The Merger of Photocatalyzed Hydrogen Atom Transfer with Transition Metal Catalysis for C−H Functionalization of Alkanes and Cycloalkanes

Catalytic C(sp3)−H functionalization can convert abundant feedstock hydrocarbons into value‐added products in an atom‐ and step‐economic manner and is a powerful tool in organic synthesis. However, the intrinsic chemical inertness of ubiquitous aliphatic C−H bonds of alkanes and cycloalkanes makes t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of organic chemistry Ročník 2021; číslo 40; s. 5545 - 5556
Hlavní autoři: Ye, Ziqi, Lin, Yu‐Mei, Gong, Lei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Weinheim Wiley Subscription Services, Inc 26.10.2021
Témata:
ISSN:1434-193X, 1099-0690
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Catalytic C(sp3)−H functionalization can convert abundant feedstock hydrocarbons into value‐added products in an atom‐ and step‐economic manner and is a powerful tool in organic synthesis. However, the intrinsic chemical inertness of ubiquitous aliphatic C−H bonds of alkanes and cycloalkanes makes their direct and selective functionalization extremely challenging. Recently, some elegant strategies have been developed to solve the problems based on the merger of photocatalyzed hydrogen atom transfer (HAT) with transition metal catalysis. Light‐induced HAT processes are employed to initiate the alkyl radical generation, which is synergistic with metal catalysis involving for example nickel, copper, cobalt, cerium, chromium, or manganese. The different metal catalysts provide redox adjustment, Lewis acid activation or other functionalities and tune the reactivity and selectivity of the radical‐mediated sequences, allowing the development of diverse chemo‐, site‐, and/or stereoselective synthetic reactions. In this minireview, we offer a brief summary of the recent advances in dual photo‐induced HAT and transition metal catalysis for C−H functionalization of alkanes and cycloalkanes. We expect that these methodologies will stimulate the applications in catalysis, pharmaceuticals, and other related fields. Catalytic C(sp3)−H functionalization of alkanes and cycloalkanes is a useful tool to convert abundant chemical feedstocks into value‐added products but remains a challenging task. In this review, recent advances relying on dual photo‐induced hydrogen atom transfer and transition metal catalysis are summarized.
AbstractList Catalytic C(sp3)−H functionalization can convert abundant feedstock hydrocarbons into value‐added products in an atom‐ and step‐economic manner and is a powerful tool in organic synthesis. However, the intrinsic chemical inertness of ubiquitous aliphatic C−H bonds of alkanes and cycloalkanes makes their direct and selective functionalization extremely challenging. Recently, some elegant strategies have been developed to solve the problems based on the merger of photocatalyzed hydrogen atom transfer (HAT) with transition metal catalysis. Light‐induced HAT processes are employed to initiate the alkyl radical generation, which is synergistic with metal catalysis involving for example nickel, copper, cobalt, cerium, chromium, or manganese. The different metal catalysts provide redox adjustment, Lewis acid activation or other functionalities and tune the reactivity and selectivity of the radical‐mediated sequences, allowing the development of diverse chemo‐, site‐, and/or stereoselective synthetic reactions. In this minireview, we offer a brief summary of the recent advances in dual photo‐induced HAT and transition metal catalysis for C−H functionalization of alkanes and cycloalkanes. We expect that these methodologies will stimulate the applications in catalysis, pharmaceuticals, and other related fields.
Catalytic C(sp 3 )−H functionalization can convert abundant feedstock hydrocarbons into value‐added products in an atom‐ and step‐economic manner and is a powerful tool in organic synthesis. However, the intrinsic chemical inertness of ubiquitous aliphatic C−H bonds of alkanes and cycloalkanes makes their direct and selective functionalization extremely challenging. Recently, some elegant strategies have been developed to solve the problems based on the merger of photocatalyzed hydrogen atom transfer (HAT) with transition metal catalysis. Light‐induced HAT processes are employed to initiate the alkyl radical generation, which is synergistic with metal catalysis involving for example nickel, copper, cobalt, cerium, chromium, or manganese. The different metal catalysts provide redox adjustment, Lewis acid activation or other functionalities and tune the reactivity and selectivity of the radical‐mediated sequences, allowing the development of diverse chemo‐, site‐, and/or stereoselective synthetic reactions. In this minireview, we offer a brief summary of the recent advances in dual photo‐induced HAT and transition metal catalysis for C−H functionalization of alkanes and cycloalkanes. We expect that these methodologies will stimulate the applications in catalysis, pharmaceuticals, and other related fields.
Catalytic C(sp3)−H functionalization can convert abundant feedstock hydrocarbons into value‐added products in an atom‐ and step‐economic manner and is a powerful tool in organic synthesis. However, the intrinsic chemical inertness of ubiquitous aliphatic C−H bonds of alkanes and cycloalkanes makes their direct and selective functionalization extremely challenging. Recently, some elegant strategies have been developed to solve the problems based on the merger of photocatalyzed hydrogen atom transfer (HAT) with transition metal catalysis. Light‐induced HAT processes are employed to initiate the alkyl radical generation, which is synergistic with metal catalysis involving for example nickel, copper, cobalt, cerium, chromium, or manganese. The different metal catalysts provide redox adjustment, Lewis acid activation or other functionalities and tune the reactivity and selectivity of the radical‐mediated sequences, allowing the development of diverse chemo‐, site‐, and/or stereoselective synthetic reactions. In this minireview, we offer a brief summary of the recent advances in dual photo‐induced HAT and transition metal catalysis for C−H functionalization of alkanes and cycloalkanes. We expect that these methodologies will stimulate the applications in catalysis, pharmaceuticals, and other related fields. Catalytic C(sp3)−H functionalization of alkanes and cycloalkanes is a useful tool to convert abundant chemical feedstocks into value‐added products but remains a challenging task. In this review, recent advances relying on dual photo‐induced hydrogen atom transfer and transition metal catalysis are summarized.
Author Lin, Yu‐Mei
Gong, Lei
Ye, Ziqi
Author_xml – sequence: 1
  givenname: Ziqi
  surname: Ye
  fullname: Ye, Ziqi
  organization: Xiamen University
– sequence: 2
  givenname: Yu‐Mei
  surname: Lin
  fullname: Lin, Yu‐Mei
  email: linyum@xmu.edu.cn
  organization: Xiamen University
– sequence: 3
  givenname: Lei
  orcidid: 0000-0002-4478-6880
  surname: Gong
  fullname: Gong, Lei
  email: gongl@xmu.edu.cn
  organization: Xiamen University
BookMark eNqFkMtKAzEUhoNU0Kpb1wHXU5O5ZCbLMrRWUXRRwd2Q29jUMdFkShmfQHDnI_okph1REMRVbt-Xc84_BANjjQLgGKMRRig-VUsrRjGKMcIoITtgHyNKI0QoGoR9mqQRpsndHhh6v0QIUULwPnibLxS8Uu5eOWhreLOwrRWsZU33oiScddLZe2XguLWPcO6Y8XUA17pd9CfdamuCHwRYbjWvPaytg-XH6_sMTldGbBDW6Be2ZUORcfPAjPKQGQnLTjSW9ReHYLdmjVdHX-sBuJ1O5uUsurw-Oy_Hl5FIcE6iJCaY80xlKccZErlIalnwjKac8EIwhnMuw3tCciUlqinJWSxVkXMeCypDNgfgpP_3ydnnlfJttbQrF3r0VZwVWY7SghSBGvWUcNZ7p-rqyelH5roKo2oTeLUJvPoOPAjpL0Hodjt065hu_tZor611o7p_ilSTi-vyx_0E-EWbcw
CitedBy_id crossref_primary_10_1002_ajoc_202300580
crossref_primary_10_3762_bjoc_21_33
crossref_primary_10_1002_cctc_202201328
crossref_primary_10_1016_j_ccr_2024_216175
crossref_primary_10_1002_ejoc_202200417
crossref_primary_10_1002_ange_202510594
crossref_primary_10_1002_cctc_202200990
crossref_primary_10_1016_j_tetlet_2022_153788
crossref_primary_10_1002_adsc_202300644
crossref_primary_10_1039_D2SC00202G
crossref_primary_10_1002_chem_202201478
crossref_primary_10_1055_s_0042_1751444
crossref_primary_10_1021_jacs_2c12845
crossref_primary_10_3390_molecules28166127
crossref_primary_10_1002_ange_202506268
crossref_primary_10_1021_jacs_3c12513
crossref_primary_10_1021_jacs_4c03099
crossref_primary_10_1039_D3SC05162E
crossref_primary_10_1002_ejoc_202201139
crossref_primary_10_1039_D3SC01118F
crossref_primary_10_1016_j_tetlet_2024_154939
crossref_primary_10_1002_anie_202510594
crossref_primary_10_1002_anie_202506268
crossref_primary_10_1002_adsc_202201395
crossref_primary_10_1002_cctc_202300311
crossref_primary_10_1016_j_cclet_2025_111776
crossref_primary_10_1016_j_apcatb_2022_122237
Cites_doi 10.1002/ange.201803220
10.1126/science.aad9289
10.1021/jacs.7b13131
10.1021/acs.accounts.0c00379
10.1002/anie.202014632
10.1021/ja00052a045
10.1016/j.chempr.2020.04.022
10.1021/acs.orglett.0c00096
10.1039/D0OB00854K
10.1039/C4QO00306C
10.1038/ncomms10093
10.1002/ange.202007494
10.1038/s41586-018-0366-x
10.1021/jacs.6b08397
10.1038/nature13274
10.1021/acs.chemrev.7b00397
10.1038/ncomms11676
10.1246/cl.171068
10.1002/anie.202004441
10.1021/jacs.0c04422
10.1039/D0GC01035A
10.1016/S1872-2067(21)63831-7
10.1021/jacs.1c03780
10.1021/ja411912p
10.1002/cptc.201900219
10.1039/c3cs35531d
10.1002/anie.202005724
10.1021/acscatal.9b00287
10.1038/s41557-020-0436-1
10.1021/acscatal.7b03354
10.1021/jp075829f
10.1021/jacs.0c00123
10.1126/science.abb4688
10.1021/acscatal.0c01924
10.1038/nature17651
10.1002/cctc.201500125
10.1002/anie.202011400
10.1021/jacs.0c13077
10.1038/s41467-020-15878-6
10.1002/anie.202012263
10.1039/C7SC02773G
10.1021/jacs.8b07405
10.1021/acs.accounts.9b00028
10.1021/acs.accounts.6b00280
10.1021/acs.accounts.9b00510
10.1021/acscatal.9b01394
10.1039/C6CC09725A
10.1002/anie.202007668
10.1021/jacs.6b11533
10.1055/a-1344-2473
10.1039/D0CS00774A
10.1021/jacs.8b09191
10.1021/acs.chemrev.7b00271
10.1002/ange.201411409
10.1039/C8SC05677C
10.1002/ange.202012263
10.1021/acs.accounts.5b00348
10.1038/417507a
10.1038/s41586-018-0799-2
10.1002/anie.201800818
10.1002/ange.202007668
10.1038/s41467-019-11688-7
10.1002/anie.201803220
10.1021/ar020230d
10.1021/acs.chemrev.8b00233
10.1021/acs.accounts.9b00529
10.1038/s41929-019-0357-9
10.1021/jacs.1c00687
10.1021/acs.accounts.0c00477
10.1002/ange.202005724
10.1039/C8CC02642D
10.1021/cr020027w
10.2174/157019306776819226
10.1126/science.aat9750
10.3762/bjoc.16.147
10.1021/acs.orglett.5b02532
10.1002/ange.202014632
10.1002/anie.201411409
10.1002/ange.201800818
10.1021/jacs.8b09251
10.1038/s41467-021-24280-9
10.1038/s41570-019-0099-x
10.1021/jacs.6b09970
10.1038/s41467-021-22690-3
10.1021/acs.chemrev.6b00620
10.1055/s-0037-1610222
10.1038/nature14127
10.1021/acs.joc.7b00687
10.1002/anie.201810187
10.1002/chem.202003431
10.1002/ange.202011400
10.1002/ange.201810187
10.1021/acs.accounts.6b00621
10.1126/science.1161976
10.1002/ejoc.201601485
10.1039/C4CC09268F
10.1021/jacs.0c00212
10.1021/acscatal.1c01500
10.1021/acscatal.9b01556
10.1021/acs.orglett.1c01870
10.1021/acs.accounts.6b00339
10.1126/science.abd8408
10.1021/acs.accounts.0c00694
10.1021/cr000453m
10.1021/acs.orglett.9b01450
10.1021/jacs.0c08437
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/ejoc.202101036
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-0690
EndPage 5556
ExternalDocumentID 10_1002_ejoc_202101036
EJOC202101036
Genre reviewArticle
GrantInformation_xml – fundername: National Youth Talent Support program
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 20720190048
– fundername: National Natural Science Foundation of China
  funderid: 22071209; 22071206
– fundername: Natural Science Foundation of Fujian Province of China
  funderid: 2017J06006
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AABCJ
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
1OB
ID FETCH-LOGICAL-c3176-3261bb5e54b150c7c3fd8b594b6b8caa17bdbb5367edd0f967a2de87bb2c9d103
IEDL.DBID DRFUL
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000710909000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1434-193X
IngestDate Wed Aug 13 05:01:44 EDT 2025
Tue Nov 18 22:26:23 EST 2025
Sat Nov 29 07:04:13 EST 2025
Wed Jan 22 16:28:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 40
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3176-3261bb5e54b150c7c3fd8b594b6b8caa17bdbb5367edd0f967a2de87bb2c9d103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4478-6880
PQID 2585704868
PQPubID 986364
PageCount 12
ParticipantIDs proquest_journals_2585704868
crossref_primary_10_1002_ejoc_202101036
crossref_citationtrail_10_1002_ejoc_202101036
wiley_primary_10_1002_ejoc_202101036_EJOC202101036
PublicationCentury 2000
PublicationDate October 26, 2021
PublicationDateYYYYMMDD 2021-10-26
PublicationDate_xml – month: 10
  year: 2021
  text: October 26, 2021
  day: 26
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle European journal of organic chemistry
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 560
2018; 361
2017; 8
2017; 82
2021; 23
2019; 52
2019; 10
2018; 564
2020 2020; 59 132
2020; 369
2020; 16
2020; 12
2020; 11
2020; 10
2014; 136
2017; 117
2018; 47
2020; 18
2020; 6
2015; 48
2018; 8
2020; 4
2020; 53
2019; 21
2002; 102
2018 2018; 57 130
1992; 114
2015 2015; 54 127
2008; 112
2016; 49
2016; 351
2015; 2
2019; 9
2015; 17
2015; 6
2019; 3
2021; 42
2018; 140
2017; 2017
2015; 51
2019; 2
2020; 142
2013; 42
2003; 36
2006; 3
2002; 417
2021; 143
2008; 322
2021; 50
2015; 7
2017; 139
2017; 50
2017; 53
2016; 7
2021; 54
2021; 53
2021; 12
2021; 11
2021
2014; 509
2018; 118
2021 2021; 60 133
2020; 26
2015; 517
2016
2016; 138
2021; 372
2016; 533
2020; 22
2018; 50
2003; 103
2018; 54
Mitsunuma H. (e_1_2_9_86_1) 2019; 10
Fu J. (e_1_2_9_14_1) 2018; 564
Wang P. S. (e_1_2_9_97_1) 2020; 53
Capaldo L. (e_1_2_9_19_1) 2017; 2017
Li Y. (e_1_2_9_77_1) 2019; 2
(e_1_2_9_44_2) 2018; 130
Panferova L. I. (e_1_2_9_22_1) 2021; 60
Liao K. (e_1_2_9_13_1) 2016; 533
Protti S. (e_1_2_9_17_1) 2015; 7
Jia K. (e_1_2_9_28_1) 2018; 54
Brimioulle R. (e_1_2_9_58_1) 2015; 54
Laudadio G. (e_1_2_9_41_1) 2020; 369
(e_1_2_9_52_2) 2021; 133
Sharma N. (e_1_2_9_18_1) 2020; 4
Ackermann L. (e_1_2_9_94_1) 2020; 53
Siu J. C. (e_1_2_9_95_1) 2020; 53
Halperin S. D. (e_1_2_9_42_1) 2015; 17
Blanksby S. J. (e_1_2_9_2_1) 2003; 36
Yahata K. (e_1_2_9_88_1) 2020; 22
Sarver P. J. (e_1_2_9_74_1) 2020; 12
Yi H. (e_1_2_9_4_1) 2017; 117
Pérez-Prieto J. (e_1_2_9_53_1) 2006; 3
Chen H. (e_1_2_9_31_1) 2020; 18
Niu L. (e_1_2_9_89_1) 2020; 142
Waldvogel S. R. (e_1_2_9_92_1) 2018; 118
Yoon T. P. (e_1_2_9_61_1) 2016; 49
Perry I. B. (e_1_2_9_51_1) 2018; 560
Sharma A. (e_1_2_9_9_1) 2015; 517
Zheng Y.-W. (e_1_2_9_71_1) 2020; 10
Wang C. (e_1_2_9_60_1) 2015; 2
Huang C.-Y. (e_1_2_9_82_1) 2021; 12
Xu S. (e_1_2_9_52_1) 2021; 60
Nicewicz D. A. (e_1_2_9_67_1) 2008; 322
(e_1_2_9_22_2) 2021; 133
Ravelli D. (e_1_2_9_47_1) 2018; 8
Yang Q. (e_1_2_9_84_1) 2021; 372
Mukherjee S. (e_1_2_9_8_1) 2016; 138
Saito M. (e_1_2_9_21_1) 2021; 143
Waele V. D. (e_1_2_9_75_1) 2016
Supranovich V. I. (e_1_2_9_40_1) 2019; 21
Zhou W.-J. (e_1_2_9_32_1) 2018; 50
Laudadio G. (e_1_2_9_44_1) 2018; 57
Ravelli D. (e_1_2_9_25_1) 2016; 49
Shen Y. (e_1_2_9_98_1) 2021; 11
Goldberg K. I. (e_1_2_9_1_1) 2017; 50
Aloïse S. (e_1_2_9_54_1) 2008; 112
Capaldo L. (e_1_2_9_30_1) 2021
Capaldo L. (e_1_2_9_26_1) 2019; 9
Vega-Peñaloza A. (e_1_2_9_63_1) 2019; 9
Cao S. (e_1_2_9_68_1) 2021; 12
Trost B. M. (e_1_2_9_96_1) 2003; 103
Tasker S. Z. (e_1_2_9_34_1) 2014; 509
(e_1_2_9_55_2) 2018; 130
Yan M. (e_1_2_9_91_1) 2017; 117
Treacy S. M. (e_1_2_9_73_1) 2021; 143
Garr C. D. (e_1_2_9_78_1) 1992; 114
Quattrini M. C. (e_1_2_9_46_1) 2017; 53
Li Y. (e_1_2_9_66_1) 2021; 53
Lipp A. (e_1_2_9_64_1) 2021; 60
McManus J. B. (e_1_2_9_81_1) 2020; 142
Jia P. (e_1_2_9_11_1) 2020; 6
Cook A. K. (e_1_2_9_7_1) 2016; 351
Hu A. (e_1_2_9_72_1) 2018; 140
Fuse H. (e_1_2_9_87_1) 2020; 142
Rohe S. (e_1_2_9_27_1) 2018; 57
Fukuyama T. (e_1_2_9_48_1) 2018; 47
Meggers E. (e_1_2_9_59_1) 2015; 51
(e_1_2_9_27_2) 2018; 130
Fokin A. A. (e_1_2_9_6_1) 2002; 102
(e_1_2_9_58_2) 2015; 127
Nodwell M. B. (e_1_2_9_43_1) 2017; 139
Li G.-X. (e_1_2_9_50_1) 2017; 8
Li Y. (e_1_2_9_69_1) 2018; 140
Huang X. (e_1_2_9_62_1) 2019; 52
Schirmer T. E. (e_1_2_9_45_1) 2021; 23
Tran B. L. (e_1_2_9_12_1) 2014; 136
Labinger J. A. (e_1_2_9_3_1) 2002; 417
Shields B. J. (e_1_2_9_37_1) 2016; 138
Hu A. (e_1_2_9_83_1) 2018; 361
(e_1_2_9_39_2) 2020; 132
Yu J. (e_1_2_9_49_1) 2020; 26
Guillemard L. (e_1_2_9_33_1) 2020; 16
Lee G. S. (e_1_2_9_39_1) 2020; 59
(e_1_2_9_76_2) 2021; 133
Cao H. (e_1_2_9_80_1) 2020; 11
DiLabio G. A. (e_1_2_9_29_1) 2017; 82
Fan X.-Z. (e_1_2_9_55_1) 2018; 57
Han B. (e_1_2_9_70_1) 2019; 10
Krylov I. B. (e_1_2_9_24_1) 2021; 42
Kariofillis S. K. (e_1_2_9_35_1) 2021; 54
Davies H. M. L. (e_1_2_9_5_1) 2019; 3
Choi G. (e_1_2_9_76_1) 2021; 60
Yang H.-B. (e_1_2_9_23_1) 2019; 9
Schwinger D. P. (e_1_2_9_65_1) 2020; 53
Capaldo L. (e_1_2_9_20_1) 2020; 22
An Q. (e_1_2_9_85_1) 2020; 142
Shen Y. (e_1_2_9_57_1) 2018; 140
Zhao J. (e_1_2_9_56_1) 2013; 42
Xu P. (e_1_2_9_90_1) 2020; 59
Tang S. (e_1_2_9_10_1) 2016; 7
Salamone M. (e_1_2_9_15_1) 2015; 48
Guo W. (e_1_2_9_16_1) 2021; 50
Ackerman L. K. G. (e_1_2_9_38_1) 2018; 140
(e_1_2_9_90_2) 2020; 132
West J. G. (e_1_2_9_79_1) 2015; 6
Jiang Y. (e_1_2_9_93_1) 2018; 118
(e_1_2_9_64_2) 2021; 133
Campbell M. W. (e_1_2_9_36_1) 2021; 143
References_xml – volume: 12
  start-page: 459
  year: 2020
  end-page: 467
  publication-title: Nat. Chem.
– volume: 140
  start-page: 1612
  year: 2018
  end-page: 1616
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 10093
  year: 2015
  publication-title: Nat. Commun.
– volume: 49
  start-page: 2307
  year: 2016
  end-page: 2315
  publication-title: Acc. Chem. Res.
– volume: 10
  start-page: 8582
  year: 2020
  end-page: 8589
  publication-title: ACS Catal.
– volume: 142
  start-page: 17693
  year: 2020
  end-page: 17702
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1516
  year: 2015
  end-page: 1523
  publication-title: ChemCatChem
– volume: 112
  start-page: 224
  year: 2008
  end-page: 231
  publication-title: J. Phys. Chem. A
– volume: 417
  start-page: 507
  year: 2002
  end-page: 514
  publication-title: Nature
– volume: 9
  start-page: 6058
  year: 2019
  end-page: 6072
  publication-title: ACS Catal.
– volume: 8
  start-page: 701
  year: 2018
  end-page: 713
  publication-title: ACS Catal.
– volume: 322
  start-page: 77
  year: 2008
  end-page: 80
  publication-title: Science
– volume: 48
  start-page: 2895
  year: 2015
  end-page: 2903
  publication-title: Acc. Chem. Res.
– volume: 509
  start-page: 299
  year: 2014
  end-page: 309
  publication-title: Nature
– volume: 143
  start-page: 3901
  year: 2021
  end-page: 3910
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 13230
  year: 2017
  end-page: 13319
  publication-title: Chem. Rev.
– volume: 142
  start-page: 12374
  year: 2020
  end-page: 12381
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 7180
  year: 2017
  end-page: 7185
  publication-title: Chem. Sci.
– volume: 53
  start-page: 84
  year: 2020
  end-page: 104
  publication-title: Acc. Chem. Res.
– volume: 3
  start-page: 117
  year: 2006
  end-page: 135
  publication-title: Mini-Rev. Org. Chem.
– volume: 372
  start-page: 847
  year: 2021
  end-page: 852
  publication-title: Science
– volume: 22
  start-page: 1199
  year: 2020
  end-page: 1203
  publication-title: Org. Lett.
– volume: 103
  start-page: 2921
  year: 2003
  end-page: 2944
  publication-title: Chem. Rev.
– volume: 142
  start-page: 10325
  year: 2020
  end-page: 10330
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 547
  year: 2020
  end-page: 560
  publication-title: Acc. Chem. Res.
– volume: 143
  start-page: 2729
  year: 2021
  end-page: 2735
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 179
  year: 2015
  end-page: 190
  publication-title: Org. Chem. Front.
– volume: 11
  start-page: 1956
  year: 2020
  publication-title: Nat. Commun.
– volume: 36
  start-page: 255
  year: 2003
  end-page: 263
  publication-title: Acc. Chem. Res.
– volume: 138
  start-page: 12719
  year: 2016
  end-page: 12722
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 7859
  year: 2021
  end-page: 7867
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 16933 17801
  year: 2020 2020
  end-page: 16942 17090
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 23
  start-page: 5729
  year: 2021
  end-page: 5733
  publication-title: Org. Lett.
– volume: 2
  start-page: 1016
  year: 2019
  end-page: 1026
  publication-title: Nat. Catal.
– volume: 7
  start-page: 11676
  year: 2016
  publication-title: Nat. Commun.
– volume: 60 133
  start-page: 7405 7481
  year: 2021 2021
  end-page: 7411 7487
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 8514 8650
  year: 2018 2018
  end-page: 8518 8654
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12
  start-page: 2377
  year: 2021
  publication-title: Nat. Commun.
– volume: 517
  start-page: 600
  year: 2015
  end-page: 604
  publication-title: Nature
– volume: 118
  start-page: 6706
  year: 2018
  end-page: 6765
  publication-title: Chem. Rev.
– volume: 42
  start-page: 5323
  year: 2013
  end-page: 5351
  publication-title: Chem. Soc. Rev.
– volume: 53
  start-page: 1933
  year: 2020
  end-page: 1943
  publication-title: Acc. Chem. Res.
– volume: 140
  start-page: 14059
  year: 2018
  end-page: 14063
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 988
  year: 2021
  end-page: 1000
  publication-title: Acc. Chem. Res.
– volume: 53
  start-page: 2335
  year: 2017
  end-page: 2338
  publication-title: Chem. Commun.
– volume: 60 133
  start-page: 2849 2885
  year: 2021 2021
  end-page: 2854 2890
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 117
  start-page: 9016
  year: 2017
  end-page: 9085
  publication-title: Chem. Rev.
– volume: 60 133
  start-page: 5467 5527
  year: 2021 2021
  end-page: 5474 5534
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 564
  start-page: 395
  year: 2018
  end-page: 399
  publication-title: Nature
– volume: 2017
  start-page: 2056
  year: 2017
  end-page: 2071
  publication-title: Eur. J. Org. Chem.
– volume: 6
  start-page: 1766
  year: 2020
  end-page: 1776
  publication-title: Chem
– volume: 136
  start-page: 2555
  year: 2014
  end-page: 2563
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 833
  year: 2019
  end-page: 847
  publication-title: Acc. Chem. Res.
– volume: 114
  start-page: 10440
  year: 1992
  end-page: 10445
  publication-title: J. Am. Chem. Soc.
– start-page: 6
  year: 2016
  end-page: 7182
  publication-title: ACS Catal.
– volume: 118
  start-page: 4485
  year: 2018
  end-page: 4540
  publication-title: Chem. Rev.
– volume: 3
  start-page: 347
  year: 2019
  end-page: 360
  publication-title: Nat. Chem. Rev.
– volume: 138
  start-page: 16200
  year: 2016
  end-page: 16203
  publication-title: J. Am. Chem. Soc.
– volume: 82
  start-page: 6133
  year: 2017
  end-page: 6141
  publication-title: J. Org. Chem.
– volume: 11
  start-page: 6757
  year: 2021
  end-page: 6762
  publication-title: ACS Catal.
– volume: 21
  start-page: 4271
  year: 2019
  end-page: 4274
  publication-title: Org. Lett.
– volume: 139
  start-page: 3595
  year: 2017
  end-page: 3598
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 3459
  year: 2019
  end-page: 3465
  publication-title: Chem. Sci.
– volume: 9
  start-page: 5708
  year: 2019
  end-page: 5715
  publication-title: ACS Catal.
– volume: 361
  start-page: 668
  year: 2018
  end-page: 672
  publication-title: Science
– volume: 102
  start-page: 1551
  year: 2002
  end-page: 1594
  publication-title: Chem. Rev.
– volume: 369
  start-page: 92
  year: 2020
  end-page: 96
  publication-title: Science
– volume: 4
  start-page: 271
  year: 2020
  end-page: 281
  publication-title: ChemPhotoChem
– volume: 142
  start-page: 6216
  year: 2020
  end-page: 6226
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 207
  year: 2018
  end-page: 209
  publication-title: Chem. Lett.
– volume: 26
  start-page: 16521
  year: 2020
  end-page: 16529
  publication-title: Chem. Eur. J.
– volume: 12
  start-page: 4010
  year: 2021
  publication-title: Nat. Commun.
– volume: 57 130
  start-page: 15664 15890
  year: 2018 2018
  end-page: 5669 15895
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 17
  start-page: 5200
  year: 2015
  end-page: 5203
  publication-title: Org. Lett.
– volume: 53
  start-page: 2841
  year: 2020
  end-page: 2854
  publication-title: Acc. Chem. Res.
– volume: 533
  start-page: 230
  year: 2016
  end-page: 234
  publication-title: Nature
– volume: 50
  start-page: 3359
  year: 2018
  end-page: 3378
  publication-title: Synthesis
– volume: 10
  start-page: 3804
  year: 2019
  publication-title: Nat. Commun.
– volume: 140
  start-page: 12200
  year: 2018
  end-page: 12209
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 1714 1738
  year: 2021 2021
  end-page: 1726 1750
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 3872 3944
  year: 2015 2015
  end-page: 3890 3963
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51
  start-page: 3290
  year: 2015
  end-page: 3301
  publication-title: Chem. Commun.
– volume: 49
  start-page: 2232
  year: 2016
  end-page: 2242
  publication-title: Acc. Chem. Res.
– year: 2021
  publication-title: Chem. Rev.
– volume: 351
  start-page: 1421
  year: 2016
  end-page: 1424
  publication-title: Science
– volume: 560
  start-page: 70
  year: 2018
  end-page: 75
  publication-title: Nature
– volume: 57 130
  start-page: 4078 4142
  year: 2018 2018
  end-page: 4082 4146
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50
  start-page: 620
  year: 2017
  end-page: 626
  publication-title: Acc. Chem. Res.
– volume: 54
  start-page: 6105
  year: 2018
  end-page: 6112
  publication-title: Chem. Commun.
– volume: 42
  start-page: 1700
  year: 2021
  end-page: 1711
  publication-title: Chin. J. Catal.
– volume: 140
  start-page: 15850
  year: 2018
  end-page: 15858
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 14275 14381
  year: 2020 2020
  end-page: 14280 14386
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50
  start-page: 7359
  year: 2021
  end-page: 7377
  publication-title: Chem. Soc. Rev.
– volume: 16
  start-page: 1754
  year: 2020
  end-page: 1804
  publication-title: Beilstein J. Org. Chem.
– volume: 9
  start-page: 3054
  year: 2019
  end-page: 3058
  publication-title: ACS Catal.
– volume: 18
  start-page: 4519
  year: 2020
  end-page: 4532
  publication-title: Org. Biomol. Chem.
– volume: 53
  start-page: 1570
  year: 2021
  end-page: 1583
  publication-title: Synthesis
– volume: 22
  start-page: 3376
  year: 2020
  end-page: 3396
  publication-title: Green Chem.
– volume: 130
  start-page: 8650
  year: 2018
  ident: e_1_2_9_55_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201803220
– volume: 351
  start-page: 1421
  year: 2016
  ident: e_1_2_9_7_1
  publication-title: Science
  doi: 10.1126/science.aad9289
– volume: 140
  start-page: 1612
  year: 2018
  ident: e_1_2_9_72_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b13131
– volume: 53
  start-page: 1933
  year: 2020
  ident: e_1_2_9_65_1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00379
– volume: 60
  start-page: 7405
  year: 2021
  ident: e_1_2_9_52_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202014632
– volume: 114
  start-page: 10440
  year: 1992
  ident: e_1_2_9_78_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00052a045
– volume: 6
  start-page: 1766
  year: 2020
  ident: e_1_2_9_11_1
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.04.022
– volume: 22
  start-page: 1199
  year: 2020
  ident: e_1_2_9_88_1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.0c00096
– volume: 18
  start-page: 4519
  year: 2020
  ident: e_1_2_9_31_1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/D0OB00854K
– volume: 2
  start-page: 179
  year: 2015
  ident: e_1_2_9_60_1
  publication-title: Org. Chem. Front.
  doi: 10.1039/C4QO00306C
– volume: 6
  start-page: 10093
  year: 2015
  ident: e_1_2_9_79_1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10093
– volume: 132
  start-page: 17801
  year: 2020
  ident: e_1_2_9_39_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202007494
– volume: 560
  start-page: 70
  year: 2018
  ident: e_1_2_9_51_1
  publication-title: Nature
  doi: 10.1038/s41586-018-0366-x
– volume: 138
  start-page: 12719
  year: 2016
  ident: e_1_2_9_37_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08397
– volume: 509
  start-page: 299
  year: 2014
  ident: e_1_2_9_34_1
  publication-title: Nature
  doi: 10.1038/nature13274
– volume: 117
  start-page: 13230
  year: 2017
  ident: e_1_2_9_91_1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00397
– volume: 7
  start-page: 11676
  year: 2016
  ident: e_1_2_9_10_1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11676
– volume: 47
  start-page: 207
  year: 2018
  ident: e_1_2_9_48_1
  publication-title: Chem. Lett.
  doi: 10.1246/cl.171068
– volume: 59
  start-page: 16933
  year: 2020
  ident: e_1_2_9_39_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202004441
– volume: 142
  start-page: 10325
  year: 2020
  ident: e_1_2_9_81_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c04422
– volume: 22
  start-page: 3376
  year: 2020
  ident: e_1_2_9_20_1
  publication-title: Green Chem.
  doi: 10.1039/D0GC01035A
– volume: 42
  start-page: 1700
  year: 2021
  ident: e_1_2_9_24_1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)63831-7
– volume: 143
  start-page: 7859
  year: 2021
  ident: e_1_2_9_21_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c03780
– volume: 136
  start-page: 2555
  year: 2014
  ident: e_1_2_9_12_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja411912p
– volume: 4
  start-page: 271
  year: 2020
  ident: e_1_2_9_18_1
  publication-title: ChemPhotoChem
  doi: 10.1002/cptc.201900219
– volume: 42
  start-page: 5323
  year: 2013
  ident: e_1_2_9_56_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs35531d
– volume: 59
  start-page: 14275
  year: 2020
  ident: e_1_2_9_90_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202005724
– volume: 9
  start-page: 3054
  year: 2019
  ident: e_1_2_9_26_1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00287
– volume: 12
  start-page: 459
  year: 2020
  ident: e_1_2_9_74_1
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-0436-1
– volume: 8
  start-page: 701
  year: 2018
  ident: e_1_2_9_47_1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03354
– volume: 112
  start-page: 224
  year: 2008
  ident: e_1_2_9_54_1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp075829f
– volume: 142
  start-page: 12374
  year: 2020
  ident: e_1_2_9_87_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00123
– volume: 369
  start-page: 92
  year: 2020
  ident: e_1_2_9_41_1
  publication-title: Science
  doi: 10.1126/science.abb4688
– volume: 10
  start-page: 8582
  year: 2020
  ident: e_1_2_9_71_1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c01924
– volume: 533
  start-page: 230
  year: 2016
  ident: e_1_2_9_13_1
  publication-title: Nature
  doi: 10.1038/nature17651
– volume: 7
  start-page: 1516
  year: 2015
  ident: e_1_2_9_17_1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201500125
– volume: 60
  start-page: 2849
  year: 2021
  ident: e_1_2_9_22_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202011400
– volume: 143
  start-page: 3901
  year: 2021
  ident: e_1_2_9_36_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c13077
– volume: 11
  start-page: 1956
  year: 2020
  ident: e_1_2_9_80_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15878-6
– volume: 60
  start-page: 5467
  year: 2021
  ident: e_1_2_9_76_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202012263
– volume: 8
  start-page: 7180
  year: 2017
  ident: e_1_2_9_50_1
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC02773G
– volume: 140
  start-page: 12200
  year: 2018
  ident: e_1_2_9_57_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07405
– volume: 52
  start-page: 833
  year: 2019
  ident: e_1_2_9_62_1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00028
– volume: 49
  start-page: 2307
  year: 2016
  ident: e_1_2_9_61_1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00280
– volume: 53
  start-page: 84
  year: 2020
  ident: e_1_2_9_94_1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00510
– volume: 9
  start-page: 5708
  year: 2019
  ident: e_1_2_9_23_1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01394
– volume: 53
  start-page: 2335
  year: 2017
  ident: e_1_2_9_46_1
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC09725A
– volume: 60
  start-page: 1714
  year: 2021
  ident: e_1_2_9_64_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202007668
– volume: 139
  start-page: 3595
  year: 2017
  ident: e_1_2_9_43_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11533
– volume: 53
  start-page: 1570
  year: 2021
  ident: e_1_2_9_66_1
  publication-title: Synthesis
  doi: 10.1055/a-1344-2473
– volume: 50
  start-page: 7359
  year: 2021
  ident: e_1_2_9_16_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00774A
– volume: 140
  start-page: 14059
  year: 2018
  ident: e_1_2_9_38_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b09191
– volume: 118
  start-page: 4485
  year: 2018
  ident: e_1_2_9_93_1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00271
– volume: 127
  start-page: 3944
  year: 2015
  ident: e_1_2_9_58_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201411409
– volume: 10
  start-page: 3459
  year: 2019
  ident: e_1_2_9_86_1
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC05677C
– volume: 133
  start-page: 5527
  year: 2021
  ident: e_1_2_9_76_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202012263
– volume: 48
  start-page: 2895
  year: 2015
  ident: e_1_2_9_15_1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00348
– volume: 417
  start-page: 507
  year: 2002
  ident: e_1_2_9_3_1
  publication-title: Nature
  doi: 10.1038/417507a
– volume: 564
  start-page: 395
  year: 2018
  ident: e_1_2_9_14_1
  publication-title: Nature
  doi: 10.1038/s41586-018-0799-2
– volume: 57
  start-page: 4078
  year: 2018
  ident: e_1_2_9_44_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201800818
– volume: 133
  start-page: 1738
  year: 2021
  ident: e_1_2_9_64_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202007668
– volume: 10
  start-page: 3804
  year: 2019
  ident: e_1_2_9_70_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11688-7
– volume: 57
  start-page: 8514
  year: 2018
  ident: e_1_2_9_55_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201803220
– volume: 36
  start-page: 255
  year: 2003
  ident: e_1_2_9_2_1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar020230d
– volume: 118
  start-page: 6706
  year: 2018
  ident: e_1_2_9_92_1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00233
– volume: 53
  start-page: 547
  year: 2020
  ident: e_1_2_9_95_1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00529
– volume: 2
  start-page: 1016
  year: 2019
  ident: e_1_2_9_77_1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0357-9
– year: 2021
  ident: e_1_2_9_30_1
  publication-title: Chem. Rev.
– volume: 143
  start-page: 2729
  year: 2021
  ident: e_1_2_9_73_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c00687
– volume: 53
  start-page: 2841
  year: 2020
  ident: e_1_2_9_97_1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00477
– volume: 132
  start-page: 14381
  year: 2020
  ident: e_1_2_9_90_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202005724
– volume: 54
  start-page: 6105
  year: 2018
  ident: e_1_2_9_28_1
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC02642D
– volume: 103
  start-page: 2921
  year: 2003
  ident: e_1_2_9_96_1
  publication-title: Chem. Rev.
  doi: 10.1021/cr020027w
– volume: 3
  start-page: 117
  year: 2006
  ident: e_1_2_9_53_1
  publication-title: Mini-Rev. Org. Chem.
  doi: 10.2174/157019306776819226
– volume: 361
  start-page: 668
  year: 2018
  ident: e_1_2_9_83_1
  publication-title: Science
  doi: 10.1126/science.aat9750
– volume: 16
  start-page: 1754
  year: 2020
  ident: e_1_2_9_33_1
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.16.147
– volume: 17
  start-page: 5200
  year: 2015
  ident: e_1_2_9_42_1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.5b02532
– volume: 133
  start-page: 7481
  year: 2021
  ident: e_1_2_9_52_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202014632
– volume: 54
  start-page: 3872
  year: 2015
  ident: e_1_2_9_58_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201411409
– volume: 130
  start-page: 4142
  year: 2018
  ident: e_1_2_9_44_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201800818
– volume: 140
  start-page: 15850
  year: 2018
  ident: e_1_2_9_69_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b09251
– volume: 12
  start-page: 4010
  year: 2021
  ident: e_1_2_9_82_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24280-9
– volume: 3
  start-page: 347
  year: 2019
  ident: e_1_2_9_5_1
  publication-title: Nat. Chem. Rev.
  doi: 10.1038/s41570-019-0099-x
– volume: 138
  start-page: 16200
  year: 2016
  ident: e_1_2_9_8_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09970
– volume: 12
  start-page: 2377
  year: 2021
  ident: e_1_2_9_68_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22690-3
– volume: 117
  start-page: 9016
  year: 2017
  ident: e_1_2_9_4_1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00620
– volume: 50
  start-page: 3359
  year: 2018
  ident: e_1_2_9_32_1
  publication-title: Synthesis
  doi: 10.1055/s-0037-1610222
– volume: 517
  start-page: 600
  year: 2015
  ident: e_1_2_9_9_1
  publication-title: Nature
  doi: 10.1038/nature14127
– volume: 82
  start-page: 6133
  year: 2017
  ident: e_1_2_9_29_1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.7b00687
– volume: 57
  start-page: 15664
  year: 2018
  ident: e_1_2_9_27_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201810187
– volume: 26
  start-page: 16521
  year: 2020
  ident: e_1_2_9_49_1
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.202003431
– volume: 133
  start-page: 2885
  year: 2021
  ident: e_1_2_9_22_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202011400
– volume: 130
  start-page: 15890
  year: 2018
  ident: e_1_2_9_27_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201810187
– volume: 50
  start-page: 620
  year: 2017
  ident: e_1_2_9_1_1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00621
– start-page: 6
  year: 2016
  ident: e_1_2_9_75_1
  publication-title: ACS Catal.
– volume: 322
  start-page: 77
  year: 2008
  ident: e_1_2_9_67_1
  publication-title: Science
  doi: 10.1126/science.1161976
– volume: 2017
  start-page: 2056
  year: 2017
  ident: e_1_2_9_19_1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201601485
– volume: 51
  start-page: 3290
  year: 2015
  ident: e_1_2_9_59_1
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC09268F
– volume: 142
  start-page: 6216
  year: 2020
  ident: e_1_2_9_85_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00212
– volume: 11
  start-page: 6757
  year: 2021
  ident: e_1_2_9_98_1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c01500
– volume: 9
  start-page: 6058
  year: 2019
  ident: e_1_2_9_63_1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01556
– volume: 23
  start-page: 5729
  year: 2021
  ident: e_1_2_9_45_1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.1c01870
– volume: 49
  start-page: 2232
  year: 2016
  ident: e_1_2_9_25_1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00339
– volume: 372
  start-page: 847
  year: 2021
  ident: e_1_2_9_84_1
  publication-title: Science
  doi: 10.1126/science.abd8408
– volume: 54
  start-page: 988
  year: 2021
  ident: e_1_2_9_35_1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00694
– volume: 102
  start-page: 1551
  year: 2002
  ident: e_1_2_9_6_1
  publication-title: Chem. Rev.
  doi: 10.1021/cr000453m
– volume: 21
  start-page: 4271
  year: 2019
  ident: e_1_2_9_40_1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b01450
– volume: 142
  start-page: 17693
  year: 2020
  ident: e_1_2_9_89_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c08437
SSID ssj0009661
Score 2.516446
SecondaryResourceType review_article
Snippet Catalytic C(sp3)−H functionalization can convert abundant feedstock hydrocarbons into value‐added products in an atom‐ and step‐economic manner and is a...
Catalytic C(sp 3 )−H functionalization can convert abundant feedstock hydrocarbons into value‐added products in an atom‐ and step‐economic manner and is a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5545
SubjectTerms Alkanes
C(sp3)−H Functionalization
Catalysis
Catalytic converters
Cerium
Chemical synthesis
Chromium
Cycloalkanes
Hydrogen atom transfer
Lewis acid
Manganese
Photocatalysis
Radicals
Selectivity
Stereoselectivity
Transition metals
Title The Merger of Photocatalyzed Hydrogen Atom Transfer with Transition Metal Catalysis for C−H Functionalization of Alkanes and Cycloalkanes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejoc.202101036
https://www.proquest.com/docview/2585704868
Volume 2021
WOSCitedRecordID wos000710909000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-0690
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009661
  issn: 1434-193X
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB1BQIILpYWKUFrtAamnFfHau2sfI5coqlpAqEi5Wftl8ZHGKA5I4RcgceMn8ks6azsJHBBSuXntHdvanZ33PPK-AdhPAh1KJwwNrFM04rJDY8U45Xno8dM6Hpqq2IQ8OooHg-Tk2S7-Wh9innDzK6OK136BK10eLERD3WXhJQjxkyXAKLwMKwydl7dg5cdp7-zXQnhX1JqpURhRJCuDmXBjhx28vMNLYFqwzeectQKd3of3v-4mbDSEk3RrD_kIS270CdbSWZ23LXhATyG__SbMMSlycnJeTIoqqTO9c5b0p3ZcoJOR7qT4Sypky7GjT9_WreqXL7RHA5JWZuVFSZAKk_Tp_rFPegicdb6x2fHpH9IdXimMsUSNLEmnZlio-sQ2nPUO_6R92pRooAaJh6BI_gKtueORRmZppAlzG2ueRFro2CgVSG3xeiiks7aTJ0IqZl0stWYmsTgSn6E1KkZuB4hQPNaRQrD0HC9xWmGg7kijNBMmyW0b6Gx-MtPol_syGsOsVl5mmR_ibD7Ebfg-739dK3e82nNvNt1Zs4LLjHEv_R_FIm4Dqyb2jbtkhz-P03lr93-MvsC6P_bQyMQetCbjG_cVVs3t5KIcf2s8-x-nnPwV
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fT9swED_xZxJ72dhgWgdjfkDiyaJxYjt5rDKqAqUgBFLfIv-LxtY1U1uQyidA4o2PyCfZOUlbeJgmIR7t3DmRfb775WT_DmA3CXQonTA0sE7RiMsmjRXjlOehj5_W8dCUxSZkrxf3-8lZfZrQ34Wp-CHmCTe_M0p_7Te4T0jvL1hD3c_CcxDiP0uAbngZViO0JTTy1e_n7cvugnlXVKSpURhRRCv9GXNjk-0_H-F5ZFrAzaegtYw67fev8L3r8K6GnKRV2cgHWHLDj7CWziq9bcA92go58dcwR6TIydmPYlKUaZ3prbOkM7WjAs2MtCbFb1LGthwFfQK3apWHvlAfFUhaqo2vxgTBMEkf7x46pI2hs8o41nc-_Utag18KvSxRQ0vSqRkUqurYhMv2wUXaoXWRBmoQegiK8C_QmjseacSWRpowt7HmSaSFjo1SgdQWn4dCOmubeSKkYtbFUmtmEosz8QlWhsXQfQYiFI91pDBcepSXOK3QVTelUZoJk-S2AXS2QJmpGcx9IY1BVnEvs8xPcTaf4gbszeX_VNwd_5Tcnq13Vu_hcca4J_-PYhE3gJUr-59RsoOj03Te-vISpW-w1rk46Wbdw97xFrz1_T5QMrENK5PRtfsKb8zN5Go82qnN_C-__gAU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED-xDg1egI1NFMbwwySerDVObCePVdqosNFVE5P6FvlftEHXTG1BKp8AiTc-Ip-Ec5K27AFNQjzauXMi-3z3y8n-HcBxEuhQOmFoYJ2iEZcdGivGKS9CHz-t46Gpik3I4TAej5NRc5rQ34Wp-SHWCTe_Myp_7Te4u7XFyYY11H0qPQch_rME6Ia3YDvylWRasN27yC7PNsy7oiZNjcKIIloZr5gbO-zk7gh3I9MGbv4JWquokz39D9_7DJ40kJN0axvZhQduugeP0lWlt-fwA22FfPDXMGekLMjoqlyUVVpn-c1ZMljaWYlmRrqL8oZUsa1AQZ_ArVvVoS_URwWSVmrz6zlBMEzSX99_DkiGobPOODZ3Pv1LupPPCr0sUVNL0qWZlKru2IfLrP8xHdCmSAM1CD0ERfgXaM0djzRiSyNNWNhY8yTSQsdGqUBqi89DIZ21nSIRUjHrYqk1M4nFmTiA1rScuhdAhOKxjhSGS4_yEqcVuuqONEozYZLCtoGuFig3DYO5L6QxyWvuZZb7Kc7XU9yGt2v525q746-Sh6v1zps9PM8Z9-T_USziNrBqZe8ZJe-_P0_XrZf_ovQGdka9LD97Nzx9BY99t4-TTBxCazH74l7DQ_N1cT2fHTVW_htKxf-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Merger+of+Photocatalyzed+Hydrogen+Atom+Transfer+with+Transition+Metal+Catalysis+for+C%E2%88%92H+Functionalization+of+Alkanes+and+Cycloalkanes&rft.jtitle=European+journal+of+organic+chemistry&rft.au=Ye%2C+Ziqi&rft.au=Yu%E2%80%90Mei+Lin&rft.au=Gong%2C+Lei&rft.date=2021-10-26&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1434-193X&rft.eissn=1099-0690&rft.volume=2021&rft.issue=40&rft.spage=5545&rft.epage=5556&rft_id=info:doi/10.1002%2Fejoc.202101036&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-193X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-193X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-193X&client=summon