Biomass‐Derived Activated Carbon Nanoarchitectonics with Hibiscus Flowers for High‐Performance Supercapacitor Electrode Applications
Activated carbon is the most widely used electrode material in electrochemical double‐layer capacitors. The rational utilization of biomass energy waste to prepare porous carbon supercapacitor electrodes has effectively realized both the use of biomass waste and the industrial production of high‐per...
Saved in:
| Published in: | Chemical engineering & technology Vol. 45; no. 4; pp. 649 - 657 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Frankfurt
Wiley Subscription Services, Inc
01.04.2022
|
| Subjects: | |
| ISSN: | 0930-7516, 1521-4125 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Activated carbon is the most widely used electrode material in electrochemical double‐layer capacitors. The rational utilization of biomass energy waste to prepare porous carbon supercapacitor electrodes has effectively realized both the use of biomass waste and the industrial production of high‐performance supercapacitor electrodes. A simple method to employ roselle waste as the precursor of porous carbon supercapacitor electrodes is described. Electrochemical characterization confirmed that an electric double layer with high specific capacitance was formed in the system. The HCF‐3 supercapacitor electrode proved to have good cycle stability. Roselle‐based porous carbon has great potential as a low‐cost, environmentally friendly, and high‐efficiency supercapacitor electrode material.
Biomass‐derived activated carbon nanoarchitectonics with hibiscus flowers is prepared by employing a two‐step process involving carbonization and KOH chemical activation. Hibiscus flowers‐derived activated carbon exhibits excellent electrochemical properties when used as supercapacitor electrodes and may promote the large‐scale application of three‐dimensional porous carbons in energy storage. |
|---|---|
| AbstractList | Activated carbon is the most widely used electrode material in electrochemical double‐layer capacitors. The rational utilization of biomass energy waste to prepare porous carbon supercapacitor electrodes has effectively realized both the use of biomass waste and the industrial production of high‐performance supercapacitor electrodes. A simple method to employ roselle waste as the precursor of porous carbon supercapacitor electrodes is described. Electrochemical characterization confirmed that an electric double layer with high specific capacitance was formed in the system. The HCF‐3 supercapacitor electrode proved to have good cycle stability. Roselle‐based porous carbon has great potential as a low‐cost, environmentally friendly, and high‐efficiency supercapacitor electrode material. Activated carbon is the most widely used electrode material in electrochemical double‐layer capacitors. The rational utilization of biomass energy waste to prepare porous carbon supercapacitor electrodes has effectively realized both the use of biomass waste and the industrial production of high‐performance supercapacitor electrodes. A simple method to employ roselle waste as the precursor of porous carbon supercapacitor electrodes is described. Electrochemical characterization confirmed that an electric double layer with high specific capacitance was formed in the system. The HCF‐3 supercapacitor electrode proved to have good cycle stability. Roselle‐based porous carbon has great potential as a low‐cost, environmentally friendly, and high‐efficiency supercapacitor electrode material. Biomass‐derived activated carbon nanoarchitectonics with hibiscus flowers is prepared by employing a two‐step process involving carbonization and KOH chemical activation. Hibiscus flowers‐derived activated carbon exhibits excellent electrochemical properties when used as supercapacitor electrodes and may promote the large‐scale application of three‐dimensional porous carbons in energy storage. |
| Author | Zhong, Jinghan Xu, Ke Yan, Dong Wang, Xingyan Liu, Lu |
| Author_xml | – sequence: 1 givenname: Dong surname: Yan fullname: Yan, Dong organization: Xiangtan University – sequence: 2 givenname: Lu surname: Liu fullname: Liu, Lu organization: Xiangtan University – sequence: 3 givenname: Xingyan surname: Wang fullname: Wang, Xingyan email: xywangxtu@xtu.edu.cn organization: Xiangtan University – sequence: 4 givenname: Ke surname: Xu fullname: Xu, Ke organization: Xiangtan University – sequence: 5 givenname: Jinghan surname: Zhong fullname: Zhong, Jinghan organization: Xiangtan University |
| BookMark | eNqFkE9LwzAYxoNMcE6vngueO5O06Z9jrZsThgrOc0nTty6ja2qSbezm0aOf0U9i5kRBEE_JE57f8755jlGvVS0gdEbwkGBMLwRwO6SYOsESdoD6hFHih4SyHurjNMB-zEh0hI6NWWCMiRN99Hop1ZIb8_7ydgVarqHyMmHlmlt3y7kuVevd8lZxLebSgrCqlcJ4G2nn3kSW0oiV8caN2oA2Xq20e3yau7B70E4teSvAe1h1oAXvuJDWOUaNi9GqAi_rukYKbqVqzQk6rHlj4PTrHKDH8WiWT_zp3fVNnk19EZCY-SklLGKsdv-khIQQCFzGAqoSpxyApRWpACKciCSu04AGnHFWJkFQEQZVmLJggM73uZ1WzyswtliolW7dyIJGIYkxDuPQucK9S2hljIa6cLt_Lmo1l01BcLHrvNh1Xnx37rDhL6zTcsn19m8g3QMb2cD2H3eRj7LZD_sB79ObNA |
| CitedBy_id | crossref_primary_10_1007_s11705_024_2447_8 crossref_primary_10_1016_j_jpowsour_2025_236684 crossref_primary_10_3390_ma17174341 crossref_primary_10_1007_s11814_023_1514_z crossref_primary_10_1016_j_indcrop_2023_117415 crossref_primary_10_1002_est2_677 crossref_primary_10_1016_j_apsusc_2023_157910 crossref_primary_10_1016_j_est_2022_105668 crossref_primary_10_3390_ijerph20021355 crossref_primary_10_1016_j_mtsust_2024_100676 crossref_primary_10_1016_j_jpowsour_2025_237389 crossref_primary_10_1016_j_cej_2024_151797 crossref_primary_10_1016_j_electacta_2022_141533 crossref_primary_10_1016_j_est_2024_114742 crossref_primary_10_1016_j_scitotenv_2023_162045 crossref_primary_10_1016_j_est_2024_114065 crossref_primary_10_1016_j_jece_2025_118485 crossref_primary_10_1016_j_est_2022_105636 crossref_primary_10_3390_nano12172931 crossref_primary_10_1016_j_est_2022_106134 crossref_primary_10_1016_j_est_2024_110639 crossref_primary_10_1016_j_jece_2024_112310 crossref_primary_10_3390_catal14090555 crossref_primary_10_1016_j_diamond_2023_109852 crossref_primary_10_1016_j_matlet_2024_136644 crossref_primary_10_1016_j_jclepro_2023_138181 crossref_primary_10_1016_j_mtsust_2022_100225 crossref_primary_10_1007_s11705_022_2250_3 crossref_primary_10_1002_bte2_20230058 crossref_primary_10_1016_j_cej_2024_153311 crossref_primary_10_1016_j_est_2024_114477 crossref_primary_10_1016_j_jechem_2024_11_023 crossref_primary_10_1016_j_ijbiomac_2023_126271 crossref_primary_10_3390_ijms23073577 crossref_primary_10_1016_j_est_2023_108633 crossref_primary_10_1002_ppsc_202200055 crossref_primary_10_1016_j_susmat_2025_e01603 crossref_primary_10_1039_D4RA01320D crossref_primary_10_1002_aesr_202200152 crossref_primary_10_1016_j_carbon_2025_120329 crossref_primary_10_1016_j_est_2025_118210 crossref_primary_10_1109_TIA_2023_3255215 crossref_primary_10_1016_j_ces_2024_120321 crossref_primary_10_1016_j_ijhydene_2023_03_171 crossref_primary_10_1016_j_fuel_2022_126044 crossref_primary_10_1016_j_ijhydene_2022_09_121 crossref_primary_10_1002_ente_202301436 crossref_primary_10_1016_j_cartre_2025_100467 crossref_primary_10_3390_mi14051003 crossref_primary_10_1016_j_jpcs_2023_111318 crossref_primary_10_3390_ma17040936 crossref_primary_10_3390_molecules30102130 crossref_primary_10_3390_ma17010271 crossref_primary_10_1016_j_est_2023_109398 crossref_primary_10_1016_j_jaap_2025_107110 crossref_primary_10_1016_j_jpowsour_2024_234147 crossref_primary_10_1016_j_diamond_2023_110169 crossref_primary_10_1016_j_molstruc_2024_140810 |
| Cites_doi | 10.1016/j.rser.2015.07.129 10.1016/j.electacta.2018.09.136 10.1021/acsaem.9b00481 10.1016/j.jechem.2016.08.002 10.1016/j.electacta.2007.09.028 10.1016/j.electacta.2020.136855 10.1016/S1872-5805(15)60201-3 10.1039/C8RA09685F 10.1016/j.cej.2020.125418 10.3390/nano11102523 10.1016/j.nanoen.2017.09.041 10.1002/adfm.201102998 10.1016/j.jpowsour.2012.10.022 10.1016/j.biortech.2009.12.123 10.1016/j.est.2020.102185 10.1016/j.cej.2019.123454 10.1016/j.renene.2021.01.077 10.1016/j.nanoen.2019.104270 10.1016/j.micromeso.2020.110659 10.1039/c0ee00074d 10.1016/j.biortech.2015.07.100 10.1039/C5TA04721H |
| ContentType | Journal Article |
| Copyright | 2022 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION 7U5 8FD L7M |
| DOI | 10.1002/ceat.202100585 |
| DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
| DatabaseTitleList | CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4125 |
| EndPage | 657 |
| ExternalDocumentID | 10_1002_ceat_202100585 CEAT202100585 |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBFHL WBKPD WIB WIH WIK WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c3175-9215655f2022114e3c0b7cedb09aee59d1dee608c87f9323a5a5b833d15ed4953 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 66 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000752226700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0930-7516 |
| IngestDate | Sun Nov 30 04:43:29 EST 2025 Tue Nov 18 21:59:07 EST 2025 Sat Nov 29 02:45:25 EST 2025 Wed Jan 22 16:25:02 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3175-9215655f2022114e3c0b7cedb09aee59d1dee608c87f9323a5a5b833d15ed4953 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2641700474 |
| PQPubID | 2045181 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2641700474 crossref_citationtrail_10_1002_ceat_202100585 crossref_primary_10_1002_ceat_202100585 wiley_primary_10_1002_ceat_202100585_CEAT202100585 |
| PublicationCentury | 2000 |
| PublicationDate | April 2022 2022-04-00 20220401 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Frankfurt |
| PublicationPlace_xml | – name: Frankfurt |
| PublicationTitle | Chemical engineering & technology |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 41 2019; 9 2015; 3 2020; 385 2019; 2 2013; 225 2015; 52 2015; 30 2010; 101 2008; 53 2021; 35 2018; 291 2010; 25 2021; 11 2021; 55 2021; 310 2003; 6 2015; 197 2020; 357 2021; 170 2017; 19 2020; 67 2020; 397 2010; 3 2012; 22 2016; 25 e_1_2_6_10_1 Li H. (e_1_2_6_16_1) 2017; 19 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_15_1 e_1_2_6_21_1 e_1_2_6_20_1 Wu Y. (e_1_2_6_23_1) 2021; 55 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 Gu G. (e_1_2_6_17_1) 2010; 25 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_2_1 e_1_2_6_22_1 Li S. (e_1_2_6_18_1) 2003; 6 e_1_2_6_27_1 e_1_2_6_26_1 |
| References_xml | – volume: 19 start-page: 587 issue: 04 year: 2017 end-page: 593 publication-title: Mod. Chin. Med. – volume: 52 start-page: 1282 year: 2015 end-page: 1293 publication-title: Renewable Sustainable Energy Rev. – volume: 30 start-page: 471 issue: 5 year: 2015 end-page: 475 publication-title: New Carbon Mater. – volume: 22 start-page: 2542 issue: 12 year: 2012 end-page: 2549 publication-title: Adv. Funct. Mater. – volume: 41 start-page: 285 year: 2017 end-page: 292 publication-title: Nano Energy – volume: 3 start-page: 1294 issue: 9 year: 2010 end-page: 1301 publication-title: Energy Environ. Sci. – volume: 385 start-page: 123454 year: 2020 publication-title: Chem. Eng. J. – volume: 357 start-page: 136855 year: 2020 publication-title: Electrochim. Acta – volume: 397 start-page: 125418 year: 2020 publication-title: Chem. Eng. J. – volume: 25 start-page: 109 issue: 02 year: 2010 end-page: 115 publication-title: Drugs Clin. – volume: 9 start-page: 2474 issue: 5 year: 2019 end-page: 2483 publication-title: RSC Adv. – volume: 2 start-page: 4234 issue: 6 year: 2019 end-page: 4243 publication-title: ACS Appl. Energy Mater. – volume: 55 start-page: 8 issue: 1 year: 2021 publication-title: Biomass Chem. Eng. – volume: 101 start-page: 3534 issue: 10 year: 2010 end-page: 3540 publication-title: Bioresour. Technol. – volume: 6 start-page: 86 year: 2003 end-page: 88 publication-title: Food Sci. Technol. – volume: 310 start-page: 110659 year: 2021 publication-title: Microporous Mesoporous Mater. – volume: 25 start-page: 880 issue: 5 year: 2016 end-page: 887 publication-title: J. Energy Chem. – volume: 291 start-page: 287 year: 2018 end-page: 296 publication-title: Electrochim. Acta – volume: 197 start-page: 137 year: 2015 end-page: 142 publication-title: Bioresour. Technol. – volume: 67 start-page: 104270 year: 2020 publication-title: Nano Energy – volume: 3 start-page: 18154 issue: 35 year: 2015 end-page: 18162 publication-title: J. Mater. Chem. A – volume: 11 start-page: 2523 issue: 10 year: 2021 publication-title: Nanomaterials – volume: 35 start-page: 102185 year: 2021 publication-title: J. Energy Storage – volume: 53 start-page: 2210 issue: 5 year: 2008 end-page: 2216 publication-title: Electrochim. Acta – volume: 225 start-page: 101 year: 2013 end-page: 107 publication-title: J. Power Sources – volume: 170 start-page: 60 year: 2021 end-page: 71 publication-title: Renewable Energy – ident: e_1_2_6_13_1 doi: 10.1016/j.rser.2015.07.129 – volume: 55 start-page: 8 issue: 1 year: 2021 ident: e_1_2_6_23_1 publication-title: Biomass Chem. Eng. – ident: e_1_2_6_25_1 doi: 10.1016/j.electacta.2018.09.136 – ident: e_1_2_6_26_1 doi: 10.1021/acsaem.9b00481 – ident: e_1_2_6_10_1 doi: 10.1016/j.jechem.2016.08.002 – ident: e_1_2_6_27_1 doi: 10.1016/j.electacta.2007.09.028 – ident: e_1_2_6_4_1 doi: 10.1016/j.electacta.2020.136855 – ident: e_1_2_6_15_1 doi: 10.1016/S1872-5805(15)60201-3 – ident: e_1_2_6_21_1 doi: 10.1039/C8RA09685F – ident: e_1_2_6_9_1 doi: 10.1016/j.cej.2020.125418 – ident: e_1_2_6_3_1 doi: 10.3390/nano11102523 – ident: e_1_2_6_12_1 doi: 10.1016/j.nanoen.2017.09.041 – volume: 25 start-page: 109 issue: 02 year: 2010 ident: e_1_2_6_17_1 publication-title: Drugs Clin. – ident: e_1_2_6_22_1 doi: 10.1002/adfm.201102998 – ident: e_1_2_6_8_1 doi: 10.1016/j.jpowsour.2012.10.022 – ident: e_1_2_6_7_1 doi: 10.1016/j.biortech.2009.12.123 – volume: 19 start-page: 587 issue: 04 year: 2017 ident: e_1_2_6_16_1 publication-title: Mod. Chin. Med. – ident: e_1_2_6_24_1 doi: 10.1016/j.est.2020.102185 – ident: e_1_2_6_5_1 doi: 10.1016/j.cej.2019.123454 – ident: e_1_2_6_14_1 doi: 10.1016/j.renene.2021.01.077 – ident: e_1_2_6_6_1 doi: 10.1016/j.nanoen.2019.104270 – ident: e_1_2_6_2_1 doi: 10.1016/j.micromeso.2020.110659 – ident: e_1_2_6_19_1 doi: 10.1039/c0ee00074d – ident: e_1_2_6_11_1 doi: 10.1016/j.biortech.2015.07.100 – ident: e_1_2_6_20_1 doi: 10.1039/C5TA04721H – volume: 6 start-page: 86 year: 2003 ident: e_1_2_6_18_1 publication-title: Food Sci. Technol. |
| SSID | ssj0001516 |
| Score | 2.5514295 |
| Snippet | Activated carbon is the most widely used electrode material in electrochemical double‐layer capacitors. The rational utilization of biomass energy waste to... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 649 |
| SubjectTerms | Activated carbon Biomass Biomass energy Biomass energy production Electric double layer Electrochemical analysis Electrochemical double‐layer capacitors Electrode materials Electrodes Nanoarchitectonics Roselle flower Supercapacitors |
| Title | Biomass‐Derived Activated Carbon Nanoarchitectonics with Hibiscus Flowers for High‐Performance Supercapacitor Electrode Applications |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fceat.202100585 https://www.proquest.com/docview/2641700474 |
| Volume | 45 |
| WOSCitedRecordID | wos000752226700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4125 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001516 issn: 0930-7516 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYYCBN6JQkAckpgg3iZt4LH2oA0KIh8QWOfZFQkJtlbSdGRn5jfwSzkmatgNCgi2JHCvx4-47-_x9AJfK8wLJ3cSxTDGOn_jcUSgoSolDTLREFXpxLjYR3N2FLy_yfukUf8EPUS242ZmR22s7wVWcXS9IQzXZKorvKGThBHnXYcOlwStqsNF96D_fVtaYPFq-Xyk97gR0PSdu5O71ag2rjmmBNpcxa-50-rv__9w92CkBJ2sXI2Qf1nB4ANtLNISH8HHzarOEsq_3zy49mqFhbZ3LntFVR6XxaMjICo-qTQdLp5sxu4TLBlZKSE8z1n_L9dYYgWBmk0eosvvFoQT2OB1jqskzazIhKesV6jsGWXtpB_0Invu9p87AKRUaHG1xhyMJMLSESOi_KJD00dM8DjSamEuFKKRpGsQWD3UYJAQUPSWUiEPPM02Bxma2HkNtOBriCTAk4Kf9piH4oXyUKDkVMIIinqYSgVR1cObdE-mSvtyqaLxFBfGyG9kWjqoWrsNVVX5cEHf8WLIx7-2onMBZRDjRMhf6gV8HN-_XX2qJOr32U3V3-peXzmDLNmSRF9SA2iSd4jls6tnkNUsvyoH9DSP8_IM |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7xkoCBN6I8PSAxRbhN3MRjKa2KKBWCIrFFjn2RkFCLEtqZkZHfyC_hnKRpGRASYnMix4rt89139vk7gFPlur7ktdixTDGOF3vcUSjIS4kCjLVEFbhRlmzC7_WCx0d5W0QT2rswOT9EueFmV0amr-0CtxvS51PWUE3Kihw88lk4Yd55WPRIlkjIFy_v2g_dUh2TScsOLKXLHZ_KE-ZGXjv_3sJ3yzSFm7OgNbM67fV_-N8NWCsgJ2vkMrIJczjYgtUZIsJteL94snFC6efbxyW9GqNhDZ0lPqNSUyXRcMBIDw_LYwdLqJsyu4nLOjaZkB6lrP2cZVxjBIOZDR-hxm6n1xLY_egFE022WZMSSVgrz79jkDVmztB34KHd6jc7TpGjwdEWeTiSIENdiJj6Ra6kh67mka_RRFwqRCFN1SDWeaADPyao6CqhRBS4rqkKNDa2dRcWBsMB7gFDgn7aqxoCIMpDiZJTBSPI56kq4UtVAWcyP6EuCMxtHo3nMKderoV2hMNyhCtwVtZ_yak7fqx5OJnusFjCaUhI0XIXer5XgVo2sb-0EjZbjX75tP-Xj05gudO_6Ybdq971AazYQc2jhA5h4TUZ4REs6fHrU5ocF1L-BUD_AII |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60iujBt1ifexA8BbdN1mSPtW1QlFJ8gLew2Z2AIG1JrGePHv2N_hJnkzStBxHEWxI2S7KPmW92Z78P4ES5ri95M3EsU4zjJR53FAqKUuIAEy1RBW6ci034vV7w-Cj7ZTahPQtT8ENUC252ZuT22k5wHJnkbMoaqslYUYBHMQsnzDsPC55VkqnBQuc2fLipzDG5tHzDUrrc8el6wtzIm2ffa_jumaZwcxa05l4nXPuH712H1RJyslYxRjZgDgebsDJDRLgF7xdPNk8o-3z76NCjVzSspXPhM7pqqzQeDhjZ4WG17WAJdTNmF3HZpRUT0uOMhc-54hojGMxs-ghV1p8eS2B34xGmmnyzJiOSsm6hv2OQtWb20LfhIezety-dUqPB0RZ5OJIgw7kQCf0XhZIeuprHvkYTc6kQhTQNg3jOAx34CUFFVwkl4sB1TUOgsbmtO1AbDAe4CwwJ-mmvYQiAKA8lSk4FjKCYp6GEL1UdnEn_RLokMLc6Gs9RQb3cjGwLR1UL1-G0Kj8qqDt-LHkw6e6onMJZREjRchd6vleHZt6xv9QStbut--pu7y8vHcNSvxNGN1e9631Ytm1aJAkdQO0lHeMhLOrXl6csPSoH-RfLb__u |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomass%E2%80%90Derived+Activated+Carbon+Nanoarchitectonics+with+Hibiscus+Flowers+for+High%E2%80%90Performance+Supercapacitor+Electrode+Applications&rft.jtitle=Chemical+engineering+%26+technology&rft.au=Yan%2C+Dong&rft.au=Liu%2C+Lu&rft.au=Wang%2C+Xingyan&rft.au=Xu%2C+Ke&rft.date=2022-04-01&rft.issn=0930-7516&rft.eissn=1521-4125&rft.volume=45&rft.issue=4&rft.spage=649&rft.epage=657&rft_id=info:doi/10.1002%2Fceat.202100585&rft.externalDBID=10.1002%252Fceat.202100585&rft.externalDocID=CEAT202100585 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0930-7516&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0930-7516&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0930-7516&client=summon |