The Merger of Photocatalyzed Hydrogen Atom Transfer with Transition Metal Catalysis for C−H Functionalization of Alkanes and Cycloalkanes
Catalytic C(sp3)−H functionalization can convert abundant feedstock hydrocarbons into value‐added products in an atom‐ and step‐economic manner and is a powerful tool in organic synthesis. However, the intrinsic chemical inertness of ubiquitous aliphatic C−H bonds of alkanes and cycloalkanes makes t...
Uloženo v:
| Vydáno v: | European journal of organic chemistry Ročník 2021; číslo 40; s. 5545 - 5556 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Weinheim
Wiley Subscription Services, Inc
26.10.2021
|
| Témata: | |
| ISSN: | 1434-193X, 1099-0690 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Catalytic C(sp3)−H functionalization can convert abundant feedstock hydrocarbons into value‐added products in an atom‐ and step‐economic manner and is a powerful tool in organic synthesis. However, the intrinsic chemical inertness of ubiquitous aliphatic C−H bonds of alkanes and cycloalkanes makes their direct and selective functionalization extremely challenging. Recently, some elegant strategies have been developed to solve the problems based on the merger of photocatalyzed hydrogen atom transfer (HAT) with transition metal catalysis. Light‐induced HAT processes are employed to initiate the alkyl radical generation, which is synergistic with metal catalysis involving for example nickel, copper, cobalt, cerium, chromium, or manganese. The different metal catalysts provide redox adjustment, Lewis acid activation or other functionalities and tune the reactivity and selectivity of the radical‐mediated sequences, allowing the development of diverse chemo‐, site‐, and/or stereoselective synthetic reactions. In this minireview, we offer a brief summary of the recent advances in dual photo‐induced HAT and transition metal catalysis for C−H functionalization of alkanes and cycloalkanes. We expect that these methodologies will stimulate the applications in catalysis, pharmaceuticals, and other related fields.
Catalytic C(sp3)−H functionalization of alkanes and cycloalkanes is a useful tool to convert abundant chemical feedstocks into value‐added products but remains a challenging task. In this review, recent advances relying on dual photo‐induced hydrogen atom transfer and transition metal catalysis are summarized. |
|---|---|
| AbstractList | Catalytic C(sp3)−H functionalization can convert abundant feedstock hydrocarbons into value‐added products in an atom‐ and step‐economic manner and is a powerful tool in organic synthesis. However, the intrinsic chemical inertness of ubiquitous aliphatic C−H bonds of alkanes and cycloalkanes makes their direct and selective functionalization extremely challenging. Recently, some elegant strategies have been developed to solve the problems based on the merger of photocatalyzed hydrogen atom transfer (HAT) with transition metal catalysis. Light‐induced HAT processes are employed to initiate the alkyl radical generation, which is synergistic with metal catalysis involving for example nickel, copper, cobalt, cerium, chromium, or manganese. The different metal catalysts provide redox adjustment, Lewis acid activation or other functionalities and tune the reactivity and selectivity of the radical‐mediated sequences, allowing the development of diverse chemo‐, site‐, and/or stereoselective synthetic reactions. In this minireview, we offer a brief summary of the recent advances in dual photo‐induced HAT and transition metal catalysis for C−H functionalization of alkanes and cycloalkanes. We expect that these methodologies will stimulate the applications in catalysis, pharmaceuticals, and other related fields. Catalytic C(sp 3 )−H functionalization can convert abundant feedstock hydrocarbons into value‐added products in an atom‐ and step‐economic manner and is a powerful tool in organic synthesis. However, the intrinsic chemical inertness of ubiquitous aliphatic C−H bonds of alkanes and cycloalkanes makes their direct and selective functionalization extremely challenging. Recently, some elegant strategies have been developed to solve the problems based on the merger of photocatalyzed hydrogen atom transfer (HAT) with transition metal catalysis. Light‐induced HAT processes are employed to initiate the alkyl radical generation, which is synergistic with metal catalysis involving for example nickel, copper, cobalt, cerium, chromium, or manganese. The different metal catalysts provide redox adjustment, Lewis acid activation or other functionalities and tune the reactivity and selectivity of the radical‐mediated sequences, allowing the development of diverse chemo‐, site‐, and/or stereoselective synthetic reactions. In this minireview, we offer a brief summary of the recent advances in dual photo‐induced HAT and transition metal catalysis for C−H functionalization of alkanes and cycloalkanes. We expect that these methodologies will stimulate the applications in catalysis, pharmaceuticals, and other related fields. Catalytic C(sp3)−H functionalization can convert abundant feedstock hydrocarbons into value‐added products in an atom‐ and step‐economic manner and is a powerful tool in organic synthesis. However, the intrinsic chemical inertness of ubiquitous aliphatic C−H bonds of alkanes and cycloalkanes makes their direct and selective functionalization extremely challenging. Recently, some elegant strategies have been developed to solve the problems based on the merger of photocatalyzed hydrogen atom transfer (HAT) with transition metal catalysis. Light‐induced HAT processes are employed to initiate the alkyl radical generation, which is synergistic with metal catalysis involving for example nickel, copper, cobalt, cerium, chromium, or manganese. The different metal catalysts provide redox adjustment, Lewis acid activation or other functionalities and tune the reactivity and selectivity of the radical‐mediated sequences, allowing the development of diverse chemo‐, site‐, and/or stereoselective synthetic reactions. In this minireview, we offer a brief summary of the recent advances in dual photo‐induced HAT and transition metal catalysis for C−H functionalization of alkanes and cycloalkanes. We expect that these methodologies will stimulate the applications in catalysis, pharmaceuticals, and other related fields. Catalytic C(sp3)−H functionalization of alkanes and cycloalkanes is a useful tool to convert abundant chemical feedstocks into value‐added products but remains a challenging task. In this review, recent advances relying on dual photo‐induced hydrogen atom transfer and transition metal catalysis are summarized. |
| Author | Lin, Yu‐Mei Gong, Lei Ye, Ziqi |
| Author_xml | – sequence: 1 givenname: Ziqi surname: Ye fullname: Ye, Ziqi organization: Xiamen University – sequence: 2 givenname: Yu‐Mei surname: Lin fullname: Lin, Yu‐Mei email: linyum@xmu.edu.cn organization: Xiamen University – sequence: 3 givenname: Lei orcidid: 0000-0002-4478-6880 surname: Gong fullname: Gong, Lei email: gongl@xmu.edu.cn organization: Xiamen University |
| BookMark | eNqFkMtKAzEUhoNU0Kpb1wHXU5O5ZCbLMrRWUXRRwd2Q29jUMdFkShmfQHDnI_okph1REMRVbt-Xc84_BANjjQLgGKMRRig-VUsrRjGKMcIoITtgHyNKI0QoGoR9mqQRpsndHhh6v0QIUULwPnibLxS8Uu5eOWhreLOwrRWsZU33oiScddLZe2XguLWPcO6Y8XUA17pd9CfdamuCHwRYbjWvPaytg-XH6_sMTldGbBDW6Be2ZUORcfPAjPKQGQnLTjSW9ReHYLdmjVdHX-sBuJ1O5uUsurw-Oy_Hl5FIcE6iJCaY80xlKccZErlIalnwjKac8EIwhnMuw3tCciUlqinJWSxVkXMeCypDNgfgpP_3ydnnlfJttbQrF3r0VZwVWY7SghSBGvWUcNZ7p-rqyelH5roKo2oTeLUJvPoOPAjpL0Hodjt065hu_tZor611o7p_ilSTi-vyx_0E-EWbcw |
| CitedBy_id | crossref_primary_10_1002_ajoc_202300580 crossref_primary_10_3762_bjoc_21_33 crossref_primary_10_1002_cctc_202201328 crossref_primary_10_1016_j_ccr_2024_216175 crossref_primary_10_1002_ejoc_202200417 crossref_primary_10_1002_ange_202510594 crossref_primary_10_1002_cctc_202200990 crossref_primary_10_1016_j_tetlet_2022_153788 crossref_primary_10_1002_adsc_202300644 crossref_primary_10_1039_D2SC00202G crossref_primary_10_1002_chem_202201478 crossref_primary_10_1055_s_0042_1751444 crossref_primary_10_1021_jacs_2c12845 crossref_primary_10_3390_molecules28166127 crossref_primary_10_1002_ange_202506268 crossref_primary_10_1021_jacs_3c12513 crossref_primary_10_1021_jacs_4c03099 crossref_primary_10_1039_D3SC05162E crossref_primary_10_1002_ejoc_202201139 crossref_primary_10_1039_D3SC01118F crossref_primary_10_1016_j_tetlet_2024_154939 crossref_primary_10_1002_anie_202510594 crossref_primary_10_1002_anie_202506268 crossref_primary_10_1002_adsc_202201395 crossref_primary_10_1002_cctc_202300311 crossref_primary_10_1016_j_cclet_2025_111776 crossref_primary_10_1016_j_apcatb_2022_122237 |
| Cites_doi | 10.1002/ange.201803220 10.1126/science.aad9289 10.1021/jacs.7b13131 10.1021/acs.accounts.0c00379 10.1002/anie.202014632 10.1021/ja00052a045 10.1016/j.chempr.2020.04.022 10.1021/acs.orglett.0c00096 10.1039/D0OB00854K 10.1039/C4QO00306C 10.1038/ncomms10093 10.1002/ange.202007494 10.1038/s41586-018-0366-x 10.1021/jacs.6b08397 10.1038/nature13274 10.1021/acs.chemrev.7b00397 10.1038/ncomms11676 10.1246/cl.171068 10.1002/anie.202004441 10.1021/jacs.0c04422 10.1039/D0GC01035A 10.1016/S1872-2067(21)63831-7 10.1021/jacs.1c03780 10.1021/ja411912p 10.1002/cptc.201900219 10.1039/c3cs35531d 10.1002/anie.202005724 10.1021/acscatal.9b00287 10.1038/s41557-020-0436-1 10.1021/acscatal.7b03354 10.1021/jp075829f 10.1021/jacs.0c00123 10.1126/science.abb4688 10.1021/acscatal.0c01924 10.1038/nature17651 10.1002/cctc.201500125 10.1002/anie.202011400 10.1021/jacs.0c13077 10.1038/s41467-020-15878-6 10.1002/anie.202012263 10.1039/C7SC02773G 10.1021/jacs.8b07405 10.1021/acs.accounts.9b00028 10.1021/acs.accounts.6b00280 10.1021/acs.accounts.9b00510 10.1021/acscatal.9b01394 10.1039/C6CC09725A 10.1002/anie.202007668 10.1021/jacs.6b11533 10.1055/a-1344-2473 10.1039/D0CS00774A 10.1021/jacs.8b09191 10.1021/acs.chemrev.7b00271 10.1002/ange.201411409 10.1039/C8SC05677C 10.1002/ange.202012263 10.1021/acs.accounts.5b00348 10.1038/417507a 10.1038/s41586-018-0799-2 10.1002/anie.201800818 10.1002/ange.202007668 10.1038/s41467-019-11688-7 10.1002/anie.201803220 10.1021/ar020230d 10.1021/acs.chemrev.8b00233 10.1021/acs.accounts.9b00529 10.1038/s41929-019-0357-9 10.1021/jacs.1c00687 10.1021/acs.accounts.0c00477 10.1002/ange.202005724 10.1039/C8CC02642D 10.1021/cr020027w 10.2174/157019306776819226 10.1126/science.aat9750 10.3762/bjoc.16.147 10.1021/acs.orglett.5b02532 10.1002/ange.202014632 10.1002/anie.201411409 10.1002/ange.201800818 10.1021/jacs.8b09251 10.1038/s41467-021-24280-9 10.1038/s41570-019-0099-x 10.1021/jacs.6b09970 10.1038/s41467-021-22690-3 10.1021/acs.chemrev.6b00620 10.1055/s-0037-1610222 10.1038/nature14127 10.1021/acs.joc.7b00687 10.1002/anie.201810187 10.1002/chem.202003431 10.1002/ange.202011400 10.1002/ange.201810187 10.1021/acs.accounts.6b00621 10.1126/science.1161976 10.1002/ejoc.201601485 10.1039/C4CC09268F 10.1021/jacs.0c00212 10.1021/acscatal.1c01500 10.1021/acscatal.9b01556 10.1021/acs.orglett.1c01870 10.1021/acs.accounts.6b00339 10.1126/science.abd8408 10.1021/acs.accounts.0c00694 10.1021/cr000453m 10.1021/acs.orglett.9b01450 10.1021/jacs.0c08437 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION |
| DOI | 10.1002/ejoc.202101036 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1099-0690 |
| EndPage | 5556 |
| ExternalDocumentID | 10_1002_ejoc_202101036 EJOC202101036 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: National Youth Talent Support program – fundername: Fundamental Research Funds for the Central Universities funderid: 20720190048 – fundername: National Natural Science Foundation of China funderid: 22071209; 22071206 – fundername: Natural Science Foundation of Fujian Province of China funderid: 2017J06006 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AABCJ AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACSCC ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WH7 WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION O8X 1OB |
| ID | FETCH-LOGICAL-c3176-3261bb5e54b150c7c3fd8b594b6b8caa17bdbb5367edd0f967a2de87bb2c9d103 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000710909000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1434-193X |
| IngestDate | Wed Aug 13 05:01:44 EDT 2025 Tue Nov 18 22:26:23 EST 2025 Sat Nov 29 07:04:13 EST 2025 Wed Jan 22 16:28:36 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 40 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3176-3261bb5e54b150c7c3fd8b594b6b8caa17bdbb5367edd0f967a2de87bb2c9d103 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4478-6880 |
| PQID | 2585704868 |
| PQPubID | 986364 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2585704868 crossref_primary_10_1002_ejoc_202101036 crossref_citationtrail_10_1002_ejoc_202101036 wiley_primary_10_1002_ejoc_202101036_EJOC202101036 |
| PublicationCentury | 2000 |
| PublicationDate | October 26, 2021 |
| PublicationDateYYYYMMDD | 2021-10-26 |
| PublicationDate_xml | – month: 10 year: 2021 text: October 26, 2021 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | European journal of organic chemistry |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2018; 560 2018; 361 2017; 8 2017; 82 2021; 23 2019; 52 2019; 10 2018; 564 2020 2020; 59 132 2020; 369 2020; 16 2020; 12 2020; 11 2020; 10 2014; 136 2017; 117 2018; 47 2020; 18 2020; 6 2015; 48 2018; 8 2020; 4 2020; 53 2019; 21 2002; 102 2018 2018; 57 130 1992; 114 2015 2015; 54 127 2008; 112 2016; 49 2016; 351 2015; 2 2019; 9 2015; 17 2015; 6 2019; 3 2021; 42 2018; 140 2017; 2017 2015; 51 2019; 2 2020; 142 2013; 42 2003; 36 2006; 3 2002; 417 2021; 143 2008; 322 2021; 50 2015; 7 2017; 139 2017; 50 2017; 53 2016; 7 2021; 54 2021; 53 2021; 12 2021; 11 2021 2014; 509 2018; 118 2021 2021; 60 133 2020; 26 2015; 517 2016 2016; 138 2021; 372 2016; 533 2020; 22 2018; 50 2003; 103 2018; 54 Mitsunuma H. (e_1_2_9_86_1) 2019; 10 Fu J. (e_1_2_9_14_1) 2018; 564 Wang P. S. (e_1_2_9_97_1) 2020; 53 Capaldo L. (e_1_2_9_19_1) 2017; 2017 Li Y. (e_1_2_9_77_1) 2019; 2 (e_1_2_9_44_2) 2018; 130 Panferova L. I. (e_1_2_9_22_1) 2021; 60 Liao K. (e_1_2_9_13_1) 2016; 533 Protti S. (e_1_2_9_17_1) 2015; 7 Jia K. (e_1_2_9_28_1) 2018; 54 Brimioulle R. (e_1_2_9_58_1) 2015; 54 Laudadio G. (e_1_2_9_41_1) 2020; 369 (e_1_2_9_52_2) 2021; 133 Sharma N. (e_1_2_9_18_1) 2020; 4 Ackermann L. (e_1_2_9_94_1) 2020; 53 Siu J. C. (e_1_2_9_95_1) 2020; 53 Halperin S. D. (e_1_2_9_42_1) 2015; 17 Blanksby S. J. (e_1_2_9_2_1) 2003; 36 Yahata K. (e_1_2_9_88_1) 2020; 22 Sarver P. J. (e_1_2_9_74_1) 2020; 12 Yi H. (e_1_2_9_4_1) 2017; 117 Pérez-Prieto J. (e_1_2_9_53_1) 2006; 3 Chen H. (e_1_2_9_31_1) 2020; 18 Niu L. (e_1_2_9_89_1) 2020; 142 Waldvogel S. R. (e_1_2_9_92_1) 2018; 118 Yoon T. P. (e_1_2_9_61_1) 2016; 49 Perry I. B. (e_1_2_9_51_1) 2018; 560 Sharma A. (e_1_2_9_9_1) 2015; 517 Zheng Y.-W. (e_1_2_9_71_1) 2020; 10 Wang C. (e_1_2_9_60_1) 2015; 2 Huang C.-Y. (e_1_2_9_82_1) 2021; 12 Xu S. (e_1_2_9_52_1) 2021; 60 Nicewicz D. A. (e_1_2_9_67_1) 2008; 322 (e_1_2_9_22_2) 2021; 133 Ravelli D. (e_1_2_9_47_1) 2018; 8 Yang Q. (e_1_2_9_84_1) 2021; 372 Mukherjee S. (e_1_2_9_8_1) 2016; 138 Saito M. (e_1_2_9_21_1) 2021; 143 Waele V. D. (e_1_2_9_75_1) 2016 Supranovich V. I. (e_1_2_9_40_1) 2019; 21 Zhou W.-J. (e_1_2_9_32_1) 2018; 50 Laudadio G. (e_1_2_9_44_1) 2018; 57 Ravelli D. (e_1_2_9_25_1) 2016; 49 Shen Y. (e_1_2_9_98_1) 2021; 11 Goldberg K. I. (e_1_2_9_1_1) 2017; 50 Aloïse S. (e_1_2_9_54_1) 2008; 112 Capaldo L. (e_1_2_9_30_1) 2021 Capaldo L. (e_1_2_9_26_1) 2019; 9 Vega-Peñaloza A. (e_1_2_9_63_1) 2019; 9 Cao S. (e_1_2_9_68_1) 2021; 12 Trost B. M. (e_1_2_9_96_1) 2003; 103 Tasker S. Z. (e_1_2_9_34_1) 2014; 509 (e_1_2_9_55_2) 2018; 130 Yan M. (e_1_2_9_91_1) 2017; 117 Treacy S. M. (e_1_2_9_73_1) 2021; 143 Garr C. D. (e_1_2_9_78_1) 1992; 114 Quattrini M. C. (e_1_2_9_46_1) 2017; 53 Li Y. (e_1_2_9_66_1) 2021; 53 Lipp A. (e_1_2_9_64_1) 2021; 60 McManus J. B. (e_1_2_9_81_1) 2020; 142 Jia P. (e_1_2_9_11_1) 2020; 6 Cook A. K. (e_1_2_9_7_1) 2016; 351 Hu A. (e_1_2_9_72_1) 2018; 140 Fuse H. (e_1_2_9_87_1) 2020; 142 Rohe S. (e_1_2_9_27_1) 2018; 57 Fukuyama T. (e_1_2_9_48_1) 2018; 47 Meggers E. (e_1_2_9_59_1) 2015; 51 (e_1_2_9_27_2) 2018; 130 Fokin A. A. (e_1_2_9_6_1) 2002; 102 (e_1_2_9_58_2) 2015; 127 Nodwell M. B. (e_1_2_9_43_1) 2017; 139 Li G.-X. (e_1_2_9_50_1) 2017; 8 Li Y. (e_1_2_9_69_1) 2018; 140 Huang X. (e_1_2_9_62_1) 2019; 52 Schirmer T. E. (e_1_2_9_45_1) 2021; 23 Tran B. L. (e_1_2_9_12_1) 2014; 136 Labinger J. A. (e_1_2_9_3_1) 2002; 417 Shields B. J. (e_1_2_9_37_1) 2016; 138 Hu A. (e_1_2_9_83_1) 2018; 361 (e_1_2_9_39_2) 2020; 132 Yu J. (e_1_2_9_49_1) 2020; 26 Guillemard L. (e_1_2_9_33_1) 2020; 16 Lee G. S. (e_1_2_9_39_1) 2020; 59 (e_1_2_9_76_2) 2021; 133 Cao H. (e_1_2_9_80_1) 2020; 11 DiLabio G. A. (e_1_2_9_29_1) 2017; 82 Fan X.-Z. (e_1_2_9_55_1) 2018; 57 Han B. (e_1_2_9_70_1) 2019; 10 Krylov I. B. (e_1_2_9_24_1) 2021; 42 Kariofillis S. K. (e_1_2_9_35_1) 2021; 54 Davies H. M. L. (e_1_2_9_5_1) 2019; 3 Choi G. (e_1_2_9_76_1) 2021; 60 Yang H.-B. (e_1_2_9_23_1) 2019; 9 Schwinger D. P. (e_1_2_9_65_1) 2020; 53 Capaldo L. (e_1_2_9_20_1) 2020; 22 An Q. (e_1_2_9_85_1) 2020; 142 Shen Y. (e_1_2_9_57_1) 2018; 140 Zhao J. (e_1_2_9_56_1) 2013; 42 Xu P. (e_1_2_9_90_1) 2020; 59 Tang S. (e_1_2_9_10_1) 2016; 7 Salamone M. (e_1_2_9_15_1) 2015; 48 Guo W. (e_1_2_9_16_1) 2021; 50 Ackerman L. K. G. (e_1_2_9_38_1) 2018; 140 (e_1_2_9_90_2) 2020; 132 West J. G. (e_1_2_9_79_1) 2015; 6 Jiang Y. (e_1_2_9_93_1) 2018; 118 (e_1_2_9_64_2) 2021; 133 Campbell M. W. (e_1_2_9_36_1) 2021; 143 |
| References_xml | – volume: 12 start-page: 459 year: 2020 end-page: 467 publication-title: Nat. Chem. – volume: 140 start-page: 1612 year: 2018 end-page: 1616 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 10093 year: 2015 publication-title: Nat. Commun. – volume: 49 start-page: 2307 year: 2016 end-page: 2315 publication-title: Acc. Chem. Res. – volume: 10 start-page: 8582 year: 2020 end-page: 8589 publication-title: ACS Catal. – volume: 142 start-page: 17693 year: 2020 end-page: 17702 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1516 year: 2015 end-page: 1523 publication-title: ChemCatChem – volume: 112 start-page: 224 year: 2008 end-page: 231 publication-title: J. Phys. Chem. A – volume: 417 start-page: 507 year: 2002 end-page: 514 publication-title: Nature – volume: 9 start-page: 6058 year: 2019 end-page: 6072 publication-title: ACS Catal. – volume: 8 start-page: 701 year: 2018 end-page: 713 publication-title: ACS Catal. – volume: 322 start-page: 77 year: 2008 end-page: 80 publication-title: Science – volume: 48 start-page: 2895 year: 2015 end-page: 2903 publication-title: Acc. Chem. Res. – volume: 509 start-page: 299 year: 2014 end-page: 309 publication-title: Nature – volume: 143 start-page: 3901 year: 2021 end-page: 3910 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 13230 year: 2017 end-page: 13319 publication-title: Chem. Rev. – volume: 142 start-page: 12374 year: 2020 end-page: 12381 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 7180 year: 2017 end-page: 7185 publication-title: Chem. Sci. – volume: 53 start-page: 84 year: 2020 end-page: 104 publication-title: Acc. Chem. Res. – volume: 3 start-page: 117 year: 2006 end-page: 135 publication-title: Mini-Rev. Org. Chem. – volume: 372 start-page: 847 year: 2021 end-page: 852 publication-title: Science – volume: 22 start-page: 1199 year: 2020 end-page: 1203 publication-title: Org. Lett. – volume: 103 start-page: 2921 year: 2003 end-page: 2944 publication-title: Chem. Rev. – volume: 142 start-page: 10325 year: 2020 end-page: 10330 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 547 year: 2020 end-page: 560 publication-title: Acc. Chem. Res. – volume: 143 start-page: 2729 year: 2021 end-page: 2735 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 179 year: 2015 end-page: 190 publication-title: Org. Chem. Front. – volume: 11 start-page: 1956 year: 2020 publication-title: Nat. Commun. – volume: 36 start-page: 255 year: 2003 end-page: 263 publication-title: Acc. Chem. Res. – volume: 138 start-page: 12719 year: 2016 end-page: 12722 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 7859 year: 2021 end-page: 7867 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 16933 17801 year: 2020 2020 end-page: 16942 17090 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 23 start-page: 5729 year: 2021 end-page: 5733 publication-title: Org. Lett. – volume: 2 start-page: 1016 year: 2019 end-page: 1026 publication-title: Nat. Catal. – volume: 7 start-page: 11676 year: 2016 publication-title: Nat. Commun. – volume: 60 133 start-page: 7405 7481 year: 2021 2021 end-page: 7411 7487 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 8514 8650 year: 2018 2018 end-page: 8518 8654 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 2377 year: 2021 publication-title: Nat. Commun. – volume: 517 start-page: 600 year: 2015 end-page: 604 publication-title: Nature – volume: 118 start-page: 6706 year: 2018 end-page: 6765 publication-title: Chem. Rev. – volume: 42 start-page: 5323 year: 2013 end-page: 5351 publication-title: Chem. Soc. Rev. – volume: 53 start-page: 1933 year: 2020 end-page: 1943 publication-title: Acc. Chem. Res. – volume: 140 start-page: 14059 year: 2018 end-page: 14063 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 988 year: 2021 end-page: 1000 publication-title: Acc. Chem. Res. – volume: 53 start-page: 2335 year: 2017 end-page: 2338 publication-title: Chem. Commun. – volume: 60 133 start-page: 2849 2885 year: 2021 2021 end-page: 2854 2890 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 117 start-page: 9016 year: 2017 end-page: 9085 publication-title: Chem. Rev. – volume: 60 133 start-page: 5467 5527 year: 2021 2021 end-page: 5474 5534 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 564 start-page: 395 year: 2018 end-page: 399 publication-title: Nature – volume: 2017 start-page: 2056 year: 2017 end-page: 2071 publication-title: Eur. J. Org. Chem. – volume: 6 start-page: 1766 year: 2020 end-page: 1776 publication-title: Chem – volume: 136 start-page: 2555 year: 2014 end-page: 2563 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 833 year: 2019 end-page: 847 publication-title: Acc. Chem. Res. – volume: 114 start-page: 10440 year: 1992 end-page: 10445 publication-title: J. Am. Chem. Soc. – start-page: 6 year: 2016 end-page: 7182 publication-title: ACS Catal. – volume: 118 start-page: 4485 year: 2018 end-page: 4540 publication-title: Chem. Rev. – volume: 3 start-page: 347 year: 2019 end-page: 360 publication-title: Nat. Chem. Rev. – volume: 138 start-page: 16200 year: 2016 end-page: 16203 publication-title: J. Am. Chem. Soc. – volume: 82 start-page: 6133 year: 2017 end-page: 6141 publication-title: J. Org. Chem. – volume: 11 start-page: 6757 year: 2021 end-page: 6762 publication-title: ACS Catal. – volume: 21 start-page: 4271 year: 2019 end-page: 4274 publication-title: Org. Lett. – volume: 139 start-page: 3595 year: 2017 end-page: 3598 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 3459 year: 2019 end-page: 3465 publication-title: Chem. Sci. – volume: 9 start-page: 5708 year: 2019 end-page: 5715 publication-title: ACS Catal. – volume: 361 start-page: 668 year: 2018 end-page: 672 publication-title: Science – volume: 102 start-page: 1551 year: 2002 end-page: 1594 publication-title: Chem. Rev. – volume: 369 start-page: 92 year: 2020 end-page: 96 publication-title: Science – volume: 4 start-page: 271 year: 2020 end-page: 281 publication-title: ChemPhotoChem – volume: 142 start-page: 6216 year: 2020 end-page: 6226 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 207 year: 2018 end-page: 209 publication-title: Chem. Lett. – volume: 26 start-page: 16521 year: 2020 end-page: 16529 publication-title: Chem. Eur. J. – volume: 12 start-page: 4010 year: 2021 publication-title: Nat. Commun. – volume: 57 130 start-page: 15664 15890 year: 2018 2018 end-page: 5669 15895 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 17 start-page: 5200 year: 2015 end-page: 5203 publication-title: Org. Lett. – volume: 53 start-page: 2841 year: 2020 end-page: 2854 publication-title: Acc. Chem. Res. – volume: 533 start-page: 230 year: 2016 end-page: 234 publication-title: Nature – volume: 50 start-page: 3359 year: 2018 end-page: 3378 publication-title: Synthesis – volume: 10 start-page: 3804 year: 2019 publication-title: Nat. Commun. – volume: 140 start-page: 12200 year: 2018 end-page: 12209 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 1714 1738 year: 2021 2021 end-page: 1726 1750 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 3872 3944 year: 2015 2015 end-page: 3890 3963 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 51 start-page: 3290 year: 2015 end-page: 3301 publication-title: Chem. Commun. – volume: 49 start-page: 2232 year: 2016 end-page: 2242 publication-title: Acc. Chem. Res. – year: 2021 publication-title: Chem. Rev. – volume: 351 start-page: 1421 year: 2016 end-page: 1424 publication-title: Science – volume: 560 start-page: 70 year: 2018 end-page: 75 publication-title: Nature – volume: 57 130 start-page: 4078 4142 year: 2018 2018 end-page: 4082 4146 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 start-page: 620 year: 2017 end-page: 626 publication-title: Acc. Chem. Res. – volume: 54 start-page: 6105 year: 2018 end-page: 6112 publication-title: Chem. Commun. – volume: 42 start-page: 1700 year: 2021 end-page: 1711 publication-title: Chin. J. Catal. – volume: 140 start-page: 15850 year: 2018 end-page: 15858 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 14275 14381 year: 2020 2020 end-page: 14280 14386 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 start-page: 7359 year: 2021 end-page: 7377 publication-title: Chem. Soc. Rev. – volume: 16 start-page: 1754 year: 2020 end-page: 1804 publication-title: Beilstein J. Org. Chem. – volume: 9 start-page: 3054 year: 2019 end-page: 3058 publication-title: ACS Catal. – volume: 18 start-page: 4519 year: 2020 end-page: 4532 publication-title: Org. Biomol. Chem. – volume: 53 start-page: 1570 year: 2021 end-page: 1583 publication-title: Synthesis – volume: 22 start-page: 3376 year: 2020 end-page: 3396 publication-title: Green Chem. – volume: 130 start-page: 8650 year: 2018 ident: e_1_2_9_55_2 publication-title: Angew. Chem. doi: 10.1002/ange.201803220 – volume: 351 start-page: 1421 year: 2016 ident: e_1_2_9_7_1 publication-title: Science doi: 10.1126/science.aad9289 – volume: 140 start-page: 1612 year: 2018 ident: e_1_2_9_72_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b13131 – volume: 53 start-page: 1933 year: 2020 ident: e_1_2_9_65_1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00379 – volume: 60 start-page: 7405 year: 2021 ident: e_1_2_9_52_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202014632 – volume: 114 start-page: 10440 year: 1992 ident: e_1_2_9_78_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00052a045 – volume: 6 start-page: 1766 year: 2020 ident: e_1_2_9_11_1 publication-title: Chem doi: 10.1016/j.chempr.2020.04.022 – volume: 22 start-page: 1199 year: 2020 ident: e_1_2_9_88_1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.0c00096 – volume: 18 start-page: 4519 year: 2020 ident: e_1_2_9_31_1 publication-title: Org. Biomol. Chem. doi: 10.1039/D0OB00854K – volume: 2 start-page: 179 year: 2015 ident: e_1_2_9_60_1 publication-title: Org. Chem. Front. doi: 10.1039/C4QO00306C – volume: 6 start-page: 10093 year: 2015 ident: e_1_2_9_79_1 publication-title: Nat. Commun. doi: 10.1038/ncomms10093 – volume: 132 start-page: 17801 year: 2020 ident: e_1_2_9_39_2 publication-title: Angew. Chem. doi: 10.1002/ange.202007494 – volume: 560 start-page: 70 year: 2018 ident: e_1_2_9_51_1 publication-title: Nature doi: 10.1038/s41586-018-0366-x – volume: 138 start-page: 12719 year: 2016 ident: e_1_2_9_37_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08397 – volume: 509 start-page: 299 year: 2014 ident: e_1_2_9_34_1 publication-title: Nature doi: 10.1038/nature13274 – volume: 117 start-page: 13230 year: 2017 ident: e_1_2_9_91_1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00397 – volume: 7 start-page: 11676 year: 2016 ident: e_1_2_9_10_1 publication-title: Nat. Commun. doi: 10.1038/ncomms11676 – volume: 47 start-page: 207 year: 2018 ident: e_1_2_9_48_1 publication-title: Chem. Lett. doi: 10.1246/cl.171068 – volume: 59 start-page: 16933 year: 2020 ident: e_1_2_9_39_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202004441 – volume: 142 start-page: 10325 year: 2020 ident: e_1_2_9_81_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c04422 – volume: 22 start-page: 3376 year: 2020 ident: e_1_2_9_20_1 publication-title: Green Chem. doi: 10.1039/D0GC01035A – volume: 42 start-page: 1700 year: 2021 ident: e_1_2_9_24_1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)63831-7 – volume: 143 start-page: 7859 year: 2021 ident: e_1_2_9_21_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c03780 – volume: 136 start-page: 2555 year: 2014 ident: e_1_2_9_12_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja411912p – volume: 4 start-page: 271 year: 2020 ident: e_1_2_9_18_1 publication-title: ChemPhotoChem doi: 10.1002/cptc.201900219 – volume: 42 start-page: 5323 year: 2013 ident: e_1_2_9_56_1 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs35531d – volume: 59 start-page: 14275 year: 2020 ident: e_1_2_9_90_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202005724 – volume: 9 start-page: 3054 year: 2019 ident: e_1_2_9_26_1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b00287 – volume: 12 start-page: 459 year: 2020 ident: e_1_2_9_74_1 publication-title: Nat. Chem. doi: 10.1038/s41557-020-0436-1 – volume: 8 start-page: 701 year: 2018 ident: e_1_2_9_47_1 publication-title: ACS Catal. doi: 10.1021/acscatal.7b03354 – volume: 112 start-page: 224 year: 2008 ident: e_1_2_9_54_1 publication-title: J. Phys. Chem. A doi: 10.1021/jp075829f – volume: 142 start-page: 12374 year: 2020 ident: e_1_2_9_87_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00123 – volume: 369 start-page: 92 year: 2020 ident: e_1_2_9_41_1 publication-title: Science doi: 10.1126/science.abb4688 – volume: 10 start-page: 8582 year: 2020 ident: e_1_2_9_71_1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c01924 – volume: 533 start-page: 230 year: 2016 ident: e_1_2_9_13_1 publication-title: Nature doi: 10.1038/nature17651 – volume: 7 start-page: 1516 year: 2015 ident: e_1_2_9_17_1 publication-title: ChemCatChem doi: 10.1002/cctc.201500125 – volume: 60 start-page: 2849 year: 2021 ident: e_1_2_9_22_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202011400 – volume: 143 start-page: 3901 year: 2021 ident: e_1_2_9_36_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c13077 – volume: 11 start-page: 1956 year: 2020 ident: e_1_2_9_80_1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15878-6 – volume: 60 start-page: 5467 year: 2021 ident: e_1_2_9_76_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202012263 – volume: 8 start-page: 7180 year: 2017 ident: e_1_2_9_50_1 publication-title: Chem. Sci. doi: 10.1039/C7SC02773G – volume: 140 start-page: 12200 year: 2018 ident: e_1_2_9_57_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07405 – volume: 52 start-page: 833 year: 2019 ident: e_1_2_9_62_1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00028 – volume: 49 start-page: 2307 year: 2016 ident: e_1_2_9_61_1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00280 – volume: 53 start-page: 84 year: 2020 ident: e_1_2_9_94_1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00510 – volume: 9 start-page: 5708 year: 2019 ident: e_1_2_9_23_1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b01394 – volume: 53 start-page: 2335 year: 2017 ident: e_1_2_9_46_1 publication-title: Chem. Commun. doi: 10.1039/C6CC09725A – volume: 60 start-page: 1714 year: 2021 ident: e_1_2_9_64_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202007668 – volume: 139 start-page: 3595 year: 2017 ident: e_1_2_9_43_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11533 – volume: 53 start-page: 1570 year: 2021 ident: e_1_2_9_66_1 publication-title: Synthesis doi: 10.1055/a-1344-2473 – volume: 50 start-page: 7359 year: 2021 ident: e_1_2_9_16_1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00774A – volume: 140 start-page: 14059 year: 2018 ident: e_1_2_9_38_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b09191 – volume: 118 start-page: 4485 year: 2018 ident: e_1_2_9_93_1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00271 – volume: 127 start-page: 3944 year: 2015 ident: e_1_2_9_58_2 publication-title: Angew. Chem. doi: 10.1002/ange.201411409 – volume: 10 start-page: 3459 year: 2019 ident: e_1_2_9_86_1 publication-title: Chem. Sci. doi: 10.1039/C8SC05677C – volume: 133 start-page: 5527 year: 2021 ident: e_1_2_9_76_2 publication-title: Angew. Chem. doi: 10.1002/ange.202012263 – volume: 48 start-page: 2895 year: 2015 ident: e_1_2_9_15_1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00348 – volume: 417 start-page: 507 year: 2002 ident: e_1_2_9_3_1 publication-title: Nature doi: 10.1038/417507a – volume: 564 start-page: 395 year: 2018 ident: e_1_2_9_14_1 publication-title: Nature doi: 10.1038/s41586-018-0799-2 – volume: 57 start-page: 4078 year: 2018 ident: e_1_2_9_44_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201800818 – volume: 133 start-page: 1738 year: 2021 ident: e_1_2_9_64_2 publication-title: Angew. Chem. doi: 10.1002/ange.202007668 – volume: 10 start-page: 3804 year: 2019 ident: e_1_2_9_70_1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11688-7 – volume: 57 start-page: 8514 year: 2018 ident: e_1_2_9_55_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201803220 – volume: 36 start-page: 255 year: 2003 ident: e_1_2_9_2_1 publication-title: Acc. Chem. Res. doi: 10.1021/ar020230d – volume: 118 start-page: 6706 year: 2018 ident: e_1_2_9_92_1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00233 – volume: 53 start-page: 547 year: 2020 ident: e_1_2_9_95_1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00529 – volume: 2 start-page: 1016 year: 2019 ident: e_1_2_9_77_1 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0357-9 – year: 2021 ident: e_1_2_9_30_1 publication-title: Chem. Rev. – volume: 143 start-page: 2729 year: 2021 ident: e_1_2_9_73_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c00687 – volume: 53 start-page: 2841 year: 2020 ident: e_1_2_9_97_1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00477 – volume: 132 start-page: 14381 year: 2020 ident: e_1_2_9_90_2 publication-title: Angew. Chem. doi: 10.1002/ange.202005724 – volume: 54 start-page: 6105 year: 2018 ident: e_1_2_9_28_1 publication-title: Chem. Commun. doi: 10.1039/C8CC02642D – volume: 103 start-page: 2921 year: 2003 ident: e_1_2_9_96_1 publication-title: Chem. Rev. doi: 10.1021/cr020027w – volume: 3 start-page: 117 year: 2006 ident: e_1_2_9_53_1 publication-title: Mini-Rev. Org. Chem. doi: 10.2174/157019306776819226 – volume: 361 start-page: 668 year: 2018 ident: e_1_2_9_83_1 publication-title: Science doi: 10.1126/science.aat9750 – volume: 16 start-page: 1754 year: 2020 ident: e_1_2_9_33_1 publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.16.147 – volume: 17 start-page: 5200 year: 2015 ident: e_1_2_9_42_1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.5b02532 – volume: 133 start-page: 7481 year: 2021 ident: e_1_2_9_52_2 publication-title: Angew. Chem. doi: 10.1002/ange.202014632 – volume: 54 start-page: 3872 year: 2015 ident: e_1_2_9_58_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201411409 – volume: 130 start-page: 4142 year: 2018 ident: e_1_2_9_44_2 publication-title: Angew. Chem. doi: 10.1002/ange.201800818 – volume: 140 start-page: 15850 year: 2018 ident: e_1_2_9_69_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b09251 – volume: 12 start-page: 4010 year: 2021 ident: e_1_2_9_82_1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24280-9 – volume: 3 start-page: 347 year: 2019 ident: e_1_2_9_5_1 publication-title: Nat. Chem. Rev. doi: 10.1038/s41570-019-0099-x – volume: 138 start-page: 16200 year: 2016 ident: e_1_2_9_8_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09970 – volume: 12 start-page: 2377 year: 2021 ident: e_1_2_9_68_1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22690-3 – volume: 117 start-page: 9016 year: 2017 ident: e_1_2_9_4_1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00620 – volume: 50 start-page: 3359 year: 2018 ident: e_1_2_9_32_1 publication-title: Synthesis doi: 10.1055/s-0037-1610222 – volume: 517 start-page: 600 year: 2015 ident: e_1_2_9_9_1 publication-title: Nature doi: 10.1038/nature14127 – volume: 82 start-page: 6133 year: 2017 ident: e_1_2_9_29_1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.7b00687 – volume: 57 start-page: 15664 year: 2018 ident: e_1_2_9_27_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201810187 – volume: 26 start-page: 16521 year: 2020 ident: e_1_2_9_49_1 publication-title: Chem. Eur. J. doi: 10.1002/chem.202003431 – volume: 133 start-page: 2885 year: 2021 ident: e_1_2_9_22_2 publication-title: Angew. Chem. doi: 10.1002/ange.202011400 – volume: 130 start-page: 15890 year: 2018 ident: e_1_2_9_27_2 publication-title: Angew. Chem. doi: 10.1002/ange.201810187 – volume: 50 start-page: 620 year: 2017 ident: e_1_2_9_1_1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00621 – start-page: 6 year: 2016 ident: e_1_2_9_75_1 publication-title: ACS Catal. – volume: 322 start-page: 77 year: 2008 ident: e_1_2_9_67_1 publication-title: Science doi: 10.1126/science.1161976 – volume: 2017 start-page: 2056 year: 2017 ident: e_1_2_9_19_1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201601485 – volume: 51 start-page: 3290 year: 2015 ident: e_1_2_9_59_1 publication-title: Chem. Commun. doi: 10.1039/C4CC09268F – volume: 142 start-page: 6216 year: 2020 ident: e_1_2_9_85_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00212 – volume: 11 start-page: 6757 year: 2021 ident: e_1_2_9_98_1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c01500 – volume: 9 start-page: 6058 year: 2019 ident: e_1_2_9_63_1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b01556 – volume: 23 start-page: 5729 year: 2021 ident: e_1_2_9_45_1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.1c01870 – volume: 49 start-page: 2232 year: 2016 ident: e_1_2_9_25_1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00339 – volume: 372 start-page: 847 year: 2021 ident: e_1_2_9_84_1 publication-title: Science doi: 10.1126/science.abd8408 – volume: 54 start-page: 988 year: 2021 ident: e_1_2_9_35_1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00694 – volume: 102 start-page: 1551 year: 2002 ident: e_1_2_9_6_1 publication-title: Chem. Rev. doi: 10.1021/cr000453m – volume: 21 start-page: 4271 year: 2019 ident: e_1_2_9_40_1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b01450 – volume: 142 start-page: 17693 year: 2020 ident: e_1_2_9_89_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c08437 |
| SSID | ssj0009661 |
| Score | 2.516446 |
| SecondaryResourceType | review_article |
| Snippet | Catalytic C(sp3)−H functionalization can convert abundant feedstock hydrocarbons into value‐added products in an atom‐ and step‐economic manner and is a... Catalytic C(sp 3 )−H functionalization can convert abundant feedstock hydrocarbons into value‐added products in an atom‐ and step‐economic manner and is a... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5545 |
| SubjectTerms | Alkanes C(sp3)−H Functionalization Catalysis Catalytic converters Cerium Chemical synthesis Chromium Cycloalkanes Hydrogen atom transfer Lewis acid Manganese Photocatalysis Radicals Selectivity Stereoselectivity Transition metals |
| Title | The Merger of Photocatalyzed Hydrogen Atom Transfer with Transition Metal Catalysis for C−H Functionalization of Alkanes and Cycloalkanes |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejoc.202101036 https://www.proquest.com/docview/2585704868 |
| Volume | 2021 |
| WOSCitedRecordID | wos000710909000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-0690 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009661 issn: 1434-193X databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB1BQIILpYWKUFrtAamnFfHau2sfI5coqlpAqEi5Wftl8ZHGKA5I4RcgceMn8ks6azsJHBBSuXntHdvanZ33PPK-AdhPAh1KJwwNrFM04rJDY8U45Xno8dM6Hpqq2IQ8OooHg-Tk2S7-Wh9innDzK6OK136BK10eLERD3WXhJQjxkyXAKLwMKwydl7dg5cdp7-zXQnhX1JqpURhRJCuDmXBjhx28vMNLYFqwzeectQKd3of3v-4mbDSEk3RrD_kIS270CdbSWZ23LXhATyG__SbMMSlycnJeTIoqqTO9c5b0p3ZcoJOR7qT4Sypky7GjT9_WreqXL7RHA5JWZuVFSZAKk_Tp_rFPegicdb6x2fHpH9IdXimMsUSNLEmnZlio-sQ2nPUO_6R92pRooAaJh6BI_gKtueORRmZppAlzG2ueRFro2CgVSG3xeiiks7aTJ0IqZl0stWYmsTgSn6E1KkZuB4hQPNaRQrD0HC9xWmGg7kijNBMmyW0b6Gx-MtPol_syGsOsVl5mmR_ibD7Ebfg-739dK3e82nNvNt1Zs4LLjHEv_R_FIm4Dqyb2jbtkhz-P03lr93-MvsC6P_bQyMQetCbjG_cVVs3t5KIcf2s8-x-nnPwV |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fT9swED_xZxJ72dhgWgdjfkDiyaJxYjt5rDKqAqUgBFLfIv-LxtY1U1uQyidA4o2PyCfZOUlbeJgmIR7t3DmRfb775WT_DmA3CXQonTA0sE7RiMsmjRXjlOehj5_W8dCUxSZkrxf3-8lZfZrQ34Wp-CHmCTe_M0p_7Te4T0jvL1hD3c_CcxDiP0uAbngZViO0JTTy1e_n7cvugnlXVKSpURhRRCv9GXNjk-0_H-F5ZFrAzaegtYw67fev8L3r8K6GnKRV2cgHWHLDj7CWziq9bcA92go58dcwR6TIydmPYlKUaZ3prbOkM7WjAs2MtCbFb1LGthwFfQK3apWHvlAfFUhaqo2vxgTBMEkf7x46pI2hs8o41nc-_Utag18KvSxRQ0vSqRkUqurYhMv2wUXaoXWRBmoQegiK8C_QmjseacSWRpowt7HmSaSFjo1SgdQWn4dCOmubeSKkYtbFUmtmEosz8QlWhsXQfQYiFI91pDBcepSXOK3QVTelUZoJk-S2AXS2QJmpGcx9IY1BVnEvs8xPcTaf4gbszeX_VNwd_5Tcnq13Vu_hcca4J_-PYhE3gJUr-59RsoOj03Te-vISpW-w1rk46Wbdw97xFrz1_T5QMrENK5PRtfsKb8zN5Go82qnN_C-__gAU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED-xDg1egI1NFMbwwySerDVObCePVdqosNFVE5P6FvlftEHXTG1BKp8AiTc-Ip-Ec5K27AFNQjzauXMi-3z3y8n-HcBxEuhQOmFoYJ2iEZcdGivGKS9CHz-t46Gpik3I4TAej5NRc5rQ34Wp-SHWCTe_Myp_7Te4u7XFyYY11H0qPQch_rME6Ia3YDvylWRasN27yC7PNsy7oiZNjcKIIloZr5gbO-zk7gh3I9MGbv4JWquokz39D9_7DJ40kJN0axvZhQduugeP0lWlt-fwA22FfPDXMGekLMjoqlyUVVpn-c1ZMljaWYlmRrqL8oZUsa1AQZ_ArVvVoS_URwWSVmrz6zlBMEzSX99_DkiGobPOODZ3Pv1LupPPCr0sUVNL0qWZlKru2IfLrP8xHdCmSAM1CD0ERfgXaM0djzRiSyNNWNhY8yTSQsdGqUBqi89DIZ21nSIRUjHrYqk1M4nFmTiA1rScuhdAhOKxjhSGS4_yEqcVuuqONEozYZLCtoGuFig3DYO5L6QxyWvuZZb7Kc7XU9yGt2v525q746-Sh6v1zps9PM8Z9-T_USziNrBqZe8ZJe-_P0_XrZf_ovQGdka9LD97Nzx9BY99t4-TTBxCazH74l7DQ_N1cT2fHTVW_htKxf-A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Merger+of+Photocatalyzed+Hydrogen+Atom+Transfer+with+Transition+Metal+Catalysis+for+C%E2%88%92H+Functionalization+of+Alkanes+and+Cycloalkanes&rft.jtitle=European+journal+of+organic+chemistry&rft.au=Ye%2C+Ziqi&rft.au=Yu%E2%80%90Mei+Lin&rft.au=Gong%2C+Lei&rft.date=2021-10-26&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1434-193X&rft.eissn=1099-0690&rft.volume=2021&rft.issue=40&rft.spage=5545&rft.epage=5556&rft_id=info:doi/10.1002%2Fejoc.202101036&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-193X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-193X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-193X&client=summon |