Progress of Prussian Blue and Its Analogues as Cathode Materials for Potassium Ion Batteries

Environmental pollution and the energy crisis have promoted the development of clean energy as well as new‐generation energy storage systems. Potassium ion batteries (PIBs) have emerged as a possible alternative to lithium‐ion batteries due to their abundant reserves, low cost, and impressive electr...

Full description

Saved in:
Bibliographic Details
Published in:European journal of inorganic chemistry Vol. 26; no. 25
Main Authors: Bai, Yue, YuChi, Ke'er, Liu, Xu, Tian, Shinuo, Yang, Shujie, Qian, Xi, Ma, Bin, Fang, Minghao, Liu, Yan'gai, Huang, Zhaohui, Min, Xin
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 01.09.2023
Subjects:
ISSN:1434-1948, 1099-0682
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Environmental pollution and the energy crisis have promoted the development of clean energy as well as new‐generation energy storage systems. Potassium ion batteries (PIBs) have emerged as a possible alternative to lithium‐ion batteries due to their abundant reserves, low cost, and impressive electrochemical performance. However, the search for suitable cathode materials has become particularly crucial. Recently, Prussian blue (PB) has been investigated as a potential cathode material for PIBs, which has an open three‐dimensional framework to accommodate a large volume of potassium ions and adjustable composition for different applications. In this review, Prussian blue and its analogues (PBAs) and their application in PIBs were summarized detailly. We presented the composition, structure, potassium ion storage mechanism, preparation process of PBAs, and then focus on the performance optimization methods of the PBAs, including transition metal doping and conductive material adding into PBAs. Finally, the challenges as well as the outlook on the future development of PBAs were proposed for further application in this battery system. In potassium ion batteries with Prussian blue and its analogs as cathodes, the performance of the batteries can be optimized by various pairs of methods. These include improving the preparation process, doping with a variety of transition metals, and compounding with conductive materials. The enhancement of performance helps to promote the large‐scale application of potassium ion batteries.
AbstractList Environmental pollution and the energy crisis have promoted the development of clean energy as well as new‐generation energy storage systems. Potassium ion batteries (PIBs) have emerged as a possible alternative to lithium‐ion batteries due to their abundant reserves, low cost, and impressive electrochemical performance. However, the search for suitable cathode materials has become particularly crucial. Recently, Prussian blue (PB) has been investigated as a potential cathode material for PIBs, which has an open three‐dimensional framework to accommodate a large volume of potassium ions and adjustable composition for different applications. In this review, Prussian blue and its analogues (PBAs) and their application in PIBs were summarized detailly. We presented the composition, structure, potassium ion storage mechanism, preparation process of PBAs, and then focus on the performance optimization methods of the PBAs, including transition metal doping and conductive material adding into PBAs. Finally, the challenges as well as the outlook on the future development of PBAs were proposed for further application in this battery system.
Environmental pollution and the energy crisis have promoted the development of clean energy as well as new‐generation energy storage systems. Potassium ion batteries (PIBs) have emerged as a possible alternative to lithium‐ion batteries due to their abundant reserves, low cost, and impressive electrochemical performance. However, the search for suitable cathode materials has become particularly crucial. Recently, Prussian blue (PB) has been investigated as a potential cathode material for PIBs, which has an open three‐dimensional framework to accommodate a large volume of potassium ions and adjustable composition for different applications. In this review, Prussian blue and its analogues (PBAs) and their application in PIBs were summarized detailly. We presented the composition, structure, potassium ion storage mechanism, preparation process of PBAs, and then focus on the performance optimization methods of the PBAs, including transition metal doping and conductive material adding into PBAs. Finally, the challenges as well as the outlook on the future development of PBAs were proposed for further application in this battery system. In potassium ion batteries with Prussian blue and its analogs as cathodes, the performance of the batteries can be optimized by various pairs of methods. These include improving the preparation process, doping with a variety of transition metals, and compounding with conductive materials. The enhancement of performance helps to promote the large‐scale application of potassium ion batteries.
Author Tian, Shinuo
Fang, Minghao
Liu, Xu
Yang, Shujie
Liu, Yan'gai
Bai, Yue
YuChi, Ke'er
Qian, Xi
Ma, Bin
Min, Xin
Huang, Zhaohui
Author_xml – sequence: 1
  givenname: Yue
  surname: Bai
  fullname: Bai, Yue
  organization: China University of Geosciences (Beijing)
– sequence: 2
  givenname: Ke'er
  surname: YuChi
  fullname: YuChi, Ke'er
  organization: China University of Geosciences (Beijing)
– sequence: 3
  givenname: Xu
  surname: Liu
  fullname: Liu, Xu
  organization: China University of Geosciences (Beijing)
– sequence: 4
  givenname: Shinuo
  surname: Tian
  fullname: Tian, Shinuo
  organization: China University of Geosciences (Beijing)
– sequence: 5
  givenname: Shujie
  surname: Yang
  fullname: Yang, Shujie
  organization: China University of Geosciences (Beijing)
– sequence: 6
  givenname: Xi
  surname: Qian
  fullname: Qian, Xi
  organization: China University of Geosciences (Beijing)
– sequence: 7
  givenname: Bin
  surname: Ma
  fullname: Ma, Bin
  organization: Qinghai University
– sequence: 8
  givenname: Minghao
  surname: Fang
  fullname: Fang, Minghao
  organization: China University of Geosciences (Beijing)
– sequence: 9
  givenname: Yan'gai
  surname: Liu
  fullname: Liu, Yan'gai
  organization: China University of Geosciences (Beijing)
– sequence: 10
  givenname: Zhaohui
  surname: Huang
  fullname: Huang, Zhaohui
  organization: China University of Geosciences (Beijing)
– sequence: 11
  givenname: Xin
  orcidid: 0000-0003-3953-2699
  surname: Min
  fullname: Min, Xin
  email: minx@cugb.edu.cn
  organization: China University of Geosciences (Beijing)
BookMark eNqFkE1LAzEQhoNUsK1ePQc8b51kv5JjXaquVOxBb8KSzWZrynZTkyzSf29KRUEQTzPDPM8wvBM06k2vELokMCMA9FpttJxRoHEYkuwEjQlwHkHG6Cj0SZxEhCfsDE2c2wBADHE2Rq8ra9ZWOYdNi1d2cE6LHt90g8Kib3DpHZ73ojPrQTksHC6EfzONwo_CK6tF53BrLF4ZL4I5bHFpgi38YancOTptA6IuvuoUvdwunov7aPl0VxbzZSRjkmdRK1WdpipvaSx4o0TDkgRaTkBJmTeUsUaCpHXNWVqLDGgua9KkXOUNawWFNJ6iq-PdnTXv4VFfbcxgw9uuoizlKSeUQaCSIyWtcc6qtpLaC69N763QXUWgOuRYHXKsvnMM2uyXtrN6K-z-b4EfhQ_dqf0_dLV4KIsf9xPKIIiY
CitedBy_id crossref_primary_10_1002_ejic_202300576
crossref_primary_10_1016_j_jallcom_2025_182014
crossref_primary_10_1016_j_jpcs_2025_112762
crossref_primary_10_1016_j_cclet_2025_111185
crossref_primary_10_1149_1945_7111_ad4b5f
crossref_primary_10_1016_j_matre_2025_100331
crossref_primary_10_1002_bte2_20240006
crossref_primary_10_1016_j_cplett_2024_141522
crossref_primary_10_1039_D4TC04475D
crossref_primary_10_1021_acsnano_4c10091
crossref_primary_10_1016_j_est_2025_116995
crossref_primary_10_1016_j_est_2025_116700
crossref_primary_10_1016_j_pnsc_2024_10_008
crossref_primary_10_1149_1945_7111_ad6d93
crossref_primary_10_1002_batt_202400448
crossref_primary_10_1002_aenm_202400702
crossref_primary_10_1016_j_jechem_2025_03_089
crossref_primary_10_1021_acs_chemmater_5c00213
Cites_doi 10.1016/j.scib.2017.01.030
10.1016/j.flatc.2022.100350
10.1039/C9CC06248C
10.1002/cssc.201800057
10.1002/smll.202006424
10.1002/celc.201801277
10.1038/ncomms2139
10.1021/acs.chemrev.9b00531
10.1002/adfm.202006970
10.1149/1.2127289
10.1016/j.isci.2018.04.008
10.1126/science.aat7439
10.1016/j.bios.2017.04.036
10.1002/aenm.202000943
10.1038/natrevmats.2018.13
10.1021/acsami.6b10884
10.1021/ic50177a008
10.1007/s10853-022-07430-2
10.1039/C7TA00220C
10.1038/s41560-019-0388-0
10.1016/j.materresbull.2016.06.008
10.3390/ma12071103
10.1021/acsami.9b04579
10.1016/j.ensm.2017.06.002
10.1039/D2TA08573A
10.1039/C9QM00674E
10.1016/j.ensm.2021.01.006
10.1039/C3EE44004D
10.1002/chem.201504444
10.1039/C9TA11221A
10.1002/smll.201900470
10.1039/D2CC02974J
10.1002/anie.202103475
10.1016/j.jelechem.2005.07.008
10.1016/j.apsusc.2009.03.048
10.1021/acs.chemmater.7b01764
10.1039/D0EE02917C
10.1016/j.electacta.2020.136199
10.1016/S0378-7753(98)00228-6
10.1016/j.cej.2021.133777
10.1143/APEX.5.041801
10.1038/nmat1849
10.1149/1.1357316
10.1021/nl403669a
10.1016/j.cej.2018.09.012
10.1038/s41893-021-00810-7
10.1016/j.cej.2021.133926
10.1002/adfm.201909486
10.1021/acsaem.2c02288
10.1021/acs.chemmater.5b01132
10.1002/asia.201900784
10.1149/2.060202jes
10.1021/acs.chemrev.9b00463
10.1038/s41467-019-12626-3
10.1002/celc.201700410
10.1021/jp2118949
10.1002/adfm.201706125
10.1246/bcsj.47.813
10.1039/C6CS00776G
10.1002/aenm.201401869
10.1021/acsaem.9b01097
10.1039/C7TA00132K
10.1002/adfm.201600747
10.1016/j.jpowsour.2003.08.007
10.1039/D2TA02694E
10.1002/bte2.20220027
10.1021/acsami.1c18032
10.1021/ja105482k
10.1002/adfm.202215027
10.1002/anie.201607194
10.1002/aenm.201702856
10.1016/j.nanoen.2022.107424
10.1021/acs.inorgchem.8b03081
10.1016/j.jpcs.2018.06.014
10.1016/j.elecom.2017.02.012
10.1126/science.1212741
10.1002/sstr.202000054
10.1016/j.cej.2020.125269
10.1007/BF01092684
10.1021/acsenergylett.0c01393
10.1007/s12274-023-5692-0
10.1039/C7TA00484B
10.1039/C7TA04172A
10.1016/j.joule.2018.07.017
10.1039/C9NJ02085C
10.1021/nl203193q
10.1016/j.electacta.2020.136243
10.1016/j.trechm.2019.04.007
10.1002/adma.202108384
10.1016/j.jpowsour.2020.229276
10.1098/rsos.201779
10.1021/ar00126a001
10.1039/C7TA08139A
10.1002/aenm.201801413
10.1016/j.jelechem.2022.116468
10.1016/j.jcis.2022.05.023
10.1007/s12274-018-1979-y
10.3390/cryst11080895
10.1038/s41467-023-38065-9
10.1002/cnma.201500021
10.1021/acsanm.8b02122
10.1002/smll.202207080
10.1093/nsr/nwad118
10.1039/C9CS00131J
10.1016/j.cej.2019.123050
10.1039/D0TA06979E
10.1021/jacs.5b06809
10.1002/EXP.20210239
10.1002/adfm.201604307
10.1002/slct.201801333
10.1021/jacs.6b12598
10.1021/ja512383b
10.1016/j.jechem.2023.04.007
10.1016/j.electacta.2018.03.181
10.1016/j.jcis.2016.05.056
10.1016/j.mtener.2022.100982
10.1021/acssuschemeng.9b04012
10.1016/j.elecom.2015.09.002
10.1021/acsami.5b12620
10.1021/acsnano.0c02047
10.1016/j.electacta.2015.02.002
10.1039/C5CC01180A
10.1021/acssuschemeng.9b01454
10.1039/C9NR04415A
10.1002/aenm.201702384
10.1016/j.ensm.2019.07.003
10.1002/ejic.202100349
10.1002/anie.201702711
10.1021/acsenergylett.7b00179
10.1002/advs.201600289
10.1016/S0925-4005(99)00161-6
10.1016/j.jallcom.2022.164049
10.1002/admi.201500856
10.1149/1.2131575
10.1002/adfm.200901478
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ejic.202300246
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-0682
EndPage n/a
ExternalDocumentID 10_1002_ejic_202300246
EJIC202300246
Genre reviewArticle
GrantInformation_xml – fundername: Qinghai province
  funderid: 2022-HZ-807
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACNCT
ACPOU
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
.Y3
31~
53G
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AI.
AIDQK
AIDYY
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
MVM
O8X
UQL
VH1
XOL
ZCG
ZY4
1OB
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3176-fceb55e7f23a9dead8440f910ecc7d288dc0c2bb985ba6027cb1d59e7d8fa2053
IEDL.DBID DRFUL
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001034854000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1434-1948
IngestDate Wed Aug 13 10:43:27 EDT 2025
Sat Nov 29 07:16:24 EST 2025
Tue Nov 18 22:11:22 EST 2025
Wed Jan 22 16:14:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3176-fceb55e7f23a9dead8440f910ecc7d288dc0c2bb985ba6027cb1d59e7d8fa2053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3953-2699
PQID 2859591280
PQPubID 2030176
PageCount 23
ParticipantIDs proquest_journals_2859591280
crossref_citationtrail_10_1002_ejic_202300246
crossref_primary_10_1002_ejic_202300246
wiley_primary_10_1002_ejic_202300246_EJIC202300246
PublicationCentury 2000
PublicationDate September 1, 2023
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 1, 2023
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle European journal of inorganic chemistry
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 11
2019; 10
2019; 12
2019; 15
2019; 14
2022; 25
2020; 14
2001; 148
2023; 83
1974; 47
2018; 8
2018; 3
2018; 2
2018; 5
2015; 137
2005; 584
2019; 22
2017; 77
2022; 34
1999; 56
2007; 6
2022; 32
2009; 19
2017; 62
2019; 7
2018; 28
2019; 4
2020; 382
2019; 2
2015; 51
2019; 1
2022; 918
1986; 19
2017; 139
2016; 3
2015; 60
2020; 30
2022; 5
2020; 396
2019; 43
1977; 16
2017; 56
2022; 904
2022; 10
2022; 99
2022; 2
2018; 11
2021; 60
2012; 116
1992; 22
2022; 623
2016; 26
2016; 8
2016; 22
2017; 5
2018; 362
2011; 159
2018; 122
2017; 2
2004; 126
2023; 33
2017; 4
1999; 81–82
2020; 120
2019; 55
2017; 46
2019; 58
2011; 11
2023; 2
2021; 484
2017; 9
2020; 8
2021; 36
2020; 5
2020; 4
2021; 31
2013; 13
2020; 49
2019; 356
2016; 83
2016; 478
2014; 7
2023; 10
2021; 8
2015; 1
2022; 431
2011; 334
2015; 160
2023; 14
2015; 5
2023; 11
2021; 2
2017; 27
2023; 16
2023; 19
2020; 349
2009; 255
1981; 128
2017; 29
2020; 345
2016; 55
2022; 433
2021; 14
2021; 13
2017; 96
2015; 27
2012; 3
2018; 272
2021; 11
2021
2021; 17
2010; 132
2022; 57
2022; 58
1978; 125
2012; 5
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_132_1
e_1_2_8_5_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_87_1
e_1_2_8_64_2
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_83_1
e_1_2_8_60_2
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_128_1
e_1_2_8_30_2
e_1_2_8_105_2
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_72_1
e_1_2_8_29_2
e_1_2_8_25_2
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_140_2
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_10_2
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_2
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_3_2
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_17_2
e_1_2_8_13_2
e_1_2_8_59_2
e_1_2_8_36_2
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_126_1
e_1_2_8_145_1
e_1_2_8_93_1
e_1_2_8_103_2
e_1_2_8_27_2
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_2
e_1_2_8_131_1
e_1_2_8_150_1
e_1_2_8_8_2
e_1_2_8_65_2
e_1_2_8_139_2
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_12_2
e_1_2_8_58_2
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_104_2
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_146_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 11564
  year: 2019
  end-page: 11570
  publication-title: ACS Sustainable Chem. Eng.
– volume: 11
  start-page: 895
  year: 2021
  publication-title: Crystals
– volume: 8
  start-page: 16061
  year: 2020
  end-page: 16080
  publication-title: J. Mater. Chem. A.
– volume: 14
  start-page: 2186
  year: 2021
  end-page: 2243
  publication-title: Energy Environ. Sci.
– volume: 478
  start-page: 107
  year: 2016
  end-page: 116
  publication-title: J. Colloid Interface Sci.
– volume: 1
  start-page: 188
  year: 2015
  end-page: 193
  publication-title: ChemNanoMat.
– volume: 13
  start-page: 54079
  year: 2021
  end-page: 54087
  publication-title: ACS Appl. Mater. Interfaces
– volume: 43
  start-page: 11618
  year: 2019
  end-page: 11625
  publication-title: New J. Chem.
– volume: 96
  start-page: 17
  year: 2017
  end-page: 25
  publication-title: Biosens. Bioelectron.
– volume: 5
  start-page: 225
  year: 2022
  end-page: 234
  publication-title: Nat. Sustain.
– volume: 356
  start-page: 53
  year: 2019
  end-page: 59
  publication-title: Chem. Eng. J.
– volume: 345
  year: 2020
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 11441
  year: 2018
  end-page: 11450
  publication-title: ChemistrySelect.
– volume: 382
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 349
  year: 2020
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 13508
  year: 2022
  end-page: 13518
  publication-title: J. Mater. Chem. A
– volume: 120
  start-page: 6783
  year: 2020
  end-page: 6819
  publication-title: Chem. Rev.
– volume: 11
  start-page: 15418
  year: 2019
  end-page: 15439
  publication-title: Nanoscale
– volume: 5
  start-page: 6393
  year: 2017
  end-page: 6398
  publication-title: J. Mater. Chem. A.
– volume: 120
  start-page: 6358
  year: 2020
  end-page: 6466
  publication-title: Chem. Rev.
– volume: 99
  year: 2022
  publication-title: Nano Energy
– volume: 159
  start-page: A98
  year: 2011
  publication-title: J. Electrochem. Soc.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 623
  start-page: 1
  year: 2022
  end-page: 8
  publication-title: J. Colloid Interface Sci.
– volume: 148
  start-page: E155
  year: 2001
  publication-title: J. Electrochem. Soc.
– volume: 904
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 584
  start-page: 117
  year: 2005
  end-page: 123
  publication-title: J. Electroanal. Chem.
– volume: 11
  start-page: 1532
  year: 2023
  end-page: 1550
  publication-title: J. Mater. Chem. A.
– volume: 362
  start-page: 547
  year: 2018
  end-page: 553
  publication-title: Science
– volume: 55
  start-page: 12555
  year: 2019
  end-page: 12558
  publication-title: Chem. Commun.
– volume: 77
  start-page: 54
  year: 2017
  end-page: 57
  publication-title: Electrochem. Commun.
– volume: 55
  start-page: 12528
  year: 2016
  end-page: 12532
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 3979
  year: 2018
  end-page: 3990
  publication-title: Nano Res.
– volume: 22
  start-page: 325
  year: 1992
  end-page: 331
  publication-title: J. Appl. Electrochem.
– volume: 11
  start-page: 22339
  year: 2019
  end-page: 22345
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 1643
  year: 2014
  end-page: 1647
  publication-title: Energy Environ. Sci.
– volume: 29
  start-page: 5031
  year: 2017
  end-page: 5042
  publication-title: Chem. Mater.
– volume: 16
  start-page: 2704
  year: 1977
  end-page: 2710
  publication-title: Inorg. Chem.
– volume: 81–82
  start-page: 530
  year: 1999
  end-page: 534
  publication-title: J. Power Sources.
– volume: 2
  year: 2022
  publication-title: Exploration
– volume: 5
  start-page: 22465
  year: 2017
  end-page: 22471
  publication-title: J. Mater. Chem. A.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 16
  start-page: 6326
  year: 2023
  end-page: 6333
  publication-title: Nano Res.
– volume: 5
  start-page: 3887
  year: 2018
  end-page: 3892
  publication-title: ChemElectroChem
– volume: 125
  start-page: 886
  year: 1978
  end-page: 887
  publication-title: J. Electrochem. Soc.
– volume: 22
  start-page: 120
  year: 2019
  end-page: 127
  publication-title: Energy Storage Mater.
– volume: 137
  start-page: 11566
  year: 2015
  end-page: 11569
  publication-title: J. Am. Chem. Soc.
– volume: 2
  year: 2023
  publication-title: Battery Energy.
– volume: 2
  start-page: 1950
  year: 2018
  end-page: 1960
  publication-title: Joule.
– volume: 132
  start-page: 12206
  year: 2010
  end-page: 12207
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1103
  year: 2019
  publication-title: Materials
– volume: 484
  year: 2021
  publication-title: J. Power Sources
– volume: 126
  start-page: 221
  year: 2004
  end-page: 228
  publication-title: J. Power Sources.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 2
  year: 2021
  publication-title: Small Structures
– volume: 32
  year: 2022
  publication-title: FlatChem.
– volume: 4
  start-page: 2237
  year: 2017
  end-page: 2242
  publication-title: ChemElectroChem.
– volume: 9
  start-page: 11
  year: 2017
  end-page: 30
  publication-title: Energy Storage Mater.
– volume: 62
  start-page: 358
  year: 2017
  end-page: 368
  publication-title: Sci. Bull.
– volume: 60
  start-page: 13050
  year: 2021
  end-page: 13056
  publication-title: Angew. Chem. Int. Ed.
– volume: 19
  start-page: 162
  year: 1986
  end-page: 168
  publication-title: Acc. Chem. Res.
– volume: 22
  start-page: 6643
  year: 2016
  end-page: 6653
  publication-title: Chem. Eur. J.
– volume: 396
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 255
  start-page: 7084
  year: 2009
  end-page: 7089
  publication-title: Appl. Surf. Sci.
– volume: 51
  start-page: 8181
  year: 2015
  end-page: 8184
  publication-title: Chem. Commun.
– volume: 8
  year: 2021
  publication-title: R. Soc. Open Sci.
– volume: 56
  start-page: 7881
  year: 2017
  end-page: 7885
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 9604
  year: 2017
  end-page: 9610
  publication-title: J. Mater. Chem. A
– volume: 83
  start-page: 16
  year: 2023
  end-page: 23
  publication-title: J. Energy Chem.
– volume: 2
  start-page: 1122
  year: 2017
  end-page: 1127
  publication-title: ACS Energy Lett.
– volume: 272
  start-page: 44
  year: 2018
  end-page: 51
  publication-title: Electrochim. Acta
– volume: 25
  year: 2022
  publication-title: Mater. Today Energy
– volume: 122
  start-page: 31
  year: 2018
  end-page: 35
  publication-title: J. Phys. Chem. Solids
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 918
  year: 2022
  publication-title: J. Electroanal. Chem.
– volume: 160
  start-page: 337
  year: 2015
  end-page: 346
  publication-title: Electrochim. Acta.
– volume: 1
  start-page: 682
  year: 2019
  end-page: 692
  publication-title: Trends Chem.
– volume: 5
  year: 2012
  publication-title: Appl. Phys. Express.
– volume: 3
  start-page: 110
  year: 2018
  end-page: 133
  publication-title: iScience.
– volume: 46
  start-page: 3529
  year: 2017
  end-page: 3614
  publication-title: Chem. Soc. Rev.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 116
  start-page: 8364
  year: 2012
  end-page: 8369
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 183
  year: 2007
  end-page: 191
  publication-title: Nat. Mater.
– volume: 137
  start-page: 2658
  year: 2015
  end-page: 2664
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 6528
  year: 2019
  end-page: 6535
  publication-title: ACS Appl. Energ. Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 2849
  year: 2020
  end-page: 2857
  publication-title: ACS Energy Lett.
– volume: 4
  start-page: 495
  year: 2019
  end-page: 503
  publication-title: Nat. Energy
– volume: 47
  start-page: 813
  year: 1974
  end-page: 817
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 11
  start-page: 5421
  year: 2011
  end-page: 5425
  publication-title: Nano Lett.
– volume: 60
  start-page: 172
  year: 2015
  end-page: 175
  publication-title: Electrochem. Commun.
– volume: 8
  start-page: 5393
  year: 2016
  end-page: 5399
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 5
  start-page: 11789
  year: 2022
  end-page: 11796
  publication-title: ACS Appl. Energ. Mater.
– start-page: 3373
  year: 2021
  end-page: 3384
  publication-title: Eur. J. Inorg. Chem.
– volume: 128
  start-page: 2552
  year: 1981
  publication-title: J. Electrochem. Soc.
– volume: 433
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 21103
  year: 2020
  end-page: 21109
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 31669
  year: 2016
  end-page: 31676
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  start-page: 3980
  year: 2009
  end-page: 3986
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 2241
  year: 2019
  end-page: 2249
  publication-title: ACS Appl. Nano Mater.
– volume: 49
  start-page: 180
  year: 2020
  end-page: 232
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 1289
  year: 2020
  end-page: 1303
  publication-title: Mater. Chem. Front.
– volume: 58
  start-page: 3065
  year: 2019
  end-page: 3072
  publication-title: Inorg. Chem.
– volume: 14
  start-page: 9807
  year: 2020
  end-page: 9818
  publication-title: ACS Nano
– volume: 14
  start-page: 2925
  year: 2019
  end-page: 2937
  publication-title: Chem. Asian J.
– volume: 14
  start-page: 2305
  year: 2023
  publication-title: Nat. Commun.
– volume: 56
  start-page: 93
  year: 1999
  end-page: 97
  publication-title: Sens. Actuators B
– volume: 27
  start-page: 3763
  year: 2015
  end-page: 3768
  publication-title: Chem. Mater.
– volume: 19
  year: 2023
  publication-title: Small.
– volume: 57
  start-page: 14015
  year: 2022
  end-page: 14025
  publication-title: J. Mater. Sci.
– volume: 5
  start-page: 4325
  year: 2017
  end-page: 4330
  publication-title: J. Mater. Chem. A.
– volume: 58
  start-page: 8065
  year: 2022
  end-page: 8068
  publication-title: Chem. Commun.
– volume: 11
  start-page: 1285
  year: 2018
  end-page: 1289
  publication-title: ChemSusChem
– volume: 334
  start-page: 928
  year: 2011
  end-page: 935
  publication-title: Science
– volume: 36
  start-page: 387
  year: 2021
  end-page: 408
  publication-title: Energy Storage Mater.
– volume: 83
  start-page: 230
  year: 2016
  end-page: 249
  publication-title: Mater. Res. Bull.
– volume: 7
  start-page: 16659
  year: 2019
  end-page: 16667
  publication-title: ACS Sustainable Chem. Eng.
– volume: 3
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 5
  start-page: 16740
  year: 2017
  end-page: 16747
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 4721
  year: 2019
  publication-title: Nat. Commun.
– volume: 13
  start-page: 5748
  year: 2013
  end-page: 5752
  publication-title: Nano Lett.
– volume: 26
  start-page: 5315
  year: 2016
  end-page: 5321
  publication-title: Adv. Funct. Mater.
– volume: 15
  year: 2019
  publication-title: Small.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 139
  start-page: 2164
  year: 2017
  end-page: 2167
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1149
  year: 2012
  publication-title: Nat. Commun.
– volume: 431
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 10
  year: 2023
  publication-title: Natl. Sci. Rev.
– volume: 5
  start-page: 4325
  year: 2017
  end-page: 4330
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 18013
  year: 2018
  publication-title: Nat. Rev. Mater.
– ident: e_1_2_8_52_1
  doi: 10.1016/j.scib.2017.01.030
– ident: e_1_2_8_61_1
  doi: 10.1016/j.flatc.2022.100350
– ident: e_1_2_8_96_1
  doi: 10.1039/C9CC06248C
– ident: e_1_2_8_144_1
  doi: 10.1002/cssc.201800057
– ident: e_1_2_8_62_1
  doi: 10.1002/smll.202006424
– ident: e_1_2_8_98_1
  doi: 10.1002/celc.201801277
– ident: e_1_2_8_117_1
  doi: 10.1038/ncomms2139
– ident: e_1_2_8_70_1
  doi: 10.1021/acs.chemrev.9b00531
– ident: e_1_2_8_119_1
  doi: 10.1002/adfm.202006970
– ident: e_1_2_8_7_2
  doi: 10.1149/1.2127289
– ident: e_1_2_8_4_2
  doi: 10.1016/j.isci.2018.04.008
– ident: e_1_2_8_136_1
  doi: 10.1126/science.aat7439
– ident: e_1_2_8_84_1
  doi: 10.1016/j.bios.2017.04.036
– ident: e_1_2_8_109_1
  doi: 10.1002/aenm.202000943
– ident: e_1_2_8_15_1
  doi: 10.1038/natrevmats.2018.13
– ident: e_1_2_8_65_2
  doi: 10.1021/acsami.6b10884
– ident: e_1_2_8_77_1
  doi: 10.1021/ic50177a008
– ident: e_1_2_8_128_1
  doi: 10.1007/s10853-022-07430-2
– ident: e_1_2_8_49_1
  doi: 10.1039/C7TA00220C
– ident: e_1_2_8_127_1
  doi: 10.1038/s41560-019-0388-0
– ident: e_1_2_8_145_1
  doi: 10.1016/j.materresbull.2016.06.008
– ident: e_1_2_8_138_1
– ident: e_1_2_8_85_1
  doi: 10.3390/ma12071103
– ident: e_1_2_8_149_1
  doi: 10.1021/acsami.9b04579
– ident: e_1_2_8_39_1
  doi: 10.1016/j.ensm.2017.06.002
– ident: e_1_2_8_44_1
  doi: 10.1039/D2TA08573A
– ident: e_1_2_8_92_1
  doi: 10.1039/C9QM00674E
– ident: e_1_2_8_45_1
  doi: 10.1016/j.ensm.2021.01.006
– ident: e_1_2_8_43_1
  doi: 10.1039/C3EE44004D
– ident: e_1_2_8_134_1
  doi: 10.1002/chem.201504444
– ident: e_1_2_8_33_1
  doi: 10.1039/C9TA11221A
– ident: e_1_2_8_46_1
  doi: 10.1002/smll.201900470
– ident: e_1_2_8_81_1
  doi: 10.1039/D2CC02974J
– ident: e_1_2_8_111_1
  doi: 10.1002/anie.202103475
– ident: e_1_2_8_88_1
  doi: 10.1016/j.jelechem.2005.07.008
– ident: e_1_2_8_132_1
  doi: 10.1016/j.apsusc.2009.03.048
– ident: e_1_2_8_10_2
  doi: 10.1021/acs.chemmater.7b01764
– ident: e_1_2_8_19_1
  doi: 10.1039/D0EE02917C
– ident: e_1_2_8_135_1
  doi: 10.1016/j.electacta.2020.136199
– ident: e_1_2_8_40_1
  doi: 10.1016/S0378-7753(98)00228-6
– ident: e_1_2_8_78_1
  doi: 10.1002/celc.201801277
– ident: e_1_2_8_83_1
  doi: 10.1016/j.cej.2021.133777
– ident: e_1_2_8_55_1
  doi: 10.1143/APEX.5.041801
– ident: e_1_2_8_137_1
  doi: 10.1038/nmat1849
– ident: e_1_2_8_8_2
  doi: 10.1149/1.1357316
– ident: e_1_2_8_6_1
– ident: e_1_2_8_53_1
  doi: 10.1021/nl403669a
– ident: e_1_2_8_31_1
  doi: 10.1016/j.cej.2018.09.012
– ident: e_1_2_8_105_2
  doi: 10.1038/s41893-021-00810-7
– ident: e_1_2_8_120_1
  doi: 10.1016/j.cej.2021.133926
– ident: e_1_2_8_91_1
  doi: 10.1002/adfm.201909486
– ident: e_1_2_8_129_1
  doi: 10.1021/acsaem.2c02288
– ident: e_1_2_8_51_1
  doi: 10.1021/acs.chemmater.5b01132
– ident: e_1_2_8_29_2
  doi: 10.1002/asia.201900784
– ident: e_1_2_8_37_2
  doi: 10.1149/2.060202jes
– ident: e_1_2_8_12_2
  doi: 10.1021/acs.chemrev.9b00463
– ident: e_1_2_8_103_2
  doi: 10.1038/s41467-019-12626-3
– ident: e_1_2_8_38_1
  doi: 10.1002/celc.201700410
– ident: e_1_2_8_48_1
  doi: 10.1021/jp2118949
– ident: e_1_2_8_28_2
  doi: 10.1002/adfm.201706125
– ident: e_1_2_8_9_2
  doi: 10.1246/bcsj.47.813
– ident: e_1_2_8_16_1
– ident: e_1_2_8_3_2
  doi: 10.1039/C6CS00776G
– ident: e_1_2_8_35_1
– ident: e_1_2_8_36_2
  doi: 10.1002/aenm.201401869
– ident: e_1_2_8_130_1
  doi: 10.1021/acsaem.9b01097
– ident: e_1_2_8_123_1
  doi: 10.1039/C7TA00132K
– ident: e_1_2_8_121_1
  doi: 10.1002/adfm.201600747
– ident: e_1_2_8_57_1
– ident: e_1_2_8_41_1
  doi: 10.1016/j.jpowsour.2003.08.007
– ident: e_1_2_8_114_1
  doi: 10.1039/D2TA02694E
– ident: e_1_2_8_95_1
  doi: 10.1002/bte2.20220027
– ident: e_1_2_8_140_2
  doi: 10.1021/acsami.1c18032
– ident: e_1_2_8_112_1
  doi: 10.1021/ja105482k
– ident: e_1_2_8_71_1
  doi: 10.1002/adfm.202215027
– ident: e_1_2_8_34_1
  doi: 10.1002/anie.201607194
– ident: e_1_2_8_122_1
  doi: 10.1002/aenm.201702856
– ident: e_1_2_8_26_2
  doi: 10.1016/j.nanoen.2022.107424
– ident: e_1_2_8_118_1
  doi: 10.1021/acs.inorgchem.8b03081
– ident: e_1_2_8_126_1
  doi: 10.1016/j.jpcs.2018.06.014
– ident: e_1_2_8_116_1
  doi: 10.1016/j.elecom.2017.02.012
– ident: e_1_2_8_1_1
  doi: 10.1126/science.1212741
– ident: e_1_2_8_14_2
  doi: 10.1002/sstr.202000054
– ident: e_1_2_8_106_1
  doi: 10.1016/j.cej.2020.125269
– ident: e_1_2_8_59_2
  doi: 10.1007/BF01092684
– ident: e_1_2_8_107_1
  doi: 10.1021/acsenergylett.0c01393
– ident: e_1_2_8_150_1
  doi: 10.1007/s12274-023-5692-0
– ident: e_1_2_8_54_1
  doi: 10.1039/C7TA00484B
– ident: e_1_2_8_115_1
  doi: 10.1039/C7TA04172A
– ident: e_1_2_8_56_1
  doi: 10.1016/j.joule.2018.07.017
– ident: e_1_2_8_76_1
  doi: 10.1039/C9NJ02085C
– ident: e_1_2_8_42_1
  doi: 10.1021/nl203193q
– ident: e_1_2_8_60_2
  doi: 10.1016/j.electacta.2020.136243
– ident: e_1_2_8_63_1
– ident: e_1_2_8_23_1
  doi: 10.1016/j.trechm.2019.04.007
– ident: e_1_2_8_72_1
  doi: 10.1002/adma.202108384
– ident: e_1_2_8_147_1
  doi: 10.1016/j.jpowsour.2020.229276
– ident: e_1_2_8_64_2
  doi: 10.1098/rsos.201779
– ident: e_1_2_8_87_1
  doi: 10.1021/ar00126a001
– ident: e_1_2_8_94_1
  doi: 10.1039/C7TA08139A
– ident: e_1_2_8_110_1
  doi: 10.1002/aenm.201801413
– ident: e_1_2_8_75_1
  doi: 10.1016/j.jelechem.2022.116468
– ident: e_1_2_8_67_1
  doi: 10.1016/j.jcis.2022.05.023
– ident: e_1_2_8_82_1
  doi: 10.1007/s12274-018-1979-y
– ident: e_1_2_8_80_1
  doi: 10.3390/cryst11080895
– ident: e_1_2_8_20_1
  doi: 10.1038/s41467-023-38065-9
– ident: e_1_2_8_66_1
  doi: 10.1002/cnma.201500021
– ident: e_1_2_8_141_1
  doi: 10.1021/acsanm.8b02122
– ident: e_1_2_8_97_1
  doi: 10.1002/smll.202207080
– ident: e_1_2_8_21_1
  doi: 10.1093/nsr/nwad118
– ident: e_1_2_8_69_1
  doi: 10.1039/C9CS00131J
– ident: e_1_2_8_30_2
  doi: 10.1016/j.cej.2019.123050
– ident: e_1_2_8_113_1
  doi: 10.1039/D0TA06979E
– ident: e_1_2_8_17_2
  doi: 10.1021/jacs.5b06809
– ident: e_1_2_8_68_1
  doi: 10.1002/EXP.20210239
– ident: e_1_2_8_32_1
  doi: 10.1002/adfm.201604307
– ident: e_1_2_8_102_1
– ident: e_1_2_8_146_1
  doi: 10.1002/slct.201801333
– ident: e_1_2_8_100_1
  doi: 10.1021/jacs.6b12598
– ident: e_1_2_8_50_1
  doi: 10.1021/ja512383b
– ident: e_1_2_8_47_1
  doi: 10.1016/j.jechem.2023.04.007
– ident: e_1_2_8_73_1
  doi: 10.1016/j.electacta.2018.03.181
– ident: e_1_2_8_131_1
  doi: 10.1016/j.jcis.2016.05.056
– ident: e_1_2_8_11_1
– ident: e_1_2_8_22_1
  doi: 10.1016/j.mtener.2022.100982
– ident: e_1_2_8_124_1
  doi: 10.1021/acssuschemeng.9b04012
– ident: e_1_2_8_18_2
  doi: 10.1016/j.elecom.2015.09.002
– ident: e_1_2_8_93_1
  doi: 10.1021/acsami.5b12620
– ident: e_1_2_8_125_1
  doi: 10.1021/acsnano.0c02047
– ident: e_1_2_8_139_2
  doi: 10.1016/j.electacta.2015.02.002
– ident: e_1_2_8_101_1
  doi: 10.1039/C7TA00220C
– ident: e_1_2_8_143_1
  doi: 10.1039/C5CC01180A
– ident: e_1_2_8_79_1
  doi: 10.1021/acssuschemeng.9b01454
– ident: e_1_2_8_27_2
  doi: 10.1039/C9NR04415A
– ident: e_1_2_8_99_1
  doi: 10.1021/acssuschemeng.9b01454
– ident: e_1_2_8_13_2
  doi: 10.1002/aenm.201702384
– ident: e_1_2_8_5_1
  doi: 10.1002/adfm.201909486
– ident: e_1_2_8_2_1
– ident: e_1_2_8_108_1
  doi: 10.1016/j.ensm.2019.07.003
– ident: e_1_2_8_24_1
– ident: e_1_2_8_90_1
  doi: 10.1002/ejic.202100349
– ident: e_1_2_8_142_1
  doi: 10.1002/anie.201702711
– ident: e_1_2_8_25_2
  doi: 10.1021/acsenergylett.7b00179
– ident: e_1_2_8_148_1
  doi: 10.1002/advs.201600289
– ident: e_1_2_8_58_2
  doi: 10.1016/S0925-4005(99)00161-6
– ident: e_1_2_8_74_1
  doi: 10.1016/j.jallcom.2022.164049
– ident: e_1_2_8_104_2
  doi: 10.1002/admi.201500856
– ident: e_1_2_8_86_1
  doi: 10.1149/1.2131575
– ident: e_1_2_8_89_1
  doi: 10.3390/ma12071103
– ident: e_1_2_8_133_1
  doi: 10.1002/adfm.200901478
SSID ssj0003036
Score 2.5613031
SecondaryResourceType review_article
Snippet Environmental pollution and the energy crisis have promoted the development of clean energy as well as new‐generation energy storage systems. Potassium ion...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Cathode materials
Cathodes
Clean energy
Composition
Doping
Electrochemical analysis
Electrode materials
Energy storage
Inorganic chemistry
Ion storage
Lithium-ion batteries
Materials science
Optimization
Pigments
Potassium
Potassium ion batteries
Prussian blue analogues
Storage systems
Transition metals
Title Progress of Prussian Blue and Its Analogues as Cathode Materials for Potassium Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejic.202300246
https://www.proquest.com/docview/2859591280
Volume 26
WOSCitedRecordID wos001034854000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1099-0682
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003036
  issn: 1434-1948
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_oJujFb3F-kYPgKVjTpE2POjecqAxR8SCUNElhoqusnX-_L21X9SCC3tqShPI-fy_k_QJw6NsgkIlNqfB1QHkiOJWYtWlkpJ9GvvZUSaX0cBXe3MjHx2j4pYu_4odoNtycZ5Tx2jm4SvLjT9JQ-zxyFIQIoTHNBPPQZmi8vAXt89v-_VUTjV2ILjuMfE6xYJcz4kaPHX9f4Xti-kSbXzFrmXT6K___3VVYrgEnOa0sZA3m7HgdFruze9424GnojmhhwCNZSoaTae7aKsnZy9QSNTZkUOTEMZe4LZ6cqJy4nsHMWHKtisp6CeJeMswKhOGj6SsZZDi7ZO3EInwT7vu9u-4Fre9coBqRREBTbRMhbJgyX0UGzUxy7qWIKVDVoWFSGu1pliSRFIkKsKbVyYkRkQ2NTBVDj96C1jgb220g1pyEZUGIX3loleRSRFwpwZQfhinvAJ0JPNY1Ibm7F-MlrqiUWexkFjcy68BRM_6touL4ceTeTH9x7ZJ57Jj6RITp2OsAKzX1yypx73LQbd52_jJpF5bcc3UmbQ9axWRq92FBvxejfHJQm-oHDbnoXQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFH_oFPTitzg_cxA8BWubtOlR54bTOYaoeBBKmqQw0VXWzr_fl7ar7iCCeGxIQknex-898n4P4Ngzvi9ik1DuKZ-ymDMq0GvTUAsvCT3lyIJK6bEX9Pvi6SkcVK8JbS1MyQ9RJ9ysZhT22iq4TUiffrGGmpeh5SBEDI1-xp-HBYayxBuwcHnXeejV5tja6KLEyGMUI3YxZW503NPZHWY90xfc_A5aC6_TWf2H_12DlQpykvNSRtZhzow2YKk17fS2Cc8D-0gLTR5JEzIYTzJbWEkuXieGyJEm3TwjlrvEJnkyIjNiqwZTbcitzEv5JYh8ySDNEYgPJ2-km-LqgrcTw_AteOi071tXtOq6QBViCZ8mysScmyBxPRlqFDTBmJMgqsDLDrQrhFaOcuM4FDyWPka1Kj7TPDSBFol0Uae3oTFKR2YHiNFnQRES4igLjBRM8JBJyV3pBUHCmkCnJx6pipLcdsZ4jUoyZTeyZxbVZ9aEk3r-e0nG8ePM_ekFRpVSZpHl6uMhOmSnCW5xVb_sErWvu636a_cvi45g6er-thf1uv2bPVi24-ULtX1o5OOJOYBF9ZEPs_FhJbefCMLsTQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB61UBUuFCiIpRR8QOrJIiR2Yh_pwqpbllWESsWhUuT4IS2CDdpk-f2Mk2yAA0JCPcayrWg8j28szzcAh5GNY5FbR3mkY8pyzqjAqE2lEZGTkQ5UTaX0d5SMx-L6Wqbta0JfC9PwQ3QXbt4yan_tDdzeG3f0xBpqbyaegxAxNMaZ-CMsMy5jtM3l08vB1ahzx95H1yVGEaOYsYsFc2MQHr3c4WVkeoKbz0FrHXUGX_7D_67DWgs5yUmjIxvwwU43YaW_6PT2Ff6l_pEWujxSOJLO5qUvrCQ_b-eWqKkhw6oknrvEX_KURJXEVw0WxpILVTX6SxD5krSoEIhP5ndkWODqmrcT0_AtuBqc_en_om3XBaoRS8TUaZtzbhMXRkoaVDTBWOAQVeBhJyYUwuhAh3kuBc9VjFmtzo8NlzYxwqkQbXoblqbF1O4AseY4qVNCHGWJVYIJLplSPFRRkjjWA7qQeKZbSnLfGeM2a8iUw8zLLOtk1oMf3fz7hozj1Zl7iwPMWqMsM8_VxyUG5KAHYX1Ub-ySnf0e9ruv3fcsOoDP6ekgGw3H599g1Q83D9T2YKmaze13-KQfqkk522_V9hGuvOvI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+of+Prussian+Blue+and+Its+Analogues+as+Cathode+Materials+for+Potassium+Ion+Batteries&rft.jtitle=European+journal+of+inorganic+chemistry&rft.au=Bai%2C+Yue&rft.au=Ke%27er+YuChi&rft.au=Liu%2C+Xu&rft.au=Tian%2C+Shinuo&rft.date=2023-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1434-1948&rft.eissn=1099-0682&rft.volume=26&rft.issue=25&rft_id=info:doi/10.1002%2Fejic.202300246&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-1948&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-1948&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-1948&client=summon