2 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_83_1 e_1_2_8_60_2 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_128_1 e_1_2_8_30_2 e_1_2_8_105_2 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_72_1 e_1_2_8_29_2 e_1_2_8_25_2 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_2 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_140_2 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_10_2 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_2 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_3_2 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_17_2 e_1_2_8_13_2 e_1_2_8_59_2 e_1_2_8_36_2 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_93_1 e_1_2_8_103_2 e_1_2_8_27_2 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_2 e_1_2_8_131_1 e_1_2_8_150_1 e_1_2_8_8_2 e_1_2_8_65_2 e_1_2_8_139_2 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_12_2 e_1_2_8_58_2 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_104_2 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_146_1 |
| References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 11564 year: 2019 end-page: 11570 publication-title: ACS Sustainable Chem. Eng. – volume: 11 start-page: 895 year: 2021 publication-title: Crystals – volume: 8 start-page: 16061 year: 2020 end-page: 16080 publication-title: J. Mater. Chem. A. – volume: 14 start-page: 2186 year: 2021 end-page: 2243 publication-title: Energy Environ. Sci. – volume: 478 start-page: 107 year: 2016 end-page: 116 publication-title: J. Colloid Interface Sci. – volume: 1 start-page: 188 year: 2015 end-page: 193 publication-title: ChemNanoMat. – volume: 13 start-page: 54079 year: 2021 end-page: 54087 publication-title: ACS Appl. Mater. Interfaces – volume: 43 start-page: 11618 year: 2019 end-page: 11625 publication-title: New J. Chem. – volume: 96 start-page: 17 year: 2017 end-page: 25 publication-title: Biosens. Bioelectron. – volume: 5 start-page: 225 year: 2022 end-page: 234 publication-title: Nat. Sustain. – volume: 356 start-page: 53 year: 2019 end-page: 59 publication-title: Chem. Eng. J. – volume: 345 year: 2020 publication-title: Electrochim. Acta – volume: 3 start-page: 11441 year: 2018 end-page: 11450 publication-title: ChemistrySelect. – volume: 382 year: 2020 publication-title: Chem. Eng. J. – volume: 349 year: 2020 publication-title: Electrochim. Acta – volume: 10 start-page: 13508 year: 2022 end-page: 13518 publication-title: J. Mater. Chem. A – volume: 120 start-page: 6783 year: 2020 end-page: 6819 publication-title: Chem. Rev. – volume: 11 start-page: 15418 year: 2019 end-page: 15439 publication-title: Nanoscale – volume: 5 start-page: 6393 year: 2017 end-page: 6398 publication-title: J. Mater. Chem. A. – volume: 120 start-page: 6358 year: 2020 end-page: 6466 publication-title: Chem. Rev. – volume: 99 year: 2022 publication-title: Nano Energy – volume: 159 start-page: A98 year: 2011 publication-title: J. Electrochem. Soc. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 623 start-page: 1 year: 2022 end-page: 8 publication-title: J. Colloid Interface Sci. – volume: 148 start-page: E155 year: 2001 publication-title: J. Electrochem. Soc. – volume: 904 year: 2022 publication-title: J. Alloys Compd. – volume: 584 start-page: 117 year: 2005 end-page: 123 publication-title: J. Electroanal. Chem. – volume: 11 start-page: 1532 year: 2023 end-page: 1550 publication-title: J. Mater. Chem. A. – volume: 362 start-page: 547 year: 2018 end-page: 553 publication-title: Science – volume: 55 start-page: 12555 year: 2019 end-page: 12558 publication-title: Chem. Commun. – volume: 77 start-page: 54 year: 2017 end-page: 57 publication-title: Electrochem. Commun. – volume: 55 start-page: 12528 year: 2016 end-page: 12532 publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 3979 year: 2018 end-page: 3990 publication-title: Nano Res. – volume: 22 start-page: 325 year: 1992 end-page: 331 publication-title: J. Appl. Electrochem. – volume: 11 start-page: 22339 year: 2019 end-page: 22345 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 1643 year: 2014 end-page: 1647 publication-title: Energy Environ. Sci. – volume: 29 start-page: 5031 year: 2017 end-page: 5042 publication-title: Chem. Mater. – volume: 16 start-page: 2704 year: 1977 end-page: 2710 publication-title: Inorg. Chem. – volume: 81–82 start-page: 530 year: 1999 end-page: 534 publication-title: J. Power Sources. – volume: 2 year: 2022 publication-title: Exploration – volume: 5 start-page: 22465 year: 2017 end-page: 22471 publication-title: J. Mater. Chem. A. – volume: 17 year: 2021 publication-title: Small – volume: 16 start-page: 6326 year: 2023 end-page: 6333 publication-title: Nano Res. – volume: 5 start-page: 3887 year: 2018 end-page: 3892 publication-title: ChemElectroChem – volume: 125 start-page: 886 year: 1978 end-page: 887 publication-title: J. Electrochem. Soc. – volume: 22 start-page: 120 year: 2019 end-page: 127 publication-title: Energy Storage Mater. – volume: 137 start-page: 11566 year: 2015 end-page: 11569 publication-title: J. Am. Chem. Soc. – volume: 2 year: 2023 publication-title: Battery Energy. – volume: 2 start-page: 1950 year: 2018 end-page: 1960 publication-title: Joule. – volume: 132 start-page: 12206 year: 2010 end-page: 12207 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1103 year: 2019 publication-title: Materials – volume: 484 year: 2021 publication-title: J. Power Sources – volume: 126 start-page: 221 year: 2004 end-page: 228 publication-title: J. Power Sources. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 2 year: 2021 publication-title: Small Structures – volume: 32 year: 2022 publication-title: FlatChem. – volume: 4 start-page: 2237 year: 2017 end-page: 2242 publication-title: ChemElectroChem. – volume: 9 start-page: 11 year: 2017 end-page: 30 publication-title: Energy Storage Mater. – volume: 62 start-page: 358 year: 2017 end-page: 368 publication-title: Sci. Bull. – volume: 60 start-page: 13050 year: 2021 end-page: 13056 publication-title: Angew. Chem. Int. Ed. – volume: 19 start-page: 162 year: 1986 end-page: 168 publication-title: Acc. Chem. Res. – volume: 22 start-page: 6643 year: 2016 end-page: 6653 publication-title: Chem. Eur. J. – volume: 396 year: 2020 publication-title: Chem. Eng. J. – volume: 255 start-page: 7084 year: 2009 end-page: 7089 publication-title: Appl. Surf. Sci. – volume: 51 start-page: 8181 year: 2015 end-page: 8184 publication-title: Chem. Commun. – volume: 8 year: 2021 publication-title: R. Soc. Open Sci. – volume: 56 start-page: 7881 year: 2017 end-page: 7885 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 9604 year: 2017 end-page: 9610 publication-title: J. Mater. Chem. A – volume: 83 start-page: 16 year: 2023 end-page: 23 publication-title: J. Energy Chem. – volume: 2 start-page: 1122 year: 2017 end-page: 1127 publication-title: ACS Energy Lett. – volume: 272 start-page: 44 year: 2018 end-page: 51 publication-title: Electrochim. Acta – volume: 25 year: 2022 publication-title: Mater. Today Energy – volume: 122 start-page: 31 year: 2018 end-page: 35 publication-title: J. Phys. Chem. Solids – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 918 year: 2022 publication-title: J. Electroanal. Chem. – volume: 160 start-page: 337 year: 2015 end-page: 346 publication-title: Electrochim. Acta. – volume: 1 start-page: 682 year: 2019 end-page: 692 publication-title: Trends Chem. – volume: 5 year: 2012 publication-title: Appl. Phys. Express. – volume: 3 start-page: 110 year: 2018 end-page: 133 publication-title: iScience. – volume: 46 start-page: 3529 year: 2017 end-page: 3614 publication-title: Chem. Soc. Rev. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 116 start-page: 8364 year: 2012 end-page: 8369 publication-title: J. Phys. Chem. C – volume: 6 start-page: 183 year: 2007 end-page: 191 publication-title: Nat. Mater. – volume: 137 start-page: 2658 year: 2015 end-page: 2664 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 6528 year: 2019 end-page: 6535 publication-title: ACS Appl. Energ. Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 2849 year: 2020 end-page: 2857 publication-title: ACS Energy Lett. – volume: 4 start-page: 495 year: 2019 end-page: 503 publication-title: Nat. Energy – volume: 47 start-page: 813 year: 1974 end-page: 817 publication-title: Bull. Chem. Soc. Jpn. – volume: 11 start-page: 5421 year: 2011 end-page: 5425 publication-title: Nano Lett. – volume: 60 start-page: 172 year: 2015 end-page: 175 publication-title: Electrochem. Commun. – volume: 8 start-page: 5393 year: 2016 end-page: 5399 publication-title: ACS Appl. Mater. Interfaces. – volume: 5 start-page: 11789 year: 2022 end-page: 11796 publication-title: ACS Appl. Energ. Mater. – start-page: 3373 year: 2021 end-page: 3384 publication-title: Eur. J. Inorg. Chem. – volume: 128 start-page: 2552 year: 1981 publication-title: J. Electrochem. Soc. – volume: 433 year: 2022 publication-title: Chem. Eng. J. – volume: 8 start-page: 21103 year: 2020 end-page: 21109 publication-title: J. Mater. Chem. A – volume: 8 start-page: 31669 year: 2016 end-page: 31676 publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 3980 year: 2009 end-page: 3986 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 2241 year: 2019 end-page: 2249 publication-title: ACS Appl. Nano Mater. – volume: 49 start-page: 180 year: 2020 end-page: 232 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 1289 year: 2020 end-page: 1303 publication-title: Mater. Chem. Front. – volume: 58 start-page: 3065 year: 2019 end-page: 3072 publication-title: Inorg. Chem. – volume: 14 start-page: 9807 year: 2020 end-page: 9818 publication-title: ACS Nano – volume: 14 start-page: 2925 year: 2019 end-page: 2937 publication-title: Chem. Asian J. – volume: 14 start-page: 2305 year: 2023 publication-title: Nat. Commun. – volume: 56 start-page: 93 year: 1999 end-page: 97 publication-title: Sens. Actuators B – volume: 27 start-page: 3763 year: 2015 end-page: 3768 publication-title: Chem. Mater. – volume: 19 year: 2023 publication-title: Small. – volume: 57 start-page: 14015 year: 2022 end-page: 14025 publication-title: J. Mater. Sci. – volume: 5 start-page: 4325 year: 2017 end-page: 4330 publication-title: J. Mater. Chem. A. – volume: 58 start-page: 8065 year: 2022 end-page: 8068 publication-title: Chem. Commun. – volume: 11 start-page: 1285 year: 2018 end-page: 1289 publication-title: ChemSusChem – volume: 334 start-page: 928 year: 2011 end-page: 935 publication-title: Science – volume: 36 start-page: 387 year: 2021 end-page: 408 publication-title: Energy Storage Mater. – volume: 83 start-page: 230 year: 2016 end-page: 249 publication-title: Mater. Res. Bull. – volume: 7 start-page: 16659 year: 2019 end-page: 16667 publication-title: ACS Sustainable Chem. Eng. – volume: 3 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 5 start-page: 16740 year: 2017 end-page: 16747 publication-title: J. Mater. Chem. A – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 10 start-page: 4721 year: 2019 publication-title: Nat. Commun. – volume: 13 start-page: 5748 year: 2013 end-page: 5752 publication-title: Nano Lett. – volume: 26 start-page: 5315 year: 2016 end-page: 5321 publication-title: Adv. Funct. Mater. – volume: 15 year: 2019 publication-title: Small. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 139 start-page: 2164 year: 2017 end-page: 2167 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1149 year: 2012 publication-title: Nat. Commun. – volume: 431 year: 2022 publication-title: Chem. Eng. J. – volume: 10 year: 2023 publication-title: Natl. Sci. Rev. – volume: 5 start-page: 4325 year: 2017 end-page: 4330 publication-title: J. Mater. Chem. A – volume: 3 start-page: 18013 year: 2018 publication-title: Nat. Rev. Mater. – ident: e_1_2_8_52_1 doi: 10.1016/j.scib.2017.01.030 – ident: e_1_2_8_61_1 doi: 10.1016/j.flatc.2022.100350 – ident: e_1_2_8_96_1 doi: 10.1039/C9CC06248C – ident: e_1_2_8_144_1 doi: 10.1002/cssc.201800057 – ident: e_1_2_8_62_1 doi: 10.1002/smll.202006424 – ident: e_1_2_8_98_1 doi: 10.1002/celc.201801277 – ident: e_1_2_8_117_1 doi: 10.1038/ncomms2139 – ident: e_1_2_8_70_1 doi: 10.1021/acs.chemrev.9b00531 – ident: e_1_2_8_119_1 doi: 10.1002/adfm.202006970 – ident: e_1_2_8_7_2 doi: 10.1149/1.2127289 – ident: e_1_2_8_4_2 doi: 10.1016/j.isci.2018.04.008 – ident: e_1_2_8_136_1 doi: 10.1126/science.aat7439 – ident: e_1_2_8_84_1 doi: 10.1016/j.bios.2017.04.036 – ident: e_1_2_8_109_1 doi: 10.1002/aenm.202000943 – ident: e_1_2_8_15_1 doi: 10.1038/natrevmats.2018.13 – ident: e_1_2_8_65_2 doi: 10.1021/acsami.6b10884 – ident: e_1_2_8_77_1 doi: 10.1021/ic50177a008 – ident: e_1_2_8_128_1 doi: 10.1007/s10853-022-07430-2 – ident: e_1_2_8_49_1 doi: 10.1039/C7TA00220C – ident: e_1_2_8_127_1 doi: 10.1038/s41560-019-0388-0 – ident: e_1_2_8_145_1 doi: 10.1016/j.materresbull.2016.06.008 – ident: e_1_2_8_138_1 – ident: e_1_2_8_85_1 doi: 10.3390/ma12071103 – ident: e_1_2_8_149_1 doi: 10.1021/acsami.9b04579 – ident: e_1_2_8_39_1 doi: 10.1016/j.ensm.2017.06.002 – ident: e_1_2_8_44_1 doi: 10.1039/D2TA08573A – ident: e_1_2_8_92_1 doi: 10.1039/C9QM00674E – ident: e_1_2_8_45_1 doi: 10.1016/j.ensm.2021.01.006 – ident: e_1_2_8_43_1 doi: 10.1039/C3EE44004D – ident: e_1_2_8_134_1 doi: 10.1002/chem.201504444 – ident: e_1_2_8_33_1 doi: 10.1039/C9TA11221A – ident: e_1_2_8_46_1 doi: 10.1002/smll.201900470 – ident: e_1_2_8_81_1 doi: 10.1039/D2CC02974J – ident: e_1_2_8_111_1 doi: 10.1002/anie.202103475 – ident: e_1_2_8_88_1 doi: 10.1016/j.jelechem.2005.07.008 – ident: e_1_2_8_132_1 doi: 10.1016/j.apsusc.2009.03.048 – ident: e_1_2_8_10_2 doi: 10.1021/acs.chemmater.7b01764 – ident: e_1_2_8_19_1 doi: 10.1039/D0EE02917C – ident: e_1_2_8_135_1 doi: 10.1016/j.electacta.2020.136199 – ident: e_1_2_8_40_1 doi: 10.1016/S0378-7753(98)00228-6 – ident: e_1_2_8_78_1 doi: 10.1002/celc.201801277 – ident: e_1_2_8_83_1 doi: 10.1016/j.cej.2021.133777 – ident: e_1_2_8_55_1 doi: 10.1143/APEX.5.041801 – ident: e_1_2_8_137_1 doi: 10.1038/nmat1849 – ident: e_1_2_8_8_2 doi: 10.1149/1.1357316 – ident: e_1_2_8_6_1 – ident: e_1_2_8_53_1 doi: 10.1021/nl403669a – ident: e_1_2_8_31_1 doi: 10.1016/j.cej.2018.09.012 – ident: e_1_2_8_105_2 doi: 10.1038/s41893-021-00810-7 – ident: e_1_2_8_120_1 doi: 10.1016/j.cej.2021.133926 – ident: e_1_2_8_91_1 doi: 10.1002/adfm.201909486 – ident: e_1_2_8_129_1 doi: 10.1021/acsaem.2c02288 – ident: e_1_2_8_51_1 doi: 10.1021/acs.chemmater.5b01132 – ident: e_1_2_8_29_2 doi: 10.1002/asia.201900784 – ident: e_1_2_8_37_2 doi: 10.1149/2.060202jes – ident: e_1_2_8_12_2 doi: 10.1021/acs.chemrev.9b00463 – ident: e_1_2_8_103_2 doi: 10.1038/s41467-019-12626-3 – ident: e_1_2_8_38_1 doi: 10.1002/celc.201700410 – ident: e_1_2_8_48_1 doi: 10.1021/jp2118949 – ident: e_1_2_8_28_2 doi: 10.1002/adfm.201706125 – ident: e_1_2_8_9_2 doi: 10.1246/bcsj.47.813 – ident: e_1_2_8_16_1 – ident: e_1_2_8_3_2 doi: 10.1039/C6CS00776G – ident: e_1_2_8_35_1 – ident: e_1_2_8_36_2 doi: 10.1002/aenm.201401869 – ident: e_1_2_8_130_1 doi: 10.1021/acsaem.9b01097 – ident: e_1_2_8_123_1 doi: 10.1039/C7TA00132K – ident: e_1_2_8_121_1 doi: 10.1002/adfm.201600747 – ident: e_1_2_8_57_1 – ident: e_1_2_8_41_1 doi: 10.1016/j.jpowsour.2003.08.007 – ident: e_1_2_8_114_1 doi: 10.1039/D2TA02694E – ident: e_1_2_8_95_1 doi: 10.1002/bte2.20220027 – ident: e_1_2_8_140_2 doi: 10.1021/acsami.1c18032 – ident: e_1_2_8_112_1 doi: 10.1021/ja105482k – ident: e_1_2_8_71_1 doi: 10.1002/adfm.202215027 – ident: e_1_2_8_34_1 doi: 10.1002/anie.201607194 – ident: e_1_2_8_122_1 doi: 10.1002/aenm.201702856 – ident: e_1_2_8_26_2 doi: 10.1016/j.nanoen.2022.107424 – ident: e_1_2_8_118_1 doi: 10.1021/acs.inorgchem.8b03081 – ident: e_1_2_8_126_1 doi: 10.1016/j.jpcs.2018.06.014 – ident: e_1_2_8_116_1 doi: 10.1016/j.elecom.2017.02.012 – ident: e_1_2_8_1_1 doi: 10.1126/science.1212741 – ident: e_1_2_8_14_2 doi: 10.1002/sstr.202000054 – ident: e_1_2_8_106_1 doi: 10.1016/j.cej.2020.125269 – ident: e_1_2_8_59_2 doi: 10.1007/BF01092684 – ident: e_1_2_8_107_1 doi: 10.1021/acsenergylett.0c01393 – ident: e_1_2_8_150_1 doi: 10.1007/s12274-023-5692-0 – ident: e_1_2_8_54_1 doi: 10.1039/C7TA00484B – ident: e_1_2_8_115_1 doi: 10.1039/C7TA04172A – ident: e_1_2_8_56_1 doi: 10.1016/j.joule.2018.07.017 – ident: e_1_2_8_76_1 doi: 10.1039/C9NJ02085C – ident: e_1_2_8_42_1 doi: 10.1021/nl203193q – ident: e_1_2_8_60_2 doi: 10.1016/j.electacta.2020.136243 – ident: e_1_2_8_63_1 – ident: e_1_2_8_23_1 doi: 10.1016/j.trechm.2019.04.007 – ident: e_1_2_8_72_1 doi: 10.1002/adma.202108384 – ident: e_1_2_8_147_1 doi: 10.1016/j.jpowsour.2020.229276 – ident: e_1_2_8_64_2 doi: 10.1098/rsos.201779 – ident: e_1_2_8_87_1 doi: 10.1021/ar00126a001 – ident: e_1_2_8_94_1 doi: 10.1039/C7TA08139A – ident: e_1_2_8_110_1 doi: 10.1002/aenm.201801413 – ident: e_1_2_8_75_1 doi: 10.1016/j.jelechem.2022.116468 – ident: e_1_2_8_67_1 doi: 10.1016/j.jcis.2022.05.023 – ident: e_1_2_8_82_1 doi: 10.1007/s12274-018-1979-y – ident: e_1_2_8_80_1 doi: 10.3390/cryst11080895 – ident: e_1_2_8_20_1 doi: 10.1038/s41467-023-38065-9 – ident: e_1_2_8_66_1 doi: 10.1002/cnma.201500021 – ident: e_1_2_8_141_1 doi: 10.1021/acsanm.8b02122 – ident: e_1_2_8_97_1 doi: 10.1002/smll.202207080 – ident: e_1_2_8_21_1 doi: 10.1093/nsr/nwad118 – ident: e_1_2_8_69_1 doi: 10.1039/C9CS00131J – ident: e_1_2_8_30_2 doi: 10.1016/j.cej.2019.123050 – ident: e_1_2_8_113_1 doi: 10.1039/D0TA06979E – ident: e_1_2_8_17_2 doi: 10.1021/jacs.5b06809 – ident: e_1_2_8_68_1 doi: 10.1002/EXP.20210239 – ident: e_1_2_8_32_1 doi: 10.1002/adfm.201604307 – ident: e_1_2_8_102_1 – ident: e_1_2_8_146_1 doi: 10.1002/slct.201801333 – ident: e_1_2_8_100_1 doi: 10.1021/jacs.6b12598 – ident: e_1_2_8_50_1 doi: 10.1021/ja512383b – ident: e_1_2_8_47_1 doi: 10.1016/j.jechem.2023.04.007 – ident: e_1_2_8_73_1 doi: 10.1016/j.electacta.2018.03.181 – ident: e_1_2_8_131_1 doi: 10.1016/j.jcis.2016.05.056 – ident: e_1_2_8_11_1 – ident: e_1_2_8_22_1 doi: 10.1016/j.mtener.2022.100982 – ident: e_1_2_8_124_1 doi: 10.1021/acssuschemeng.9b04012 – ident: e_1_2_8_18_2 doi: 10.1016/j.elecom.2015.09.002 – ident: e_1_2_8_93_1 doi: 10.1021/acsami.5b12620 – ident: e_1_2_8_125_1 doi: 10.1021/acsnano.0c02047 – ident: e_1_2_8_139_2 doi: 10.1016/j.electacta.2015.02.002 – ident: e_1_2_8_101_1 doi: 10.1039/C7TA00220C – ident: e_1_2_8_143_1 doi: 10.1039/C5CC01180A – ident: e_1_2_8_79_1 doi: 10.1021/acssuschemeng.9b01454 – ident: e_1_2_8_27_2 doi: 10.1039/C9NR04415A – ident: e_1_2_8_99_1 doi: 10.1021/acssuschemeng.9b01454 – ident: e_1_2_8_13_2 doi: 10.1002/aenm.201702384 – ident: e_1_2_8_5_1 doi: 10.1002/adfm.201909486 – ident: e_1_2_8_2_1 – ident: e_1_2_8_108_1 doi: 10.1016/j.ensm.2019.07.003 – ident: e_1_2_8_24_1 – ident: e_1_2_8_90_1 doi: 10.1002/ejic.202100349 – ident: e_1_2_8_142_1 doi: 10.1002/anie.201702711 – ident: e_1_2_8_25_2 doi: 10.1021/acsenergylett.7b00179 – ident: e_1_2_8_148_1 doi: 10.1002/advs.201600289 – ident: e_1_2_8_58_2 doi: 10.1016/S0925-4005(99)00161-6 – ident: e_1_2_8_74_1 doi: 10.1016/j.jallcom.2022.164049 – ident: e_1_2_8_104_2 doi: 10.1002/admi.201500856 – ident: e_1_2_8_86_1 doi: 10.1149/1.2131575 – ident: e_1_2_8_89_1 doi: 10.3390/ma12071103 – ident: e_1_2_8_133_1 doi: 10.1002/adfm.200901478 |
| SSID | ssj0003036 |
| Score | 2.5613031 |
| SecondaryResourceType | review_article |
| Snippet | Environmental pollution and the energy crisis have promoted the development of clean energy as well as new‐generation energy storage systems. Potassium ion... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Cathode materials Cathodes Clean energy Composition Doping Electrochemical analysis Electrode materials Energy storage Inorganic chemistry Ion storage Lithium-ion batteries Materials science Optimization Pigments Potassium Potassium ion batteries Prussian blue analogues Storage systems Transition metals |
| Title | Progress of Prussian Blue and Its Analogues as Cathode Materials for Potassium Ion Batteries |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejic.202300246 https://www.proquest.com/docview/2859591280 |
| Volume | 26 |
| WOSCitedRecordID | wos001034854000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1099-0682 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003036 issn: 1434-1948 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oJuiLd3E6JQ-CT8UuS2-POjec6BjiYA9CSZoUJrOVtfX3e9LbtgcR9K2BJJSc23dCzncArqhkHcmZNDpKtzCzMUERHAWibGlKT5iafihvNuGMRu506o1XqvgLfoj6wk1bRu6vtYFzkdwsSUPV-0xTECKExjBjb0KTovKyBjTvXwaTp9obaxedVxh1mYEJu1sRN5r0Zn2H9cC0RJurmDUPOoO9___uPuyWgJPcFhpyABsqOoTtXtXn7QjexvqJFjo8EodkvMgSXVZJ7uaZIjySZJgmRDOX6CuehPCE6JrBWCryzNNCewniXjKOU4Ths-yDDGNcnbN2YhJ-DJNB_7X3YJQ9F4wAkYRthIESlqWckHa5J1HNXMbMEDEFitqR1HVlYAZUCM-1BLcxpw1ER1qecqQbcooWfQKNKI7UKRDKHMYCi6HQFUMQL4TqmlRi_sIQK3PRAqM6cD8oCcl1X4y5X1ApU1-fmV-fWQuu6_mfBRXHjzPblfz80iQTXzP1WR6GY7MFNJfUL7v4_cdhrx6d_WXROezo7-JNWhsa6SJTF7AVfKWzZHFZquo34w_o8w |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60CvXiW6zPPQieQtPt5nXUamm1liIKPQhhN7uBijbSpP5-Z5I06kEE8Zhldwk7r2-WnW8AzrgWLS2FtlqGWpi5mKAoiQIxrrZ1oGyiH8qbTXjDoT8eB6PyNSHVwhT8ENWFG1lG7q_JwOlCuvnJGmqeJ8RBiBga44y7DCsCdcmpwcrVffdxULlj8tF5iVFbWJix-wvmRps3v-_wPTJ9ws2voDWPOt2Nf_jfTVgvISe7KHRkC5bMdBvqnUWntx14GtEjLXR5LInZaDZPqbCSXb7MDZNTzfpZyoi7hC55UiZTRlWDiTbsTmaF_jJEvmyUZAjEJ_NX1k9wdc7biWn4Ljx2rx86PavsumBFiCVcK46MchzjxbwtA42K5gthx4gqUNie5r6vIzviSgW-o6SLWW2kWtoJjKf9WHK06T2oTZOp2QfGhSdE5AgUuxEI45UybZtrzGAEomWpGmAtTjyMSkpy6ozxEhZkyjykMwurM2vAeTX_rSDj-HHm0UKAYWmUaUhcfU6AAdluAM9F9csu4fVNv1N9Hfxl0SnUew93g3DQH94ewhqNFy_UjqCWzebmGFaj92ySzk5Kvf0A5VTs4w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD6oE_XFuziveRB8Kuuy9Paoc8N6GUUUfBBK0qQwma2srb_fk7br9EEE8bEhCSXn9p2Q8x2AMypZV3Imja7SLcxsTFAER4EoW5rSE6amHyqbTTijkfv87AX1a0JdC1PxQzQXbtoySn-tDVy9y7gzZw1Vr2PNQYgYGuOMvQgtZnk22mbr6mH4dNe4Y-2jyxKjHjMwY3dnzI0m7Xzf4XtkmsPNr6C1jDrDjX_4301YryEnuah0ZAsWVLINq_1Zp7cdeAn0Iy10eSSNSTAtMl1YSS4nhSI8kcTPM6K5S_QlT0Z4RnTVYCoVued5pb8EkS8J0hyB-Lh4I36Kq0veTkzDd-FpOHjsXxt11wUjQixhG3GkhGUpJ6Y97klUNJcxM0ZUgcJ2JHVdGZkRFcJzLcFtzGoj0ZWWpxzpxpyiTe_BUpImah8IZQ5jkcVQ7IohjBdC9UwqMYNhiJa5aIMxO_EwqinJdWeMSViRKdNQn1nYnFkbzpv57xUZx48zj2YCDGujzELN1Wd5GJDNNtBSVL_sEg5u_H7zdfCXRaewElwNwzt_dHsIa3q4eqB2BEv5tFDHsBx95ONselKr7SeKx-xe |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+of+Prussian+Blue+and+Its+Analogues+as+Cathode+Materials+for+Potassium+Ion+Batteries&rft.jtitle=European+journal+of+inorganic+chemistry&rft.au=Bai%2C+Yue&rft.au=YuChi%2C+Ke%27er&rft.au=Liu%2C+Xu&rft.au=Tian%2C+Shinuo&rft.date=2023-09-01&rft.issn=1434-1948&rft.eissn=1099-0682&rft.volume=26&rft.issue=25&rft_id=info:doi/10.1002%2Fejic.202300246&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ejic_202300246 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-1948&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-1948&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-1948&client=summon |