Nanoscale Mapping of the Conductivity and Interfacial Capacitance of an Electrolyte‐Gated Organic Field‐Effect Transistor under Operation
Probing nanoscale electrical properties of organic semiconducting materials at the interface with an electrolyte solution under externally applied voltages is key in the field of organic bioelectronics. It is demonstrated that the conductivity and interfacial capacitance of the active channel of an...
Uložené v:
| Vydané v: | Advanced functional materials Ročník 31; číslo 5 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken
Wiley Subscription Services, Inc
01.01.2021
|
| Predmet: | |
| ISSN: | 1616-301X, 1616-3028 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Probing nanoscale electrical properties of organic semiconducting materials at the interface with an electrolyte solution under externally applied voltages is key in the field of organic bioelectronics. It is demonstrated that the conductivity and interfacial capacitance of the active channel of an electrolyte‐gated organic field‐effect transistor (EGOFET) under operation can be probed at the nanoscale using scanning dielectric microscopy in force detection mode in liquid environment. Local electrostatic force versus gate voltage transfer characteristics are obtained on the device and correlated with the global current–voltage transfer characteristics of the EGOFET. Nanoscale maps of the conductivity of the semiconducting channel show the dependence of the channel conductivity on the gate voltage and its variation along the channel due to the space charge limited conduction. The maps reveal very small electrical heterogeneities, which correspond to local interfacial capacitance variations due to an ultrathin non‐uniform insulating layer resulting from a phase separation in the organic semiconducting blend. Present results offer insights into the transduction mechanism at the organic semiconductor/electrolyte interfaces at scales down to ≈100 nm, which can bring substantial optimization of organic electronic devices for bioelectronic applications such as electrical recording on excitable cells or label‐free biosensing.
Nanoscale electrical conductivity and interfacial capacitance maps of an operating electrolyte gated organic field effect transistor are obtained by using scanning dielectric microscopy in‐liquid environment. The conductivity maps reveal the on–off transition of the transistor device, while the interfacial capacitance maps show the minute heterogeneities resulting from phase separtion in the active organic semiconductor material. |
|---|---|
| AbstractList | Probing nanoscale electrical properties of organic semiconducting materials at the interface with an electrolyte solution under externally applied voltages is key in the field of organic bioelectronics. It is demonstrated that the conductivity and interfacial capacitance of the active channel of an electrolyte‐gated organic field‐effect transistor (EGOFET) under operation can be probed at the nanoscale using scanning dielectric microscopy in force detection mode in liquid environment. Local electrostatic force versus gate voltage transfer characteristics are obtained on the device and correlated with the global current–voltage transfer characteristics of the EGOFET. Nanoscale maps of the conductivity of the semiconducting channel show the dependence of the channel conductivity on the gate voltage and its variation along the channel due to the space charge limited conduction. The maps reveal very small electrical heterogeneities, which correspond to local interfacial capacitance variations due to an ultrathin non‐uniform insulating layer resulting from a phase separation in the organic semiconducting blend. Present results offer insights into the transduction mechanism at the organic semiconductor/electrolyte interfaces at scales down to ≈100 nm, which can bring substantial optimization of organic electronic devices for bioelectronic applications such as electrical recording on excitable cells or label‐free biosensing.
Nanoscale electrical conductivity and interfacial capacitance maps of an operating electrolyte gated organic field effect transistor are obtained by using scanning dielectric microscopy in‐liquid environment. The conductivity maps reveal the on–off transition of the transistor device, while the interfacial capacitance maps show the minute heterogeneities resulting from phase separtion in the active organic semiconductor material. Probing nanoscale electrical properties of organic semiconducting materials at the interface with an electrolyte solution under externally applied voltages is key in the field of organic bioelectronics. It is demonstrated that the conductivity and interfacial capacitance of the active channel of an electrolyte‐gated organic field‐effect transistor (EGOFET) under operation can be probed at the nanoscale using scanning dielectric microscopy in force detection mode in liquid environment. Local electrostatic force versus gate voltage transfer characteristics are obtained on the device and correlated with the global current–voltage transfer characteristics of the EGOFET. Nanoscale maps of the conductivity of the semiconducting channel show the dependence of the channel conductivity on the gate voltage and its variation along the channel due to the space charge limited conduction. The maps reveal very small electrical heterogeneities, which correspond to local interfacial capacitance variations due to an ultrathin non‐uniform insulating layer resulting from a phase separation in the organic semiconducting blend. Present results offer insights into the transduction mechanism at the organic semiconductor/electrolyte interfaces at scales down to ≈100 nm, which can bring substantial optimization of organic electronic devices for bioelectronic applications such as electrical recording on excitable cells or label‐free biosensing. |
| Author | Kyndiah, Adrica Fumagalli, Laura Leonardi, Francesca Checa, Martí Millan‐Solsona, Ruben Di Muzio, Martina Mas‐Torrent, Marta Gomila, Gabriel Tanwar, Shubham |
| Author_xml | – sequence: 1 givenname: Adrica orcidid: 0000-0002-4668-6330 surname: Kyndiah fullname: Kyndiah, Adrica email: akyndiah@ibecbarcelona.eu organization: Universitat de Barcelona – sequence: 2 givenname: Martí orcidid: 0000-0003-2607-6866 surname: Checa fullname: Checa, Martí organization: The Barcelona Institute of Science and Technology (BIST) – sequence: 3 givenname: Francesca orcidid: 0000-0003-4214-6537 surname: Leonardi fullname: Leonardi, Francesca organization: Institut de Ciència de Materials de Barcelona (ICMAB‐CSIC) – sequence: 4 givenname: Ruben orcidid: 0000-0003-0912-7246 surname: Millan‐Solsona fullname: Millan‐Solsona, Ruben organization: Universitat de Barcelona – sequence: 5 givenname: Martina orcidid: 0000-0001-6525-7972 surname: Di Muzio fullname: Di Muzio, Martina organization: The Barcelona Institute of Science and Technology (BIST) – sequence: 6 givenname: Shubham orcidid: 0000-0002-9418-2532 surname: Tanwar fullname: Tanwar, Shubham organization: The Barcelona Institute of Science and Technology (BIST) – sequence: 7 givenname: Laura orcidid: 0000-0003-1749-2905 surname: Fumagalli fullname: Fumagalli, Laura organization: The University of Manchester – sequence: 8 givenname: Marta orcidid: 0000-0002-1586-005X surname: Mas‐Torrent fullname: Mas‐Torrent, Marta organization: Institut de Ciència de Materials de Barcelona (ICMAB‐CSIC) – sequence: 9 givenname: Gabriel orcidid: 0000-0002-1949-1757 surname: Gomila fullname: Gomila, Gabriel email: ggomila@ibecbarcelona.eu organization: Universitat de Barcelona |
| BookMark | eNqFkM1KAzEURoNU0Fa3rgOuW2-S6cy4lNrWQrUbBXfDnSSjkTEZk1TpzhcQfEafxBkqCoK4yiWcc3--PulZZzUhRwxGDICfoKoeRxw4QA6C75B9lrJ0KIDnve-a3e6RfggPACzLRLJP3q7QuiCx1vQSm8bYO-oqGu81nTir1jKaZxM3FK2iCxu1r1AarOkEm7aIaKXueLR0WmsZvas3UX-8vs8xakVX_g6tkXRmdK3a32lVtRC99miDCdF5urZKe7pqtMdonD0guxXWQR9-vQNyM5teTy6Gy9V8MTlbDqVgGR-WyEsQbJzIDMftUQLFaSpYmgOMJVY5ZtlYMsk1T5AjZ6VQiYKcMa6SNM1KMSDH276Nd09rHWLx4NbetiMLnuQMuIBEtFSypaR3IXhdFd3J3Z7Ro6kLBkUXfNEFX3wH32qjX1rjzSP6zd_C6VZ4MbXe_EMXZ-ezyx_3EwYQmx4 |
| CitedBy_id | crossref_primary_10_1088_1674_4926_43_4_041101 crossref_primary_10_1063_5_0078034 crossref_primary_10_1039_D2NR02177C crossref_primary_10_1088_1361_6528_ac26ff crossref_primary_10_3390_sym13122379 crossref_primary_10_1002_adts_202200698 crossref_primary_10_1002_smtd_202100279 crossref_primary_10_1002_aelm_202400222 crossref_primary_10_1016_j_electacta_2022_140810 crossref_primary_10_3390_nano11061402 crossref_primary_10_1186_s12951_021_00912_6 crossref_primary_10_1002_adma_202309767 crossref_primary_10_1039_D1NR04689F |
| Cites_doi | 10.1038/srep39623 10.1088/0957-4484/23/20/205703 10.1021/nl803851u 10.1002/adbi.201700072 10.1039/c3cp44251a 10.1103/PhysRevLett.103.256803 10.1002/adma.201602479 10.1002/adma.200904163 10.1002/adma.200501394 10.1038/s41467-018-05235-z 10.1002/smll.201902534 10.1039/C9NR07659J 10.1063/1.3427362 10.1038/nmat3369 10.1038/nmat4918 10.1063/1.1637443 10.1021/acsami.7b19279 10.1103/PhysRevE.100.022604 10.1038/ncomms4005 10.1063/1.3699218 10.1002/adma.201200088 10.1016/j.orgel.2012.10.027 10.1063/1.2821119 10.1016/j.bios.2019.111844 10.1002/admt.201600090 10.1126/science.aat4191 10.1002/adfm.201904513 10.1021/jp709590p 10.1038/ncomms2573 10.1002/admt.201900104 10.1049/el:19921481 10.1002/adma.201104580 10.1063/1.4768164 10.1116/1.4997760 10.1002/adfm.201703899 10.1039/c3tb20340a 10.1002/adma.200801466 |
| ContentType | Journal Article |
| Copyright | 2020 Wiley‐VCH GmbH 2021 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2021 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.202008032 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adfm_202008032 ADFM202008032 |
| Genre | article |
| GrantInformation_xml | – fundername: BEST Postdoctoral Programme – fundername: Agencia Estatal de Investigación funderid: TEC2016‐79156‐P – fundername: European Research Council funderid: 819417 – fundername: Horizon 2020's Marie Curie Sklodowska‐Curie Actions COFUND scheme funderid: GA 712754 – fundername: Spanish Ministry funderid: FANCY CTQ2016‐80030‐R; GENESIS PID2019‐111682RB‐I00 – fundername: Programme for Centers of Excellence in R&D funderid: SEV‐2015‐0496 – fundername: Ministry of Economy and Competitiveness – fundername: European Commission – fundername: Generalitat de Catalunya funderid: 2017‐SGR‐918 – fundername: BORGES funderid: GA 813863 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 O8X 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3172-ba2b03154c7a53013a3963168005caf8a775c1c2e24a2a21b3d4d08112d4667b3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000582443900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Sun Nov 09 08:09:03 EST 2025 Tue Nov 18 21:29:35 EST 2025 Sat Nov 29 07:21:32 EST 2025 Wed Jan 22 16:30:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3172-ba2b03154c7a53013a3963168005caf8a775c1c2e24a2a21b3d4d08112d4667b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1749-2905 0000-0003-2607-6866 0000-0002-1949-1757 0000-0002-9418-2532 0000-0002-1586-005X 0000-0001-6525-7972 0000-0003-4214-6537 0000-0003-0912-7246 0000-0002-4668-6330 |
| PQID | 2481023043 |
| PQPubID | 2045204 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2481023043 crossref_citationtrail_10_1002_adfm_202008032 crossref_primary_10_1002_adfm_202008032 wiley_primary_10_1002_adfm_202008032_ADFM202008032 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2019; 4 2013; 4 2012; 100 2013; 1 2009; 21 2012; 101 2018; 360 2019; 11 2017; 27 2019; 15 2006; 18 2007; 91 2012; 11 2019; 100 2010; 22 2018; 9 2016; 6 2013; 15 2014; 5 2013; 14 2018; 2 2016; 1 2020; 30 2017; 16 2020 2007; 111 2020; 150 2017; 12 1952; 40 1992; 28 2009; 9 2003; 83 2012; 24 2016; 28 2018; 10 2012; 23 2009; 103 2010; 96 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 Sze S. M. (e_1_2_7_20_1) 1952; 40 Millan‐Solsona R. (e_1_2_7_35_1) 2020 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
| References_xml | – volume: 21 start-page: 19 year: 2009 publication-title: Adv. Mater. – year: 2020 publication-title: Nanoscale – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 91 year: 2007 publication-title: Appl. Phys. Lett. – volume: 18 start-page: 145 year: 2006 publication-title: Adv. Mater. – volume: 24 start-page: 1146 year: 2012 publication-title: Adv. Mater. – volume: 5 start-page: 3005 year: 2014 publication-title: Nat. Commun. – volume: 11 start-page: 808 year: 2012 publication-title: Nat. Mater. – volume: 101 year: 2012 publication-title: Appl. Phys. Lett. – volume: 96 year: 2010 publication-title: Appl. Phys. Lett. – volume: 4 year: 2019 publication-title: Adv. Mater. Technol. – volume: 24 start-page: 2441 year: 2012 publication-title: Adv. Mater. – volume: 100 year: 2019 publication-title: Phys. Rev. E – volume: 12 year: 2017 publication-title: Biointerphases – volume: 1 start-page: 3728 year: 2013 publication-title: J. Mater. Chem. B – volume: 16 start-page: 737 year: 2017 publication-title: Nat. Mater. – volume: 100 year: 2012 publication-title: Appl. Phys. Lett. – volume: 28 start-page: 2302 year: 1992 publication-title: Electron. Lett. – volume: 14 start-page: 156 year: 2013 publication-title: Org. Electron. – volume: 9 start-page: 3223 year: 2018 publication-title: Nat. Commun. – volume: 150 year: 2020 publication-title: Biosens. Bioelectron. – volume: 15 year: 2019 publication-title: Small – volume: 360 start-page: 1339 year: 2018 publication-title: Science – volume: 15 start-page: 3897 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 10 start-page: 7296 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 83 start-page: 5539 year: 2003 publication-title: Appl. Phys. Lett. – volume: 40 start-page: 473 year: 1952 publication-title: Proc. IRE – volume: 23 year: 2012 publication-title: Nanotechnology – volume: 4 start-page: 1575 year: 2013 publication-title: Nat. Commun. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 111 year: 2007 publication-title: J. Phys. Chem. A – volume: 103 year: 2009 publication-title: Phys. Rev. Lett. – volume: 28 year: 2016 publication-title: Adv. Mater. – volume: 1 year: 2016 publication-title: Adv. Mater. Technol. – volume: 22 start-page: 2565 year: 2010 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 9 start-page: 1604 year: 2009 publication-title: Nano Lett. – volume: 11 year: 2019 publication-title: Nanoscale – volume: 2 year: 2018 publication-title: Adv. Biosyst. – ident: e_1_2_7_27_1 doi: 10.1038/srep39623 – ident: e_1_2_7_39_1 doi: 10.1088/0957-4484/23/20/205703 – ident: e_1_2_7_22_1 doi: 10.1021/nl803851u – ident: e_1_2_7_7_1 doi: 10.1002/adbi.201700072 – ident: e_1_2_7_2_1 doi: 10.1039/c3cp44251a – ident: e_1_2_7_14_1 doi: 10.1103/PhysRevLett.103.256803 – volume: 40 start-page: 473 year: 1952 ident: e_1_2_7_20_1 publication-title: Proc. IRE – ident: e_1_2_7_31_1 doi: 10.1002/adma.201602479 – ident: e_1_2_7_9_1 doi: 10.1002/adma.200904163 – ident: e_1_2_7_16_1 doi: 10.1002/adma.200501394 – ident: e_1_2_7_5_1 doi: 10.1038/s41467-018-05235-z – ident: e_1_2_7_19_1 doi: 10.1002/smll.201902534 – ident: e_1_2_7_34_1 doi: 10.1039/C9NR07659J – ident: e_1_2_7_38_1 doi: 10.1063/1.3427362 – ident: e_1_2_7_23_1 doi: 10.1038/nmat3369 – ident: e_1_2_7_18_1 doi: 10.1038/nmat4918 – ident: e_1_2_7_13_1 doi: 10.1063/1.1637443 – ident: e_1_2_7_30_1 doi: 10.1021/acsami.7b19279 – ident: e_1_2_7_26_1 doi: 10.1103/PhysRevE.100.022604 – year: 2020 ident: e_1_2_7_35_1 publication-title: Nanoscale – ident: e_1_2_7_28_1 doi: 10.1038/ncomms4005 – ident: e_1_2_7_10_1 doi: 10.1063/1.3699218 – ident: e_1_2_7_32_1 doi: 10.1002/adma.201200088 – ident: e_1_2_7_4_1 doi: 10.1016/j.orgel.2012.10.027 – ident: e_1_2_7_21_1 doi: 10.1063/1.2821119 – ident: e_1_2_7_3_1 doi: 10.1016/j.bios.2019.111844 – ident: e_1_2_7_33_1 doi: 10.1002/admt.201600090 – ident: e_1_2_7_25_1 doi: 10.1126/science.aat4191 – ident: e_1_2_7_6_1 doi: 10.1002/adfm.201904513 – ident: e_1_2_7_12_1 doi: 10.1021/jp709590p – ident: e_1_2_7_1_1 doi: 10.1038/ncomms2573 – ident: e_1_2_7_29_1 doi: 10.1002/admt.201900104 – ident: e_1_2_7_37_1 doi: 10.1049/el:19921481 – ident: e_1_2_7_15_1 doi: 10.1002/adma.201104580 – ident: e_1_2_7_24_1 doi: 10.1063/1.4768164 – ident: e_1_2_7_8_1 doi: 10.1116/1.4997760 – ident: e_1_2_7_36_1 doi: 10.1002/adfm.201703899 – ident: e_1_2_7_11_1 doi: 10.1039/c3tb20340a – ident: e_1_2_7_17_1 doi: 10.1002/adma.200801466 |
| SSID | ssj0017734 |
| Score | 2.46145 |
| Snippet | Probing nanoscale electrical properties of organic semiconducting materials at the interface with an electrolyte solution under externally applied voltages is... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | atomic force microscopy Bioelectricity bioelectronic devices Capacitance Electric potential Electrical properties Electrical resistivity electrolyte gated organic field effect transistors Electrolytes Electrolytic cells Electronic devices in‐liquid scanning dielectric microscopy Materials science Optimization organic semiconducting blend Phase separation Semiconductor devices Space charge Transistors Voltage |
| Title | Nanoscale Mapping of the Conductivity and Interfacial Capacitance of an Electrolyte‐Gated Organic Field‐Effect Transistor under Operation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202008032 https://www.proquest.com/docview/2481023043 |
| Volume | 31 |
| WOSCitedRecordID | wos000582443900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6y60EPvsX1RQ6Cp2I77SbtUXYtHnwhCnsrSZqIIF3ZXQVv_gHB3-gvMZN063oQQY8taSmZmczXeXxDyIEKBZNYPcXBmABTa0EaRybIUsNZmVknoxxl_hm_uEgHg-xqpovf80M0ATe0DHdeo4ELOT76Ig0VpcFOcszfh7E9hNtglbfbIu3-dX571mQSOPeZZRZhjVc0mBI3hnD0_Q3fHdMX2pzFrM7p5Mv__9wVslQDTnrsNWSVzOlqjSzO0BCukzd7xA7HVliangvka7ijQ0MtMqS9YYV8sG7ABBVVSV0A0QiMs9Oe9bPqfoJqg-tFRU_8TJ2Hl4n-eH3HwFxJfbOnojmWytm7ni6ZOh_pKEootrGN6OWj9sq4QW7zk5veaVCPaQiUBR8QSAESZ0Ukiouu3eJYxNaqI2ahaFcJkwrOuypSoCERICCScZmUFolEUCaMcRlvklY1rPQWoVyJTFvAYyRjSWZ_BUUiY5VJSCMGoYYOCaYyKlTNYY6jNB4Kz74MBW5z0Wxzhxw26x89e8ePK3enIi9qKx4XkKTIbBEmcYeAE-4vbymO-_l5c7X9l4d2yAJg2YyL8uyS1mT0pPfIvHqe3I9H-7V2fwKx3Pu6 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PS8MwFA-ignrwvzidmoPgqdimWdIeZVomblNkwm4lTRMZSCfbFLz5BQQ_o5_EvKSr8yCCeGxJS8l7L-_X9-f3EDqWvmAZVE9xorUHqTUvCgPtxZHmLI-Nk5GWMr_Nu92o349vympC6IVx_BBVwA0sw57XYOAQkD79Yg0VuYZWckjg-6E5hReo0SWj5Avnt8ldu0olcO5SyyyAIq-gP2Vu9Mnp9zd890xfcHMWtFqvk6z9w_euo9UScuIzpyMbaE4Vm2hlhohwC72ZQ3Y4NuJSuCOAseEeDzU22BA3hwUwwtoRE1gUObYhRC0g0o6bxtPKwQQUB9aLAl-4qToPLxP18foOobkcu3ZPiRMoljN3HWEytl7SkpRgaGQb4etH5dRxG90lF71myysHNXjSwA_iZYJkMC2CSi4aZo9DERq7DpgBow0pdCQ4b8hAEkWoIIIEWZjT3GCRgOSUMZ6FO2i-GBZqF2EuRawM5NEZYzQ2P4OCZqGMMxIFjPiK1JA3FVIqSxZzGKbxkDr-ZZLCNqfVNtfQSbX-0fF3_LiyPpV5WtrxOCU0Am4Ln4Y1RKx0f3lLenaedKqrvb88dISWWr1OO21fdq_20TKBIhob86mj-cnoSR2gRfk8GYxHh6WqfwLJs_-q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PS-NAFH9IFdk9uLqrbF1X5yDsKZhMpjPJsbQNu2ytIgq9hclkRgRJS1sFb34Bwc_oJ3HeTBr1IAuyx4RJCPPem_fL-_N7AIcqlLzA6ilBjQkwtRYkcWSCNDGCl6l1MspR5g_FaJSMx-lpXU2IvTCeH6IJuKFluPMaDVxPS3P0whoqS4Ot5JjAD2N7Cq8ynCTTgtX-WXYxbFIJQvjUMo-wyCsaL5kbQ3r09g1vPdML3HwNWp3Xyb78h-_dhI0acpKu15EtWNHVV_j8iojwGzzYQ3Yyt-LS5FgiY8MlmRhisSHpTSpkhHUjJoisSuJCiEZipJ30rKdVVwtUHFwvKzLwU3Wu7xb66f4RQ3Ml8e2eimRYLGfvesJk4rykIykh2Mg2IydT7dVxGy6ywXnvd1APagiUhR80KCQtcFoEU0J27B7HMrZ2HXELRjtKmkQK0VGRopoySSWNirhkpcUiES0Z56KId6BVTSr9HYhQMtUW8piCc5ban0HJililBU0iTkNN2xAshZSrmsUch2lc555_mea4zXmzzW341ayfev6Od1fuLWWe13Y8zylLkNsiZHEbqJPuP96Sd_vZcXO1-5GHDmD9tJ_lwz-jvz_gE8UaGhfy2YPWYnajf8Kaul1czWf7taY_A1Qq_yU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoscale+Mapping+of+the+Conductivity+and+Interfacial+Capacitance+of+an+Electrolyte%E2%80%90Gated+Organic+Field%E2%80%90Effect+Transistor+under+Operation&rft.jtitle=Advanced+functional+materials&rft.au=Kyndiah%2C+Adrica&rft.au=Checa%2C+Mart%C3%AD&rft.au=Leonardi%2C+Francesca&rft.au=Millan%E2%80%90Solsona%2C+Ruben&rft.date=2021-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=5&rft_id=info:doi/10.1002%2Fadfm.202008032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202008032 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |