Biomass‐Derived Activated Carbon Nanoarchitectonics with Hibiscus Flowers for High‐Performance Supercapacitor Electrode Applications

Activated carbon is the most widely used electrode material in electrochemical double‐layer capacitors. The rational utilization of biomass energy waste to prepare porous carbon supercapacitor electrodes has effectively realized both the use of biomass waste and the industrial production of high‐per...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering & technology Vol. 45; no. 4; pp. 649 - 657
Main Authors: Yan, Dong, Liu, Lu, Wang, Xingyan, Xu, Ke, Zhong, Jinghan
Format: Journal Article
Language:English
Published: Frankfurt Wiley Subscription Services, Inc 01.04.2022
Subjects:
ISSN:0930-7516, 1521-4125
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Activated carbon is the most widely used electrode material in electrochemical double‐layer capacitors. The rational utilization of biomass energy waste to prepare porous carbon supercapacitor electrodes has effectively realized both the use of biomass waste and the industrial production of high‐performance supercapacitor electrodes. A simple method to employ roselle waste as the precursor of porous carbon supercapacitor electrodes is described. Electrochemical characterization confirmed that an electric double layer with high specific capacitance was formed in the system. The HCF‐3 supercapacitor electrode proved to have good cycle stability. Roselle‐based porous carbon has great potential as a low‐cost, environmentally friendly, and high‐efficiency supercapacitor electrode material. Biomass‐derived activated carbon nanoarchitectonics with hibiscus flowers is prepared by employing a two‐step process involving carbonization and KOH chemical activation. Hibiscus flowers‐derived activated carbon exhibits excellent electrochemical properties when used as supercapacitor electrodes and may promote the large‐scale application of three‐dimensional porous carbons in energy storage.
AbstractList Activated carbon is the most widely used electrode material in electrochemical double‐layer capacitors. The rational utilization of biomass energy waste to prepare porous carbon supercapacitor electrodes has effectively realized both the use of biomass waste and the industrial production of high‐performance supercapacitor electrodes. A simple method to employ roselle waste as the precursor of porous carbon supercapacitor electrodes is described. Electrochemical characterization confirmed that an electric double layer with high specific capacitance was formed in the system. The HCF‐3 supercapacitor electrode proved to have good cycle stability. Roselle‐based porous carbon has great potential as a low‐cost, environmentally friendly, and high‐efficiency supercapacitor electrode material.
Activated carbon is the most widely used electrode material in electrochemical double‐layer capacitors. The rational utilization of biomass energy waste to prepare porous carbon supercapacitor electrodes has effectively realized both the use of biomass waste and the industrial production of high‐performance supercapacitor electrodes. A simple method to employ roselle waste as the precursor of porous carbon supercapacitor electrodes is described. Electrochemical characterization confirmed that an electric double layer with high specific capacitance was formed in the system. The HCF‐3 supercapacitor electrode proved to have good cycle stability. Roselle‐based porous carbon has great potential as a low‐cost, environmentally friendly, and high‐efficiency supercapacitor electrode material. Biomass‐derived activated carbon nanoarchitectonics with hibiscus flowers is prepared by employing a two‐step process involving carbonization and KOH chemical activation. Hibiscus flowers‐derived activated carbon exhibits excellent electrochemical properties when used as supercapacitor electrodes and may promote the large‐scale application of three‐dimensional porous carbons in energy storage.
Author Zhong, Jinghan
Xu, Ke
Yan, Dong
Wang, Xingyan
Liu, Lu
Author_xml – sequence: 1
  givenname: Dong
  surname: Yan
  fullname: Yan, Dong
  organization: Xiangtan University
– sequence: 2
  givenname: Lu
  surname: Liu
  fullname: Liu, Lu
  organization: Xiangtan University
– sequence: 3
  givenname: Xingyan
  surname: Wang
  fullname: Wang, Xingyan
  email: xywangxtu@xtu.edu.cn
  organization: Xiangtan University
– sequence: 4
  givenname: Ke
  surname: Xu
  fullname: Xu, Ke
  organization: Xiangtan University
– sequence: 5
  givenname: Jinghan
  surname: Zhong
  fullname: Zhong, Jinghan
  organization: Xiangtan University
BookMark eNqFkE9LwzAYxoNMcE6vngueO5O06Z9jrZsThgrOc0nTty6ja2qSbezm0aOf0U9i5kRBEE_JE57f8755jlGvVS0gdEbwkGBMLwRwO6SYOsESdoD6hFHih4SyHurjNMB-zEh0hI6NWWCMiRN99Hop1ZIb8_7ydgVarqHyMmHlmlt3y7kuVevd8lZxLebSgrCqlcJ4G2nn3kSW0oiV8caN2oA2Xq20e3yau7B70E4teSvAe1h1oAXvuJDWOUaNi9GqAi_rukYKbqVqzQk6rHlj4PTrHKDH8WiWT_zp3fVNnk19EZCY-SklLGKsdv-khIQQCFzGAqoSpxyApRWpACKciCSu04AGnHFWJkFQEQZVmLJggM73uZ1WzyswtliolW7dyIJGIYkxDuPQucK9S2hljIa6cLt_Lmo1l01BcLHrvNh1Xnx37rDhL6zTcsn19m8g3QMb2cD2H3eRj7LZD_sB79ObNA
CitedBy_id crossref_primary_10_1007_s11705_024_2447_8
crossref_primary_10_1016_j_jpowsour_2025_236684
crossref_primary_10_3390_ma17174341
crossref_primary_10_1007_s11814_023_1514_z
crossref_primary_10_1016_j_indcrop_2023_117415
crossref_primary_10_1002_est2_677
crossref_primary_10_1016_j_apsusc_2023_157910
crossref_primary_10_1016_j_est_2022_105668
crossref_primary_10_3390_ijerph20021355
crossref_primary_10_1016_j_mtsust_2024_100676
crossref_primary_10_1016_j_jpowsour_2025_237389
crossref_primary_10_1016_j_cej_2024_151797
crossref_primary_10_1016_j_electacta_2022_141533
crossref_primary_10_1016_j_est_2024_114742
crossref_primary_10_1016_j_scitotenv_2023_162045
crossref_primary_10_1016_j_est_2024_114065
crossref_primary_10_1016_j_jece_2025_118485
crossref_primary_10_1016_j_est_2022_105636
crossref_primary_10_3390_nano12172931
crossref_primary_10_1016_j_est_2022_106134
crossref_primary_10_1016_j_est_2024_110639
crossref_primary_10_1016_j_jece_2024_112310
crossref_primary_10_3390_catal14090555
crossref_primary_10_1016_j_diamond_2023_109852
crossref_primary_10_1016_j_matlet_2024_136644
crossref_primary_10_1016_j_jclepro_2023_138181
crossref_primary_10_1016_j_mtsust_2022_100225
crossref_primary_10_1007_s11705_022_2250_3
crossref_primary_10_1002_bte2_20230058
crossref_primary_10_1016_j_cej_2024_153311
crossref_primary_10_1016_j_est_2024_114477
crossref_primary_10_1016_j_jechem_2024_11_023
crossref_primary_10_1016_j_ijbiomac_2023_126271
crossref_primary_10_3390_ijms23073577
crossref_primary_10_1016_j_est_2023_108633
crossref_primary_10_1002_ppsc_202200055
crossref_primary_10_1016_j_susmat_2025_e01603
crossref_primary_10_1039_D4RA01320D
crossref_primary_10_1002_aesr_202200152
crossref_primary_10_1016_j_carbon_2025_120329
crossref_primary_10_1016_j_est_2025_118210
crossref_primary_10_1109_TIA_2023_3255215
crossref_primary_10_1016_j_ces_2024_120321
crossref_primary_10_1016_j_ijhydene_2023_03_171
crossref_primary_10_1016_j_fuel_2022_126044
crossref_primary_10_1016_j_ijhydene_2022_09_121
crossref_primary_10_1002_ente_202301436
crossref_primary_10_1016_j_cartre_2025_100467
crossref_primary_10_3390_mi14051003
crossref_primary_10_1016_j_jpcs_2023_111318
crossref_primary_10_3390_ma17040936
crossref_primary_10_3390_molecules30102130
crossref_primary_10_3390_ma17010271
crossref_primary_10_1016_j_est_2023_109398
crossref_primary_10_1016_j_jaap_2025_107110
crossref_primary_10_1016_j_jpowsour_2024_234147
crossref_primary_10_1016_j_diamond_2023_110169
crossref_primary_10_1016_j_molstruc_2024_140810
Cites_doi 10.1016/j.rser.2015.07.129
10.1016/j.electacta.2018.09.136
10.1021/acsaem.9b00481
10.1016/j.jechem.2016.08.002
10.1016/j.electacta.2007.09.028
10.1016/j.electacta.2020.136855
10.1016/S1872-5805(15)60201-3
10.1039/C8RA09685F
10.1016/j.cej.2020.125418
10.3390/nano11102523
10.1016/j.nanoen.2017.09.041
10.1002/adfm.201102998
10.1016/j.jpowsour.2012.10.022
10.1016/j.biortech.2009.12.123
10.1016/j.est.2020.102185
10.1016/j.cej.2019.123454
10.1016/j.renene.2021.01.077
10.1016/j.nanoen.2019.104270
10.1016/j.micromeso.2020.110659
10.1039/c0ee00074d
10.1016/j.biortech.2015.07.100
10.1039/C5TA04721H
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1002/ceat.202100585
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4125
EndPage 657
ExternalDocumentID 10_1002_ceat_202100585
CEAT202100585
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7U5
8FD
L7M
ID FETCH-LOGICAL-c3175-9215655f2022114e3c0b7cedb09aee59d1dee608c87f9323a5a5b833d15ed4953
IEDL.DBID DRFUL
ISICitedReferencesCount 66
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000752226700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0930-7516
IngestDate Sun Nov 30 04:43:29 EST 2025
Tue Nov 18 21:59:07 EST 2025
Sat Nov 29 02:45:25 EST 2025
Wed Jan 22 16:25:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3175-9215655f2022114e3c0b7cedb09aee59d1dee608c87f9323a5a5b833d15ed4953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2641700474
PQPubID 2045181
PageCount 9
ParticipantIDs proquest_journals_2641700474
crossref_citationtrail_10_1002_ceat_202100585
crossref_primary_10_1002_ceat_202100585
wiley_primary_10_1002_ceat_202100585_CEAT202100585
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace Frankfurt
PublicationPlace_xml – name: Frankfurt
PublicationTitle Chemical engineering & technology
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 41
2019; 9
2015; 3
2020; 385
2019; 2
2013; 225
2015; 52
2015; 30
2010; 101
2008; 53
2021; 35
2018; 291
2010; 25
2021; 11
2021; 55
2021; 310
2003; 6
2015; 197
2020; 357
2021; 170
2017; 19
2020; 67
2020; 397
2010; 3
2012; 22
2016; 25
e_1_2_6_10_1
Li H. (e_1_2_6_16_1) 2017; 19
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_15_1
e_1_2_6_21_1
e_1_2_6_20_1
Wu Y. (e_1_2_6_23_1) 2021; 55
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
Gu G. (e_1_2_6_17_1) 2010; 25
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_2_1
e_1_2_6_22_1
Li S. (e_1_2_6_18_1) 2003; 6
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 19
  start-page: 587
  issue: 04
  year: 2017
  end-page: 593
  publication-title: Mod. Chin. Med.
– volume: 52
  start-page: 1282
  year: 2015
  end-page: 1293
  publication-title: Renewable Sustainable Energy Rev.
– volume: 30
  start-page: 471
  issue: 5
  year: 2015
  end-page: 475
  publication-title: New Carbon Mater.
– volume: 22
  start-page: 2542
  issue: 12
  year: 2012
  end-page: 2549
  publication-title: Adv. Funct. Mater.
– volume: 41
  start-page: 285
  year: 2017
  end-page: 292
  publication-title: Nano Energy
– volume: 3
  start-page: 1294
  issue: 9
  year: 2010
  end-page: 1301
  publication-title: Energy Environ. Sci.
– volume: 385
  start-page: 123454
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 357
  start-page: 136855
  year: 2020
  publication-title: Electrochim. Acta
– volume: 397
  start-page: 125418
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 25
  start-page: 109
  issue: 02
  year: 2010
  end-page: 115
  publication-title: Drugs Clin.
– volume: 9
  start-page: 2474
  issue: 5
  year: 2019
  end-page: 2483
  publication-title: RSC Adv.
– volume: 2
  start-page: 4234
  issue: 6
  year: 2019
  end-page: 4243
  publication-title: ACS Appl. Energy Mater.
– volume: 55
  start-page: 8
  issue: 1
  year: 2021
  publication-title: Biomass Chem. Eng.
– volume: 101
  start-page: 3534
  issue: 10
  year: 2010
  end-page: 3540
  publication-title: Bioresour. Technol.
– volume: 6
  start-page: 86
  year: 2003
  end-page: 88
  publication-title: Food Sci. Technol.
– volume: 310
  start-page: 110659
  year: 2021
  publication-title: Microporous Mesoporous Mater.
– volume: 25
  start-page: 880
  issue: 5
  year: 2016
  end-page: 887
  publication-title: J. Energy Chem.
– volume: 291
  start-page: 287
  year: 2018
  end-page: 296
  publication-title: Electrochim. Acta
– volume: 197
  start-page: 137
  year: 2015
  end-page: 142
  publication-title: Bioresour. Technol.
– volume: 67
  start-page: 104270
  year: 2020
  publication-title: Nano Energy
– volume: 3
  start-page: 18154
  issue: 35
  year: 2015
  end-page: 18162
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 2523
  issue: 10
  year: 2021
  publication-title: Nanomaterials
– volume: 35
  start-page: 102185
  year: 2021
  publication-title: J. Energy Storage
– volume: 53
  start-page: 2210
  issue: 5
  year: 2008
  end-page: 2216
  publication-title: Electrochim. Acta
– volume: 225
  start-page: 101
  year: 2013
  end-page: 107
  publication-title: J. Power Sources
– volume: 170
  start-page: 60
  year: 2021
  end-page: 71
  publication-title: Renewable Energy
– ident: e_1_2_6_13_1
  doi: 10.1016/j.rser.2015.07.129
– volume: 55
  start-page: 8
  issue: 1
  year: 2021
  ident: e_1_2_6_23_1
  publication-title: Biomass Chem. Eng.
– ident: e_1_2_6_25_1
  doi: 10.1016/j.electacta.2018.09.136
– ident: e_1_2_6_26_1
  doi: 10.1021/acsaem.9b00481
– ident: e_1_2_6_10_1
  doi: 10.1016/j.jechem.2016.08.002
– ident: e_1_2_6_27_1
  doi: 10.1016/j.electacta.2007.09.028
– ident: e_1_2_6_4_1
  doi: 10.1016/j.electacta.2020.136855
– ident: e_1_2_6_15_1
  doi: 10.1016/S1872-5805(15)60201-3
– ident: e_1_2_6_21_1
  doi: 10.1039/C8RA09685F
– ident: e_1_2_6_9_1
  doi: 10.1016/j.cej.2020.125418
– ident: e_1_2_6_3_1
  doi: 10.3390/nano11102523
– ident: e_1_2_6_12_1
  doi: 10.1016/j.nanoen.2017.09.041
– volume: 25
  start-page: 109
  issue: 02
  year: 2010
  ident: e_1_2_6_17_1
  publication-title: Drugs Clin.
– ident: e_1_2_6_22_1
  doi: 10.1002/adfm.201102998
– ident: e_1_2_6_8_1
  doi: 10.1016/j.jpowsour.2012.10.022
– ident: e_1_2_6_7_1
  doi: 10.1016/j.biortech.2009.12.123
– volume: 19
  start-page: 587
  issue: 04
  year: 2017
  ident: e_1_2_6_16_1
  publication-title: Mod. Chin. Med.
– ident: e_1_2_6_24_1
  doi: 10.1016/j.est.2020.102185
– ident: e_1_2_6_5_1
  doi: 10.1016/j.cej.2019.123454
– ident: e_1_2_6_14_1
  doi: 10.1016/j.renene.2021.01.077
– ident: e_1_2_6_6_1
  doi: 10.1016/j.nanoen.2019.104270
– ident: e_1_2_6_2_1
  doi: 10.1016/j.micromeso.2020.110659
– ident: e_1_2_6_19_1
  doi: 10.1039/c0ee00074d
– ident: e_1_2_6_11_1
  doi: 10.1016/j.biortech.2015.07.100
– ident: e_1_2_6_20_1
  doi: 10.1039/C5TA04721H
– volume: 6
  start-page: 86
  year: 2003
  ident: e_1_2_6_18_1
  publication-title: Food Sci. Technol.
SSID ssj0001516
Score 2.5514295
Snippet Activated carbon is the most widely used electrode material in electrochemical double‐layer capacitors. The rational utilization of biomass energy waste to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 649
SubjectTerms Activated carbon
Biomass
Biomass energy
Biomass energy production
Electric double layer
Electrochemical analysis
Electrochemical double‐layer capacitors
Electrode materials
Electrodes
Nanoarchitectonics
Roselle flower
Supercapacitors
Title Biomass‐Derived Activated Carbon Nanoarchitectonics with Hibiscus Flowers for High‐Performance Supercapacitor Electrode Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fceat.202100585
https://www.proquest.com/docview/2641700474
Volume 45
WOSCitedRecordID wos000752226700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4125
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001516
  issn: 0930-7516
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYYCBN6JQkAckpgg3iZt4LH2oA0KIh8QWOfZFQkJtlbSdGRn5jfwSzkmatgNCgi2JHCvx4-47-_x9AJfK8wLJ3cSxTDGOn_jcUSgoSolDTLREFXpxLjYR3N2FLy_yfukUf8EPUS242ZmR22s7wVWcXS9IQzXZKorvKGThBHnXYcOlwStqsNF96D_fVtaYPFq-Xyk97gR0PSdu5O71ag2rjmmBNpcxa-50-rv__9w92CkBJ2sXI2Qf1nB4ANtLNISH8HHzarOEsq_3zy49mqFhbZ3LntFVR6XxaMjICo-qTQdLp5sxu4TLBlZKSE8z1n_L9dYYgWBmk0eosvvFoQT2OB1jqskzazIhKesV6jsGWXtpB_0Invu9p87AKRUaHG1xhyMJMLSESOi_KJD00dM8DjSamEuFKKRpGsQWD3UYJAQUPSWUiEPPM02Bxma2HkNtOBriCTAk4Kf9piH4oXyUKDkVMIIinqYSgVR1cObdE-mSvtyqaLxFBfGyG9kWjqoWrsNVVX5cEHf8WLIx7-2onMBZRDjRMhf6gV8HN-_XX2qJOr32U3V3-peXzmDLNmSRF9SA2iSd4jls6tnkNUsvyoH9DSP8_IM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7xkoCBN6I8PSAxRbhN3MRjKa2KKBWCIrFFjn2RkFCLEtqZkZHfyC_hnKRpGRASYnMix4rt89139vk7gFPlur7ktdixTDGOF3vcUSjIS4kCjLVEFbhRlmzC7_WCx0d5W0QT2rswOT9EueFmV0amr-0CtxvS51PWUE3Kihw88lk4Yd55WPRIlkjIFy_v2g_dUh2TScsOLKXLHZ_KE-ZGXjv_3sJ3yzSFm7OgNbM67fV_-N8NWCsgJ2vkMrIJczjYgtUZIsJteL94snFC6efbxyW9GqNhDZ0lPqNSUyXRcMBIDw_LYwdLqJsyu4nLOjaZkB6lrP2cZVxjBIOZDR-hxm6n1xLY_egFE022WZMSSVgrz79jkDVmztB34KHd6jc7TpGjwdEWeTiSIENdiJj6Ra6kh67mka_RRFwqRCFN1SDWeaADPyao6CqhRBS4rqkKNDa2dRcWBsMB7gFDgn7aqxoCIMpDiZJTBSPI56kq4UtVAWcyP6EuCMxtHo3nMKderoV2hMNyhCtwVtZ_yak7fqx5OJnusFjCaUhI0XIXer5XgVo2sb-0EjZbjX75tP-Xj05gudO_6Ybdq971AazYQc2jhA5h4TUZ4REs6fHrU5ocF1L-BUD_AII
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60iujBt1ifexA8BbdN1mSPtW1QlFJ8gLew2Z2AIG1JrGePHv2N_hJnkzStBxHEWxI2S7KPmW92Z78P4ES5ri95M3EsU4zjJR53FAqKUuIAEy1RBW6ci034vV7w-Cj7ZTahPQtT8ENUC252ZuT22k5wHJnkbMoaqslYUYBHMQsnzDsPC55VkqnBQuc2fLipzDG5tHzDUrrc8el6wtzIm2ffa_jumaZwcxa05l4nXPuH712H1RJyslYxRjZgDgebsDJDRLgF7xdPNk8o-3z76NCjVzSspXPhM7pqqzQeDhjZ4WG17WAJdTNmF3HZpRUT0uOMhc-54hojGMxs-ghV1p8eS2B34xGmmnyzJiOSsm6hv2OQtWb20LfhIezety-dUqPB0RZ5OJIgw7kQCf0XhZIeuprHvkYTc6kQhTQNg3jOAx34CUFFVwkl4sB1TUOgsbmtO1AbDAe4CwwJ-mmvYQiAKA8lSk4FjKCYp6GEL1UdnEn_RLokMLc6Gs9RQb3cjGwLR1UL1-G0Kj8qqDt-LHkw6e6onMJZREjRchd6vleHZt6xv9QStbut--pu7y8vHcNSvxNGN1e9631Ytm1aJAkdQO0lHeMhLOrXl6csPSoH-RfLb__u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomass%E2%80%90Derived+Activated+Carbon+Nanoarchitectonics+with+Hibiscus+Flowers+for+High%E2%80%90Performance+Supercapacitor+Electrode+Applications&rft.jtitle=Chemical+engineering+%26+technology&rft.au=Yan%2C+Dong&rft.au=Liu%2C+Lu&rft.au=Wang%2C+Xingyan&rft.au=Xu%2C+Ke&rft.date=2022-04-01&rft.issn=0930-7516&rft.eissn=1521-4125&rft.volume=45&rft.issue=4&rft.spage=649&rft.epage=657&rft_id=info:doi/10.1002%2Fceat.202100585&rft.externalDBID=10.1002%252Fceat.202100585&rft.externalDocID=CEAT202100585
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0930-7516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0930-7516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0930-7516&client=summon