Nanoscale Mapping of the Conductivity and Interfacial Capacitance of an Electrolyte‐Gated Organic Field‐Effect Transistor under Operation

Probing nanoscale electrical properties of organic semiconducting materials at the interface with an electrolyte solution under externally applied voltages is key in the field of organic bioelectronics. It is demonstrated that the conductivity and interfacial capacitance of the active channel of an...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced functional materials Ročník 31; číslo 5
Hlavní autori: Kyndiah, Adrica, Checa, Martí, Leonardi, Francesca, Millan‐Solsona, Ruben, Di Muzio, Martina, Tanwar, Shubham, Fumagalli, Laura, Mas‐Torrent, Marta, Gomila, Gabriel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc 01.01.2021
Predmet:
ISSN:1616-301X, 1616-3028
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Probing nanoscale electrical properties of organic semiconducting materials at the interface with an electrolyte solution under externally applied voltages is key in the field of organic bioelectronics. It is demonstrated that the conductivity and interfacial capacitance of the active channel of an electrolyte‐gated organic field‐effect transistor (EGOFET) under operation can be probed at the nanoscale using scanning dielectric microscopy in force detection mode in liquid environment. Local electrostatic force versus gate voltage transfer characteristics are obtained on the device and correlated with the global current–voltage transfer characteristics of the EGOFET. Nanoscale maps of the conductivity of the semiconducting channel show the dependence of the channel conductivity on the gate voltage and its variation along the channel due to the space charge limited conduction. The maps reveal very small electrical heterogeneities, which correspond to local interfacial capacitance variations due to an ultrathin non‐uniform insulating layer resulting from a phase separation in the organic semiconducting blend. Present results offer insights into the transduction mechanism at the organic semiconductor/electrolyte interfaces at scales down to ≈100 nm, which can bring substantial optimization of organic electronic devices for bioelectronic applications such as electrical recording on excitable cells or label‐free biosensing. Nanoscale electrical conductivity and interfacial capacitance maps of an operating electrolyte gated organic field effect transistor are obtained by using scanning dielectric microscopy in‐liquid environment. The conductivity maps reveal the on–off transition of the transistor device, while the interfacial capacitance maps show the minute heterogeneities resulting from phase separtion in the active organic semiconductor material.
AbstractList Probing nanoscale electrical properties of organic semiconducting materials at the interface with an electrolyte solution under externally applied voltages is key in the field of organic bioelectronics. It is demonstrated that the conductivity and interfacial capacitance of the active channel of an electrolyte‐gated organic field‐effect transistor (EGOFET) under operation can be probed at the nanoscale using scanning dielectric microscopy in force detection mode in liquid environment. Local electrostatic force versus gate voltage transfer characteristics are obtained on the device and correlated with the global current–voltage transfer characteristics of the EGOFET. Nanoscale maps of the conductivity of the semiconducting channel show the dependence of the channel conductivity on the gate voltage and its variation along the channel due to the space charge limited conduction. The maps reveal very small electrical heterogeneities, which correspond to local interfacial capacitance variations due to an ultrathin non‐uniform insulating layer resulting from a phase separation in the organic semiconducting blend. Present results offer insights into the transduction mechanism at the organic semiconductor/electrolyte interfaces at scales down to ≈100 nm, which can bring substantial optimization of organic electronic devices for bioelectronic applications such as electrical recording on excitable cells or label‐free biosensing. Nanoscale electrical conductivity and interfacial capacitance maps of an operating electrolyte gated organic field effect transistor are obtained by using scanning dielectric microscopy in‐liquid environment. The conductivity maps reveal the on–off transition of the transistor device, while the interfacial capacitance maps show the minute heterogeneities resulting from phase separtion in the active organic semiconductor material.
Probing nanoscale electrical properties of organic semiconducting materials at the interface with an electrolyte solution under externally applied voltages is key in the field of organic bioelectronics. It is demonstrated that the conductivity and interfacial capacitance of the active channel of an electrolyte‐gated organic field‐effect transistor (EGOFET) under operation can be probed at the nanoscale using scanning dielectric microscopy in force detection mode in liquid environment. Local electrostatic force versus gate voltage transfer characteristics are obtained on the device and correlated with the global current–voltage transfer characteristics of the EGOFET. Nanoscale maps of the conductivity of the semiconducting channel show the dependence of the channel conductivity on the gate voltage and its variation along the channel due to the space charge limited conduction. The maps reveal very small electrical heterogeneities, which correspond to local interfacial capacitance variations due to an ultrathin non‐uniform insulating layer resulting from a phase separation in the organic semiconducting blend. Present results offer insights into the transduction mechanism at the organic semiconductor/electrolyte interfaces at scales down to ≈100 nm, which can bring substantial optimization of organic electronic devices for bioelectronic applications such as electrical recording on excitable cells or label‐free biosensing.
Author Kyndiah, Adrica
Fumagalli, Laura
Leonardi, Francesca
Checa, Martí
Millan‐Solsona, Ruben
Di Muzio, Martina
Mas‐Torrent, Marta
Gomila, Gabriel
Tanwar, Shubham
Author_xml – sequence: 1
  givenname: Adrica
  orcidid: 0000-0002-4668-6330
  surname: Kyndiah
  fullname: Kyndiah, Adrica
  email: akyndiah@ibecbarcelona.eu
  organization: Universitat de Barcelona
– sequence: 2
  givenname: Martí
  orcidid: 0000-0003-2607-6866
  surname: Checa
  fullname: Checa, Martí
  organization: The Barcelona Institute of Science and Technology (BIST)
– sequence: 3
  givenname: Francesca
  orcidid: 0000-0003-4214-6537
  surname: Leonardi
  fullname: Leonardi, Francesca
  organization: Institut de Ciència de Materials de Barcelona (ICMAB‐CSIC)
– sequence: 4
  givenname: Ruben
  orcidid: 0000-0003-0912-7246
  surname: Millan‐Solsona
  fullname: Millan‐Solsona, Ruben
  organization: Universitat de Barcelona
– sequence: 5
  givenname: Martina
  orcidid: 0000-0001-6525-7972
  surname: Di Muzio
  fullname: Di Muzio, Martina
  organization: The Barcelona Institute of Science and Technology (BIST)
– sequence: 6
  givenname: Shubham
  orcidid: 0000-0002-9418-2532
  surname: Tanwar
  fullname: Tanwar, Shubham
  organization: The Barcelona Institute of Science and Technology (BIST)
– sequence: 7
  givenname: Laura
  orcidid: 0000-0003-1749-2905
  surname: Fumagalli
  fullname: Fumagalli, Laura
  organization: The University of Manchester
– sequence: 8
  givenname: Marta
  orcidid: 0000-0002-1586-005X
  surname: Mas‐Torrent
  fullname: Mas‐Torrent, Marta
  organization: Institut de Ciència de Materials de Barcelona (ICMAB‐CSIC)
– sequence: 9
  givenname: Gabriel
  orcidid: 0000-0002-1949-1757
  surname: Gomila
  fullname: Gomila, Gabriel
  email: ggomila@ibecbarcelona.eu
  organization: Universitat de Barcelona
BookMark eNqFkM1KAzEURoNU0Fa3rgOuW2-S6cy4lNrWQrUbBXfDnSSjkTEZk1TpzhcQfEafxBkqCoK4yiWcc3--PulZZzUhRwxGDICfoKoeRxw4QA6C75B9lrJ0KIDnve-a3e6RfggPACzLRLJP3q7QuiCx1vQSm8bYO-oqGu81nTir1jKaZxM3FK2iCxu1r1AarOkEm7aIaKXueLR0WmsZvas3UX-8vs8xakVX_g6tkXRmdK3a32lVtRC99miDCdF5urZKe7pqtMdonD0guxXWQR9-vQNyM5teTy6Gy9V8MTlbDqVgGR-WyEsQbJzIDMftUQLFaSpYmgOMJVY5ZtlYMsk1T5AjZ6VQiYKcMa6SNM1KMSDH276Nd09rHWLx4NbetiMLnuQMuIBEtFSypaR3IXhdFd3J3Z7Ro6kLBkUXfNEFX3wH32qjX1rjzSP6zd_C6VZ4MbXe_EMXZ-ezyx_3EwYQmx4
CitedBy_id crossref_primary_10_1088_1674_4926_43_4_041101
crossref_primary_10_1063_5_0078034
crossref_primary_10_1039_D2NR02177C
crossref_primary_10_1088_1361_6528_ac26ff
crossref_primary_10_3390_sym13122379
crossref_primary_10_1002_adts_202200698
crossref_primary_10_1002_smtd_202100279
crossref_primary_10_1002_aelm_202400222
crossref_primary_10_1016_j_electacta_2022_140810
crossref_primary_10_3390_nano11061402
crossref_primary_10_1186_s12951_021_00912_6
crossref_primary_10_1002_adma_202309767
crossref_primary_10_1039_D1NR04689F
Cites_doi 10.1038/srep39623
10.1088/0957-4484/23/20/205703
10.1021/nl803851u
10.1002/adbi.201700072
10.1039/c3cp44251a
10.1103/PhysRevLett.103.256803
10.1002/adma.201602479
10.1002/adma.200904163
10.1002/adma.200501394
10.1038/s41467-018-05235-z
10.1002/smll.201902534
10.1039/C9NR07659J
10.1063/1.3427362
10.1038/nmat3369
10.1038/nmat4918
10.1063/1.1637443
10.1021/acsami.7b19279
10.1103/PhysRevE.100.022604
10.1038/ncomms4005
10.1063/1.3699218
10.1002/adma.201200088
10.1016/j.orgel.2012.10.027
10.1063/1.2821119
10.1016/j.bios.2019.111844
10.1002/admt.201600090
10.1126/science.aat4191
10.1002/adfm.201904513
10.1021/jp709590p
10.1038/ncomms2573
10.1002/admt.201900104
10.1049/el:19921481
10.1002/adma.201104580
10.1063/1.4768164
10.1116/1.4997760
10.1002/adfm.201703899
10.1039/c3tb20340a
10.1002/adma.200801466
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202008032
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202008032
ADFM202008032
Genre article
GrantInformation_xml – fundername: BEST Postdoctoral Programme
– fundername: Agencia Estatal de Investigación
  funderid: TEC2016‐79156‐P
– fundername: European Research Council
  funderid: 819417
– fundername: Horizon 2020's Marie Curie Sklodowska‐Curie Actions COFUND scheme
  funderid: GA 712754
– fundername: Spanish Ministry
  funderid: FANCY CTQ2016‐80030‐R; GENESIS PID2019‐111682RB‐I00
– fundername: Programme for Centers of Excellence in R&D
  funderid: SEV‐2015‐0496
– fundername: Ministry of Economy and Competitiveness
– fundername: European Commission
– fundername: Generalitat de Catalunya
  funderid: 2017‐SGR‐918
– fundername: BORGES
  funderid: GA 813863
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3172-ba2b03154c7a53013a3963168005caf8a775c1c2e24a2a21b3d4d08112d4667b3
IEDL.DBID DRFUL
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000582443900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Sun Nov 09 08:09:03 EST 2025
Tue Nov 18 21:29:35 EST 2025
Sat Nov 29 07:21:32 EST 2025
Wed Jan 22 16:30:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3172-ba2b03154c7a53013a3963168005caf8a775c1c2e24a2a21b3d4d08112d4667b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1749-2905
0000-0003-2607-6866
0000-0002-1949-1757
0000-0002-9418-2532
0000-0002-1586-005X
0000-0001-6525-7972
0000-0003-4214-6537
0000-0003-0912-7246
0000-0002-4668-6330
PQID 2481023043
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2481023043
crossref_citationtrail_10_1002_adfm_202008032
crossref_primary_10_1002_adfm_202008032
wiley_primary_10_1002_adfm_202008032_ADFM202008032
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 4
2013; 4
2012; 100
2013; 1
2009; 21
2012; 101
2018; 360
2019; 11
2017; 27
2019; 15
2006; 18
2007; 91
2012; 11
2019; 100
2010; 22
2018; 9
2016; 6
2013; 15
2014; 5
2013; 14
2018; 2
2016; 1
2020; 30
2017; 16
2020
2007; 111
2020; 150
2017; 12
1952; 40
1992; 28
2009; 9
2003; 83
2012; 24
2016; 28
2018; 10
2012; 23
2009; 103
2010; 96
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Sze S. M. (e_1_2_7_20_1) 1952; 40
Millan‐Solsona R. (e_1_2_7_35_1) 2020
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 21
  start-page: 19
  year: 2009
  publication-title: Adv. Mater.
– year: 2020
  publication-title: Nanoscale
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 91
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 18
  start-page: 145
  year: 2006
  publication-title: Adv. Mater.
– volume: 24
  start-page: 1146
  year: 2012
  publication-title: Adv. Mater.
– volume: 5
  start-page: 3005
  year: 2014
  publication-title: Nat. Commun.
– volume: 11
  start-page: 808
  year: 2012
  publication-title: Nat. Mater.
– volume: 101
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 96
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 4
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 24
  start-page: 2441
  year: 2012
  publication-title: Adv. Mater.
– volume: 100
  year: 2019
  publication-title: Phys. Rev. E
– volume: 12
  year: 2017
  publication-title: Biointerphases
– volume: 1
  start-page: 3728
  year: 2013
  publication-title: J. Mater. Chem. B
– volume: 16
  start-page: 737
  year: 2017
  publication-title: Nat. Mater.
– volume: 100
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 28
  start-page: 2302
  year: 1992
  publication-title: Electron. Lett.
– volume: 14
  start-page: 156
  year: 2013
  publication-title: Org. Electron.
– volume: 9
  start-page: 3223
  year: 2018
  publication-title: Nat. Commun.
– volume: 150
  year: 2020
  publication-title: Biosens. Bioelectron.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 360
  start-page: 1339
  year: 2018
  publication-title: Science
– volume: 15
  start-page: 3897
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 10
  start-page: 7296
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 83
  start-page: 5539
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 40
  start-page: 473
  year: 1952
  publication-title: Proc. IRE
– volume: 23
  year: 2012
  publication-title: Nanotechnology
– volume: 4
  start-page: 1575
  year: 2013
  publication-title: Nat. Commun.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 111
  year: 2007
  publication-title: J. Phys. Chem. A
– volume: 103
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 28
  year: 2016
  publication-title: Adv. Mater.
– volume: 1
  year: 2016
  publication-title: Adv. Mater. Technol.
– volume: 22
  start-page: 2565
  year: 2010
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 9
  start-page: 1604
  year: 2009
  publication-title: Nano Lett.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 2
  year: 2018
  publication-title: Adv. Biosyst.
– ident: e_1_2_7_27_1
  doi: 10.1038/srep39623
– ident: e_1_2_7_39_1
  doi: 10.1088/0957-4484/23/20/205703
– ident: e_1_2_7_22_1
  doi: 10.1021/nl803851u
– ident: e_1_2_7_7_1
  doi: 10.1002/adbi.201700072
– ident: e_1_2_7_2_1
  doi: 10.1039/c3cp44251a
– ident: e_1_2_7_14_1
  doi: 10.1103/PhysRevLett.103.256803
– volume: 40
  start-page: 473
  year: 1952
  ident: e_1_2_7_20_1
  publication-title: Proc. IRE
– ident: e_1_2_7_31_1
  doi: 10.1002/adma.201602479
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.200904163
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.200501394
– ident: e_1_2_7_5_1
  doi: 10.1038/s41467-018-05235-z
– ident: e_1_2_7_19_1
  doi: 10.1002/smll.201902534
– ident: e_1_2_7_34_1
  doi: 10.1039/C9NR07659J
– ident: e_1_2_7_38_1
  doi: 10.1063/1.3427362
– ident: e_1_2_7_23_1
  doi: 10.1038/nmat3369
– ident: e_1_2_7_18_1
  doi: 10.1038/nmat4918
– ident: e_1_2_7_13_1
  doi: 10.1063/1.1637443
– ident: e_1_2_7_30_1
  doi: 10.1021/acsami.7b19279
– ident: e_1_2_7_26_1
  doi: 10.1103/PhysRevE.100.022604
– year: 2020
  ident: e_1_2_7_35_1
  publication-title: Nanoscale
– ident: e_1_2_7_28_1
  doi: 10.1038/ncomms4005
– ident: e_1_2_7_10_1
  doi: 10.1063/1.3699218
– ident: e_1_2_7_32_1
  doi: 10.1002/adma.201200088
– ident: e_1_2_7_4_1
  doi: 10.1016/j.orgel.2012.10.027
– ident: e_1_2_7_21_1
  doi: 10.1063/1.2821119
– ident: e_1_2_7_3_1
  doi: 10.1016/j.bios.2019.111844
– ident: e_1_2_7_33_1
  doi: 10.1002/admt.201600090
– ident: e_1_2_7_25_1
  doi: 10.1126/science.aat4191
– ident: e_1_2_7_6_1
  doi: 10.1002/adfm.201904513
– ident: e_1_2_7_12_1
  doi: 10.1021/jp709590p
– ident: e_1_2_7_1_1
  doi: 10.1038/ncomms2573
– ident: e_1_2_7_29_1
  doi: 10.1002/admt.201900104
– ident: e_1_2_7_37_1
  doi: 10.1049/el:19921481
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.201104580
– ident: e_1_2_7_24_1
  doi: 10.1063/1.4768164
– ident: e_1_2_7_8_1
  doi: 10.1116/1.4997760
– ident: e_1_2_7_36_1
  doi: 10.1002/adfm.201703899
– ident: e_1_2_7_11_1
  doi: 10.1039/c3tb20340a
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.200801466
SSID ssj0017734
Score 2.46145
Snippet Probing nanoscale electrical properties of organic semiconducting materials at the interface with an electrolyte solution under externally applied voltages is...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms atomic force microscopy
Bioelectricity
bioelectronic devices
Capacitance
Electric potential
Electrical properties
Electrical resistivity
electrolyte gated organic field effect transistors
Electrolytes
Electrolytic cells
Electronic devices
in‐liquid scanning dielectric microscopy
Materials science
Optimization
organic semiconducting blend
Phase separation
Semiconductor devices
Space charge
Transistors
Voltage
Title Nanoscale Mapping of the Conductivity and Interfacial Capacitance of an Electrolyte‐Gated Organic Field‐Effect Transistor under Operation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202008032
https://www.proquest.com/docview/2481023043
Volume 31
WOSCitedRecordID wos000582443900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6y60EPvsX1RQ6Cp2I77SbtUXYtHnwhCnsrSZqIIF3ZXQVv_gHB3-gvMZN063oQQY8taSmZmczXeXxDyIEKBZNYPcXBmABTa0EaRybIUsNZmVknoxxl_hm_uEgHg-xqpovf80M0ATe0DHdeo4ELOT76Ig0VpcFOcszfh7E9hNtglbfbIu3-dX571mQSOPeZZRZhjVc0mBI3hnD0_Q3fHdMX2pzFrM7p5Mv__9wVslQDTnrsNWSVzOlqjSzO0BCukzd7xA7HVliangvka7ijQ0MtMqS9YYV8sG7ABBVVSV0A0QiMs9Oe9bPqfoJqg-tFRU_8TJ2Hl4n-eH3HwFxJfbOnojmWytm7ni6ZOh_pKEootrGN6OWj9sq4QW7zk5veaVCPaQiUBR8QSAESZ0Ukiouu3eJYxNaqI2ahaFcJkwrOuypSoCERICCScZmUFolEUCaMcRlvklY1rPQWoVyJTFvAYyRjSWZ_BUUiY5VJSCMGoYYOCaYyKlTNYY6jNB4Kz74MBW5z0Wxzhxw26x89e8ePK3enIi9qKx4XkKTIbBEmcYeAE-4vbymO-_l5c7X9l4d2yAJg2YyL8uyS1mT0pPfIvHqe3I9H-7V2fwKx3Pu6
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PS8MwFA-ignrwvzidmoPgqdimWdIeZVomblNkwm4lTRMZSCfbFLz5BQQ_o5_EvKSr8yCCeGxJS8l7L-_X9-f3EDqWvmAZVE9xorUHqTUvCgPtxZHmLI-Nk5GWMr_Nu92o349vympC6IVx_BBVwA0sw57XYOAQkD79Yg0VuYZWckjg-6E5hReo0SWj5Avnt8ldu0olcO5SyyyAIq-gP2Vu9Mnp9zd890xfcHMWtFqvk6z9w_euo9UScuIzpyMbaE4Vm2hlhohwC72ZQ3Y4NuJSuCOAseEeDzU22BA3hwUwwtoRE1gUObYhRC0g0o6bxtPKwQQUB9aLAl-4qToPLxP18foOobkcu3ZPiRMoljN3HWEytl7SkpRgaGQb4etH5dRxG90lF71myysHNXjSwA_iZYJkMC2CSi4aZo9DERq7DpgBow0pdCQ4b8hAEkWoIIIEWZjT3GCRgOSUMZ6FO2i-GBZqF2EuRawM5NEZYzQ2P4OCZqGMMxIFjPiK1JA3FVIqSxZzGKbxkDr-ZZLCNqfVNtfQSbX-0fF3_LiyPpV5WtrxOCU0Am4Ln4Y1RKx0f3lLenaedKqrvb88dISWWr1OO21fdq_20TKBIhob86mj-cnoSR2gRfk8GYxHh6WqfwLJs_-q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PS-NAFH9IFdk9uLqrbF1X5yDsKZhMpjPJsbQNu2ytIgq9hclkRgRJS1sFb34Bwc_oJ3HeTBr1IAuyx4RJCPPem_fL-_N7AIcqlLzA6ilBjQkwtRYkcWSCNDGCl6l1MspR5g_FaJSMx-lpXU2IvTCeH6IJuKFluPMaDVxPS3P0whoqS4Ot5JjAD2N7Cq8ynCTTgtX-WXYxbFIJQvjUMo-wyCsaL5kbQ3r09g1vPdML3HwNWp3Xyb78h-_dhI0acpKu15EtWNHVV_j8iojwGzzYQ3Yyt-LS5FgiY8MlmRhisSHpTSpkhHUjJoisSuJCiEZipJ30rKdVVwtUHFwvKzLwU3Wu7xb66f4RQ3Ml8e2eimRYLGfvesJk4rykIykh2Mg2IydT7dVxGy6ywXnvd1APagiUhR80KCQtcFoEU0J27B7HMrZ2HXELRjtKmkQK0VGRopoySSWNirhkpcUiES0Z56KId6BVTSr9HYhQMtUW8piCc5ban0HJililBU0iTkNN2xAshZSrmsUch2lc555_mea4zXmzzW341ayfev6Od1fuLWWe13Y8zylLkNsiZHEbqJPuP96Sd_vZcXO1-5GHDmD9tJ_lwz-jvz_gE8UaGhfy2YPWYnajf8Kaul1czWf7taY_A1Qq_yU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoscale+Mapping+of+the+Conductivity+and+Interfacial+Capacitance+of+an+Electrolyte%E2%80%90Gated+Organic+Field%E2%80%90Effect+Transistor+under+Operation&rft.jtitle=Advanced+functional+materials&rft.au=Kyndiah%2C+Adrica&rft.au=Checa%2C+Mart%C3%AD&rft.au=Leonardi%2C+Francesca&rft.au=Millan%E2%80%90Solsona%2C+Ruben&rft.date=2021-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=5&rft_id=info:doi/10.1002%2Fadfm.202008032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202008032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon