Design of Artificial Neural Networks for Damage Estimation of Composite Laminates: Application to Delamination Failures in Ply Drops

This work presents a data-driven approach based on Artificial Neural Networks (ANN), that benefits from parametric non-linear finite element analyses, in order to provide a “cheaper” numerical alternative to the more expensive experimental testing of advanced composite laminates. The chosen subject...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Composite structures Ročník 304; číslo 1; s. 116320
Hlavní autoři: Mendoza, Arturo, Friderikos, Orestis, Trullo, Roger, Baranger, Emmanuel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.01.2023
Elsevier
Témata:
ISSN:0263-8223, 1879-1085
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This work presents a data-driven approach based on Artificial Neural Networks (ANN), that benefits from parametric non-linear finite element analyses, in order to provide a “cheaper” numerical alternative to the more expensive experimental testing of advanced composite laminates. The chosen subject of study is the damage evolution and associated delamination failures of ply drops. As such, physical-based modeling of these phenomena are used as training data for obtaining the most suitable ANN capable of estimating the damage evolution using only the prescribed initial conditions (i.e., laminate geometry, material orientation, applied loading). Additionally, this work aims at providing first-hand experience into the procedure that leads to obtaining such ANN. In order to do so, we detail each of the required steps, such as choosing a network architecture, defining a custom loss function, as well as deciding on the better learning parameters. Each stage on this process is guided by intuitive statistical analyses and simple criteria, such as selecting the “simpler” model over whenever a more complex one “improves” on the performance but only by a narrow margin. Indeed, for every step, multiple numerical experiences are provided so that the reader can also get a deeper understanding on the inner-workings of these ANN models. With this goal in mind, we employ dimensionality reduction techniques (PCA and t-SNE) to also propose a geometrical visualization of the nonlinear transformations performed by the ANN. Finally, additional tests regarding the network ability to generalize to unseen data showed that the optimal well-trained ANN is accurate and robust enough for near real-time predictions of the various damage evolution patterns, and outperforms other data-driven methods under comparison.
AbstractList This work presents a data-driven approach based on Artificial Neural Networks (ANN), that benefits from parametric non-linear finite element analyses, in order to provide a “cheaper” numerical alternative to the more expensive experimental testing of advanced composite laminates. The chosen subject of study is the damage evolution and associated delamination failures of ply drops. As such, physical-based modeling of these phenomena are used as training data for obtaining the most suitable ANN capable of estimating the damage evolution using only the prescribed initial conditions (i.e., laminate geometry, material orientation, applied loading). Additionally, this work aims at providing first-hand experience into the procedure that leads to obtaining such ANN. In order to do so, we detail each of the required steps, such as choosing a network architecture, defining a custom loss function, as well as deciding on the better learning parameters. Each stage on this process is guided by intuitive statistical analyses and simple criteria, such as selecting the “simpler” model over whenever a more complex one “improves” on the performance but only by a narrow margin. Indeed, for every step, multiple numerical experiences are provided so that the reader can also get a deeper understanding on the inner-workings of these ANN models. With this goal in mind, we employ dimensionality reduction techniques (PCA and t-SNE) to also propose a geometrical visualization of the nonlinear transformations performed by the ANN. Finally, additional tests regarding the network ability to generalize to unseen data showed that the optimal well-trained ANN is accurate and robust enough for near real-time predictions of the various damage evolution patterns, and outperforms other data-driven methods under comparison.
This work proposes a data driven approach which utilizes Artificial Neural Networks (ANN) in conjunction with parametric non-linear finite element analysis. The aim is to provide a low cost numerical counterpart to the expensive experimental testing of advanced composite laminates. The training data of ANN are obtained from physical based modeling of the damage evolution and associated delamination failures of ply drops. In contrast to a black-box ANN modeling approach, the core of this study concerns the development of a method for determining an optimal neural architecture. More specifically, we employed a random search handcrafted methodology for the neural net topology learning based on exploration and experimentation. This methodology is enhanced by a detailed statistical analysis used to make inferences about the procedural generation of architectures. In the same context, a series of experiments are performed to obtain an optimal set of hyperparameters to achieve a good performance in the training dataset. Furthermore, a visualization of the respective manifolds of the ANNs hidden layers is provided using two popular dimensionality reduction techniques, namely PCA and t-SNE, so as to transform the network layer output data into 2D representations. Additional tests, among others, regarding the network ability to generalize to unseen data, showed that the optimal well-trained neural network is accurate and robust enough for near real-time predictions of the various damage evolution patterns, and outperforms other data driven methods under comparison.
ArticleNumber 116320
Author Mendoza, Arturo
Trullo, Roger
Baranger, Emmanuel
Friderikos, Orestis
Author_xml – sequence: 1
  givenname: Arturo
  orcidid: 0000-0002-1746-9054
  surname: Mendoza
  fullname: Mendoza, Arturo
  email: arturo.mendoza-quispe@safrangroup.com
  organization: Université Paris-Saclay, ENS Paris-Saclay, CentraleSupélec, CNRS, LMPS – Laboratoire de Mécanique Paris-Saclay, 4 avenue des sciences, 91190 Gif-sur-Yvette, France
– sequence: 2
  givenname: Orestis
  surname: Friderikos
  fullname: Friderikos, Orestis
  organization: Université Paris-Saclay, ENS Paris-Saclay, CentraleSupélec, CNRS, LMPS – Laboratoire de Mécanique Paris-Saclay, 4 avenue des sciences, 91190 Gif-sur-Yvette, France
– sequence: 3
  givenname: Roger
  surname: Trullo
  fullname: Trullo, Roger
  organization: Safran Tech, Rue des Jeunes Bois, 78772 Magny les Hameaux, France
– sequence: 4
  givenname: Emmanuel
  orcidid: 0000-0001-6295-9776
  surname: Baranger
  fullname: Baranger, Emmanuel
  organization: Université Paris-Saclay, ENS Paris-Saclay, CentraleSupélec, CNRS, LMPS – Laboratoire de Mécanique Paris-Saclay, 4 avenue des sciences, 91190 Gif-sur-Yvette, France
BackLink https://hal.science/hal-03826330$$DView record in HAL
BookMark eNqNkEFPGzEQha2KSg2U_-Arh009dth4OSClCZRKUeEAZ8txxnTSzXplOyDu_PA62VaVeoHTyJ733uh9x-yoCx0yxkGMQUD9ZTN2YdunHHcuj6WQcgxQKyk-sBHoaVOB0OdHbCRkrSotpfrEjlPaCCH0BGDEXheY6LHjwfNZzOTJkW35D9zFw8jPIf5K3IfIF3ZrH5FfpUxbmykcPPNyOyTKyJd2S53NmC74rO9bcoMmB77Adtjt39eW2l3ExKnjd-0LX8TQp8_so7dtwtM_84Q9XF_dz2-q5e237_PZsnIKpqJaoQJcgT9vYOUnyk90XVvvpIapqnFtrXTYoG6kB71SZYXa1WvAxmk7dWqiTtjZkPvTtqaPpUd8McGSuZktzf5PKF04KfEERXs5aF0MKUX0xlE-dMixdDAgzJ6_2Zh__M2evxn4lwD9X8Dfi--wfh2sWGA8EUaTHGHncE0Ri3Yd6O2Q30sBq1M
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e33681
crossref_primary_10_1016_j_tws_2024_112346
crossref_primary_10_1038_s41598_025_02390_4
Cites_doi 10.1016/j.compstruct.2005.01.020
10.1016/0266-3538(96)00005-X
10.1016/j.compositesa.2010.05.009
10.1016/j.paerosci.2005.02.001
10.1016/j.compstruct.2019.111653
10.1109/CVPR.2016.90
10.1557/mrc.2019.32
10.1007/s10443-021-09891-1
10.1016/j.compstruct.2006.04.047
10.1016/j.compstruct.2021.114287
10.1016/j.matdes.2004.04.008
10.1016/j.compscitech.2020.108573
10.1109/IJCNN.2001.939002
10.1177/073168449401300804
10.1016/j.matdes.2018.05.049
10.1109/COGANN.1992.273950
10.1016/S1359-835X(97)00102-4
10.3389/fpsyg.2018.01185
10.1080/00401706.2000.10485979
10.1016/j.compstruct.2020.113131
10.1037/h0071325
10.1016/S0266-3538(03)00106-4
10.1016/j.compstruct.2018.08.014
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.compstruct.2022.116320
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1879-1085
ExternalDocumentID oai:HAL:hal-03826330v1
10_1016_j_compstruct_2022_116320
S0263822322010522
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
SMS
WUQ
~HD
1XC
VOOES
ID FETCH-LOGICAL-c3170-be31eb1f591bf43f4866afc281736edaa2ce9e892f18b36afe8c6d1e9c8a7c343
ISSN 0263-8223
IngestDate Tue Oct 14 20:30:56 EDT 2025
Sat Nov 29 07:19:50 EST 2025
Tue Nov 18 21:02:18 EST 2025
Fri Feb 23 02:38:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Damage mechanics
Nonlinear finite element analysis
Manifold learning
Artificial Neural Networks
Neural architecture learning
Artificial Neural Networks (ANN)
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3170-be31eb1f591bf43f4866afc281736edaa2ce9e892f18b36afe8c6d1e9c8a7c343
ORCID 0000-0002-1746-9054
0000-0001-6295-9776
OpenAccessLink https://hal.science/hal-03826330
ParticipantIDs hal_primary_oai_HAL_hal_03826330v1
crossref_citationtrail_10_1016_j_compstruct_2022_116320
crossref_primary_10_1016_j_compstruct_2022_116320
elsevier_sciencedirect_doi_10_1016_j_compstruct_2022_116320
PublicationCentury 2000
PublicationDate 2023-01-15
PublicationDateYYYYMMDD 2023-01-15
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Composite structures
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Chakraborty (b6) 2005; 26
Hotelling (b44) 1933; 24
Di Benedetto, Botelho, Janotti, Ancelotti Junior, Gomes (b9) 2021; 257
He, Zhang, Ren, Sun (b27) 2015
Khan, Kim (b8) 2018; 206
Khatir, Tiachacht, Le Thanh, Ghandourah, Mirjalili, Wahab (b15) 2021; 273
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, volume 2016-December, 2016. p. 770–778.
Yang, Fu, Lee, Li (b10) 2021; 28
El Kadi (b17) 2006; 73
Allegri, Wisnom, Hallett (b18) 2010; 41
Zhang, Friedrich (b16) 2003; 63
Haykin (b25) 1999
Benzeggagh, Kenane (b22) 1996; 56
Schaffer JD, Whitley D, Eshelman LJ. Combinations of genetic algorithms and neural networks: A survey of the state of the art. In: International workshop on combinations of genetic algorithms and neural networks, 1992. p. 1–37.
Cui, Wisnom, Jones (b19) 1994; 13
Kingma, Ba (b28) 2015
Snoek, Larochelle, Adams (b34) 2012; Vol. 4
Saxena, Verbeek (b40) 2016
Chen, Gu (b4) 2019; 9
Deenadayalu, Chattopadhyay, Chen (b5) 2004
Vapnik (b26) 1992; Vol. 4
Kesavan, Deivasigamani, John, Herszberg (b7) 2006; 75
Bishop (b24) 1995
Ronneberger, Fischer, Brox (b29) 2015; Vol. 9351
Zhang, Allegri, Hallett (b14) 2022; 236–237
Kitano (b38) 1990; Vol. 4
Petrossian, Wisnom (b20) 1998; 29
(b23) 2014
Han S, Mao H, Dally WJ. Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding. In: 4th international conference on learning representations, ICLR 2016 - conference track proceedings, 2016.
Queipo, Haftka, Shyy, Goel, Vaidyanathan, Kevin Tucker (b2) 2005; 41
Krizhevsky (b43) 2014
McKay, Beckman, Conover (b21) 2000; 42
Hodas, Stinis (b41) 2018; 9
Guillon D, Lemasçon A, Callens C. QSP : An innovative process based on tailored preformsfor low cost and fast production of optimized thermoplastic composite parts. In: ECCM17-17th European conference on composite materials, 2016. p. 1.
Allegri (b11) 2018; 155
Baker B, Gupta O, Naik N, Raskar R. Designing neural network architectures using reinforcement learning. In: 5th international conference on learning representations, ICLR 2017 - conference track proceedings, 2019.
Zoph, Le (b36) 2017
Bergstra J, Yamins D, Cox DD. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In: 30th international conference on machine learning, ICML 2013, 2013. p. 115–23.
Tao, Zhang, Ji, Qiu (b13) 2021; 203
Wilson DR, Martinez TR. The need for small learning rates on large problems. In: Proceedings of the international joint conference on neural networks, Vol. 1, 2001. p. 115–9.
Altabey, Noori (b12) 2017; 3
Van Der Maaten, Hinton (b45) 2008; 9
Elsken, Metzen, Hutter (b31) 2019
Kyriakides, Margaritis (b32) 2020
Friderikos, Baranger, Guillon (b3) 2020; 234
Khan (10.1016/j.compstruct.2022.116320_b8) 2018; 206
Queipo (10.1016/j.compstruct.2022.116320_b2) 2005; 41
Zoph (10.1016/j.compstruct.2022.116320_b36) 2017
Chen (10.1016/j.compstruct.2022.116320_b4) 2019; 9
El Kadi (10.1016/j.compstruct.2022.116320_b17) 2006; 73
Zhang (10.1016/j.compstruct.2022.116320_b14) 2022; 236–237
Hodas (10.1016/j.compstruct.2022.116320_b41) 2018; 9
Ronneberger (10.1016/j.compstruct.2022.116320_b29) 2015; Vol. 9351
Allegri (10.1016/j.compstruct.2022.116320_b18) 2010; 41
Vapnik (10.1016/j.compstruct.2022.116320_b26) 1992; Vol. 4
Khatir (10.1016/j.compstruct.2022.116320_b15) 2021; 273
10.1016/j.compstruct.2022.116320_b42
Elsken (10.1016/j.compstruct.2022.116320_b31) 2019
He (10.1016/j.compstruct.2022.116320_b27) 2015
Deenadayalu (10.1016/j.compstruct.2022.116320_b5) 2004
Haykin (10.1016/j.compstruct.2022.116320_b25) 1999
Altabey (10.1016/j.compstruct.2022.116320_b12) 2017; 3
Van Der Maaten (10.1016/j.compstruct.2022.116320_b45) 2008; 9
Hotelling (10.1016/j.compstruct.2022.116320_b44) 1933; 24
Petrossian (10.1016/j.compstruct.2022.116320_b20) 1998; 29
Friderikos (10.1016/j.compstruct.2022.116320_b3) 2020; 234
10.1016/j.compstruct.2022.116320_b37
Kesavan (10.1016/j.compstruct.2022.116320_b7) 2006; 75
(10.1016/j.compstruct.2022.116320_b23) 2014
10.1016/j.compstruct.2022.116320_b39
Kitano (10.1016/j.compstruct.2022.116320_b38) 1990; Vol. 4
10.1016/j.compstruct.2022.116320_b33
Yang (10.1016/j.compstruct.2022.116320_b10) 2021; 28
McKay (10.1016/j.compstruct.2022.116320_b21) 2000; 42
Kyriakides (10.1016/j.compstruct.2022.116320_b32) 2020
10.1016/j.compstruct.2022.116320_b35
Saxena (10.1016/j.compstruct.2022.116320_b40) 2016
Benzeggagh (10.1016/j.compstruct.2022.116320_b22) 1996; 56
Kingma (10.1016/j.compstruct.2022.116320_b28) 2015
10.1016/j.compstruct.2022.116320_b30
Snoek (10.1016/j.compstruct.2022.116320_b34) 2012; Vol. 4
Allegri (10.1016/j.compstruct.2022.116320_b11) 2018; 155
Zhang (10.1016/j.compstruct.2022.116320_b16) 2003; 63
Bishop (10.1016/j.compstruct.2022.116320_b24) 1995
10.1016/j.compstruct.2022.116320_b1
Tao (10.1016/j.compstruct.2022.116320_b13) 2021; 203
Krizhevsky (10.1016/j.compstruct.2022.116320_b43) 2014
Di Benedetto (10.1016/j.compstruct.2022.116320_b9) 2021; 257
Cui (10.1016/j.compstruct.2022.116320_b19) 1994; 13
Chakraborty (10.1016/j.compstruct.2022.116320_b6) 2005; 26
References_xml – volume: 9
  start-page: 556
  year: 2019
  end-page: 566
  ident: b4
  article-title: Machine learning for composite materials
  publication-title: MRS Commun
– start-page: 1
  year: 2015
  ident: b28
  article-title: Adam: A method for stochastic optimization
  publication-title: 3rd international conference on learning representations, ICLR 2015 - conference track proceedings
– year: 2019
  ident: b31
  article-title: Neural architecture search: A survey
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: b27
  article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
  publication-title: Proceedings of the 2015 IEEE international conference on computer vision (ICCV), ICCV ’15
– volume: 26
  start-page: 1
  year: 2005
  end-page: 7
  ident: b6
  article-title: Artificial neural network based delamination prediction in laminated composites
  publication-title: Mater Des
– volume: 42
  start-page: 55
  year: 2000
  end-page: 61
  ident: b21
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– year: 2014
  ident: b43
  article-title: One weird trick for parallelizing convolutional neural networks
– year: 2020
  ident: b32
  article-title: An introduction to neural architecture search for convolutional networks
– volume: 13
  start-page: 722
  year: 1994
  end-page: 739
  ident: b19
  article-title: An experimental and analytical study of delamination of unidirectional specimens with cut central plies
  publication-title: J Reinf Plast Compos
– reference: Han S, Mao H, Dally WJ. Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding. In: 4th international conference on learning representations, ICLR 2016 - conference track proceedings, 2016.
– volume: 41
  start-page: 1
  year: 2005
  end-page: 28
  ident: b2
  article-title: Surrogate-based analysis and optimization
  publication-title: Prog Aerosp Sci
– volume: Vol. 4
  start-page: 831
  year: 1992
  end-page: 838
  ident: b26
  article-title: Principles of risk minimization for learning theory
  publication-title: Advances in Neural Information Processing Systems
– volume: 273
  year: 2021
  ident: b15
  article-title: An improved artificial neural network using arithmetic optimization algorithm for damage assessment in fgm composite plates
  publication-title: Compos Struct
– volume: 234
  year: 2020
  ident: b3
  article-title: Regularized least squares for the building of a sizing criterion based on damage mechanics
  publication-title: Compos Struct
– reference: Baker B, Gupta O, Naik N, Raskar R. Designing neural network architectures using reinforcement learning. In: 5th international conference on learning representations, ICLR 2017 - conference track proceedings, 2019.
– reference: He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, volume 2016-December, 2016. p. 770–778.
– reference: Wilson DR, Martinez TR. The need for small learning rates on large problems. In: Proceedings of the international joint conference on neural networks, Vol. 1, 2001. p. 115–9.
– volume: 3
  start-page: 53
  year: 2017
  end-page: 78
  ident: b12
  article-title: Fatigue life prediction for carbon fibre/epoxy laminate composites under spectrum loading using two different neural network architectures
  publication-title: Int J Sustain Mater Struct Syst
– start-page: 3874
  year: 2004
  end-page: 3903
  ident: b5
  article-title: Characterization and detection of delamination in composite laminates using artificial neural networks
– volume: 73
  start-page: 1
  year: 2006
  end-page: 23
  ident: b17
  article-title: Modeling the mechanical behavior of fiber-reinforced polymeric composite materials using artificial neural networks - a review
  publication-title: Compos Struct
– volume: 206
  start-page: 354
  year: 2018
  end-page: 362
  ident: b8
  article-title: Assessment of delaminated smart composite laminates via system identification and supervised learning
  publication-title: Compos Struct
– volume: 29
  start-page: 403
  year: 1998
  end-page: 414
  ident: b20
  article-title: Parametric study of delamination in composites with discontinuous plies using an analytical solution based on fracture mechanics
  publication-title: Composites A
– volume: Vol. 4
  start-page: 461
  year: 1990
  end-page: 476
  ident: b38
  article-title: Designing neural networks using genetic algorithms with graph generation system
  publication-title: Complex Systems
– volume: 28
  start-page: 809
  year: 2021
  end-page: 833
  ident: b10
  article-title: Artificial neural network (ANN)-based residual strength prediction of carbon fibre reinforced composites (CFRCs) after impact
  publication-title: Appl Compos Mater
– year: 2014
  ident: b23
  article-title: Dassault systèmes, abaqus version 6.14.2, user’s manual
– reference: Schaffer JD, Whitley D, Eshelman LJ. Combinations of genetic algorithms and neural networks: A survey of the state of the art. In: International workshop on combinations of genetic algorithms and neural networks, 1992. p. 1–37.
– volume: 24
  start-page: 417
  year: 1933
  end-page: 441
  ident: b44
  article-title: Analysis of a complex of statistical variables into principal components
  publication-title: J Educational Psychol
– volume: 56
  start-page: 439
  year: 1996
  end-page: 449
  ident: b22
  article-title: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus
  publication-title: Compos Sci Technol
– reference: Bergstra J, Yamins D, Cox DD. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In: 30th international conference on machine learning, ICML 2013, 2013. p. 115–23.
– volume: 257
  year: 2021
  ident: b9
  article-title: Development of an artificial neural network for predicting energy absorption capability of thermoplastic commingled composites
  publication-title: Compos Struct
– volume: Vol. 9351
  start-page: 234
  year: 2015
  end-page: 241
  ident: b29
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics)
– year: 1999
  ident: b25
  article-title: Neural networks: A comprehensive foundation
– start-page: 4060
  year: 2016
  end-page: 4068
  ident: b40
  article-title: Convolutional neural fabrics
  publication-title: Advances in neural information processing systems
– volume: Vol. 4
  start-page: 2951
  year: 2012
  end-page: 2959
  ident: b34
  article-title: Practical Bayesian optimization of machine learning algorithms
  publication-title: Advances in neural information processing systems
– volume: 75
  start-page: 313
  year: 2006
  end-page: 320
  ident: b7
  article-title: Damage detection in T-joint composite structures
  publication-title: Compos Struct
– volume: 155
  start-page: 59
  year: 2018
  end-page: 70
  ident: b11
  article-title: Modelling fatigue delamination growth in fibre-reinforced composites: Power-law equations or artificial neural networks?
  publication-title: Mater Des
– year: 1995
  ident: b24
  article-title: Neural networks for pattern recognition
– volume: 9
  year: 2018
  ident: b41
  article-title: Doing the impossible: Why neural networks can be trained at all
  publication-title: Front Psychol
– reference: Guillon D, Lemasçon A, Callens C. QSP : An innovative process based on tailored preformsfor low cost and fast production of optimized thermoplastic composite parts. In: ECCM17-17th European conference on composite materials, 2016. p. 1.
– year: 2017
  ident: b36
  article-title: Neural architecture search with reinforcement learning
– volume: 63
  start-page: 2029
  year: 2003
  end-page: 2044
  ident: b16
  article-title: Artificial neural networks applied to polymer composites: a review
  publication-title: Compos Sci Technol
– volume: 203
  year: 2021
  ident: b13
  article-title: Application of neural network to model stiffness degradation for composite laminates under cyclic loadings
  publication-title: Compos Sci Technol
– volume: 236–237
  year: 2022
  ident: b14
  article-title: Embedding artificial neural networks into twin cohesive zone models for composites fatigue delamination prediction under various stress ratios and mode mixities
  publication-title: Int J Solids Struct
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2625
  ident: b45
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– volume: 41
  start-page: 1388
  year: 2010
  end-page: 1394
  ident: b18
  article-title: A simplified approach to the damage tolerance design of asymmetric tapered laminates, part I: Methodology development
  publication-title: Composites A
– year: 2020
  ident: 10.1016/j.compstruct.2022.116320_b32
– volume: 73
  start-page: 1
  year: 2006
  ident: 10.1016/j.compstruct.2022.116320_b17
  article-title: Modeling the mechanical behavior of fiber-reinforced polymeric composite materials using artificial neural networks - a review
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2005.01.020
– volume: Vol. 9351
  start-page: 234
  year: 2015
  ident: 10.1016/j.compstruct.2022.116320_b29
  article-title: U-net: Convolutional networks for biomedical image segmentation
– start-page: 3874
  year: 2004
  ident: 10.1016/j.compstruct.2022.116320_b5
– volume: 56
  start-page: 439
  year: 1996
  ident: 10.1016/j.compstruct.2022.116320_b22
  article-title: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus
  publication-title: Compos Sci Technol
  doi: 10.1016/0266-3538(96)00005-X
– year: 2017
  ident: 10.1016/j.compstruct.2022.116320_b36
– volume: 41
  start-page: 1388
  year: 2010
  ident: 10.1016/j.compstruct.2022.116320_b18
  article-title: A simplified approach to the damage tolerance design of asymmetric tapered laminates, part I: Methodology development
  publication-title: Composites A
  doi: 10.1016/j.compositesa.2010.05.009
– volume: 41
  start-page: 1
  year: 2005
  ident: 10.1016/j.compstruct.2022.116320_b2
  article-title: Surrogate-based analysis and optimization
  publication-title: Prog Aerosp Sci
  doi: 10.1016/j.paerosci.2005.02.001
– volume: 234
  year: 2020
  ident: 10.1016/j.compstruct.2022.116320_b3
  article-title: Regularized least squares for the building of a sizing criterion based on damage mechanics
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2019.111653
– volume: 3
  start-page: 53
  year: 2017
  ident: 10.1016/j.compstruct.2022.116320_b12
  article-title: Fatigue life prediction for carbon fibre/epoxy laminate composites under spectrum loading using two different neural network architectures
  publication-title: Int J Sustain Mater Struct Syst
– year: 1995
  ident: 10.1016/j.compstruct.2022.116320_b24
– ident: 10.1016/j.compstruct.2022.116320_b30
  doi: 10.1109/CVPR.2016.90
– ident: 10.1016/j.compstruct.2022.116320_b39
– ident: 10.1016/j.compstruct.2022.116320_b1
– volume: 9
  start-page: 556
  year: 2019
  ident: 10.1016/j.compstruct.2022.116320_b4
  article-title: Machine learning for composite materials
  publication-title: MRS Commun
  doi: 10.1557/mrc.2019.32
– volume: 28
  start-page: 809
  year: 2021
  ident: 10.1016/j.compstruct.2022.116320_b10
  article-title: Artificial neural network (ANN)-based residual strength prediction of carbon fibre reinforced composites (CFRCs) after impact
  publication-title: Appl Compos Mater
  doi: 10.1007/s10443-021-09891-1
– volume: 75
  start-page: 313
  year: 2006
  ident: 10.1016/j.compstruct.2022.116320_b7
  article-title: Damage detection in T-joint composite structures
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2006.04.047
– ident: 10.1016/j.compstruct.2022.116320_b35
– ident: 10.1016/j.compstruct.2022.116320_b33
– volume: 273
  year: 2021
  ident: 10.1016/j.compstruct.2022.116320_b15
  article-title: An improved artificial neural network using arithmetic optimization algorithm for damage assessment in fgm composite plates
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2021.114287
– year: 2014
  ident: 10.1016/j.compstruct.2022.116320_b43
– volume: Vol. 4
  start-page: 461
  year: 1990
  ident: 10.1016/j.compstruct.2022.116320_b38
  article-title: Designing neural networks using genetic algorithms with graph generation system
– year: 1999
  ident: 10.1016/j.compstruct.2022.116320_b25
– volume: 26
  start-page: 1
  year: 2005
  ident: 10.1016/j.compstruct.2022.116320_b6
  article-title: Artificial neural network based delamination prediction in laminated composites
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2004.04.008
– volume: 203
  year: 2021
  ident: 10.1016/j.compstruct.2022.116320_b13
  article-title: Application of neural network to model stiffness degradation for composite laminates under cyclic loadings
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2020.108573
– ident: 10.1016/j.compstruct.2022.116320_b42
  doi: 10.1109/IJCNN.2001.939002
– year: 2014
  ident: 10.1016/j.compstruct.2022.116320_b23
– volume: 13
  start-page: 722
  year: 1994
  ident: 10.1016/j.compstruct.2022.116320_b19
  article-title: An experimental and analytical study of delamination of unidirectional specimens with cut central plies
  publication-title: J Reinf Plast Compos
  doi: 10.1177/073168449401300804
– start-page: 1026
  year: 2015
  ident: 10.1016/j.compstruct.2022.116320_b27
  article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
– volume: Vol. 4
  start-page: 831
  year: 1992
  ident: 10.1016/j.compstruct.2022.116320_b26
  article-title: Principles of risk minimization for learning theory
– year: 2019
  ident: 10.1016/j.compstruct.2022.116320_b31
– volume: 155
  start-page: 59
  year: 2018
  ident: 10.1016/j.compstruct.2022.116320_b11
  article-title: Modelling fatigue delamination growth in fibre-reinforced composites: Power-law equations or artificial neural networks?
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2018.05.049
– start-page: 1
  year: 2015
  ident: 10.1016/j.compstruct.2022.116320_b28
  article-title: Adam: A method for stochastic optimization
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.compstruct.2022.116320_b45
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– ident: 10.1016/j.compstruct.2022.116320_b37
  doi: 10.1109/COGANN.1992.273950
– volume: 29
  start-page: 403
  year: 1998
  ident: 10.1016/j.compstruct.2022.116320_b20
  article-title: Parametric study of delamination in composites with discontinuous plies using an analytical solution based on fracture mechanics
  publication-title: Composites A
  doi: 10.1016/S1359-835X(97)00102-4
– start-page: 4060
  year: 2016
  ident: 10.1016/j.compstruct.2022.116320_b40
  article-title: Convolutional neural fabrics
– volume: 9
  year: 2018
  ident: 10.1016/j.compstruct.2022.116320_b41
  article-title: Doing the impossible: Why neural networks can be trained at all
  publication-title: Front Psychol
  doi: 10.3389/fpsyg.2018.01185
– volume: 42
  start-page: 55
  year: 2000
  ident: 10.1016/j.compstruct.2022.116320_b21
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
  doi: 10.1080/00401706.2000.10485979
– volume: 257
  year: 2021
  ident: 10.1016/j.compstruct.2022.116320_b9
  article-title: Development of an artificial neural network for predicting energy absorption capability of thermoplastic commingled composites
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2020.113131
– volume: 236–237
  year: 2022
  ident: 10.1016/j.compstruct.2022.116320_b14
  article-title: Embedding artificial neural networks into twin cohesive zone models for composites fatigue delamination prediction under various stress ratios and mode mixities
  publication-title: Int J Solids Struct
– volume: 24
  start-page: 417
  year: 1933
  ident: 10.1016/j.compstruct.2022.116320_b44
  article-title: Analysis of a complex of statistical variables into principal components
  publication-title: J Educational Psychol
  doi: 10.1037/h0071325
– volume: 63
  start-page: 2029
  year: 2003
  ident: 10.1016/j.compstruct.2022.116320_b16
  article-title: Artificial neural networks applied to polymer composites: a review
  publication-title: Compos Sci Technol
  doi: 10.1016/S0266-3538(03)00106-4
– volume: Vol. 4
  start-page: 2951
  year: 2012
  ident: 10.1016/j.compstruct.2022.116320_b34
  article-title: Practical Bayesian optimization of machine learning algorithms
– volume: 206
  start-page: 354
  year: 2018
  ident: 10.1016/j.compstruct.2022.116320_b8
  article-title: Assessment of delaminated smart composite laminates via system identification and supervised learning
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2018.08.014
SSID ssj0008411
Score 2.4038918
Snippet This work presents a data-driven approach based on Artificial Neural Networks (ANN), that benefits from parametric non-linear finite element analyses, in order...
This work proposes a data driven approach which utilizes Artificial Neural Networks (ANN) in conjunction with parametric non-linear finite element analysis....
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 116320
SubjectTerms Artificial Neural Networks
Computer Aided Engineering
Computer Science
Damage mechanics
Engineering Sciences
Manifold learning
Mechanics
Mechanics of materials
Neural and Evolutionary Computing
Neural architecture learning
Nonlinear finite element analysis
Title Design of Artificial Neural Networks for Damage Estimation of Composite Laminates: Application to Delamination Failures in Ply Drops
URI https://dx.doi.org/10.1016/j.compstruct.2022.116320
https://hal.science/hal-03826330
Volume 304
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1085
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008411
  issn: 0263-8223
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6jgf2gLiKjYssxNsUlMROYsNToZ0GqsYEBfUtysWBjjapsq0aPPNn-JecYydOJEAqQrykrRPbbb_P9snJd44JeZoFQaECyZ1QJsLhUjAndVPXyWG1F7lyGdfhYx-n0cmJmM_l6WDwo42F2SyjshRXV3L9X6GGMgAbQ2f_Am7bKBTAewAdjgA7HLcCfqw1GdrCrLUQCH3imINDv2jRt87BAICvULAzgUG-soYjzg-o41KH0wRVMhdGMzfqnnOjtTpWS3MWPx8lC9S2a2Ht6fLr4biu1ud9o7dr02SrxYst0KrMq2_GuVvDmcoSqsYAwcUXIwN8i1uILGytWX3ZPDN6V33q9MUvk1qHMesJfrVKyssmIKBxa_go6nJMYKfxtbXxNp246VyniWUOmDRmSlRmyhaRdDCGoj-nM7On8S_rg3FVnCG8a_OTn0HnPiwcIfPdbk20SsX32CX26KNsAIzVHbLrR4EUQ7I7ej2Zv7HLvuB6s2f7FRvZmBET_r6_P9lCO59br762cmY3yY3m9oSODK1ukYEqb5O9XtLKO-S7IRitCtoRjBqC0ZZgFAhGDcFoRzCsY8lALcGe0x696EVF-_SiLb3ooqRAL6rpdZd8OJrMXh07zV4eTsZwb6NUMQ_MgiKQXlpwVnARhkmR-cKLWKjyJPEzJZWQfuGJlMEpJbIw95TMRBJljLN7ZFhWpbpPqGDQRMRTnuYemFaelIolOY_gToUL5al9ErX_apw1ie5xv5Vl3Coaz-IOjxjxiA0e-8SzNdcm2csWdV60wMWN0WqM0Rg4t0XtJ4C17QxzvR-PpjGWuUC7kDF34x38UxcPyPVufD0kQ7hAPSLXsg2M2vpxw-KfMhjTbA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+Artificial+Neural+Networks+for+Damage+Estimation+of+Composite+Laminates%3A+Application+to+Delamination+Failures+in+Ply+Drops&rft.jtitle=Composite+structures&rft.au=Mendoza%2C+Arturo&rft.au=Friderikos%2C+Orestis&rft.au=Trullo%2C+Roger&rft.au=Baranger%2C+Emmanuel&rft.date=2023-01-15&rft.pub=Elsevier+Ltd&rft.issn=0263-8223&rft.eissn=1879-1085&rft.volume=304&rft_id=info:doi/10.1016%2Fj.compstruct.2022.116320&rft.externalDocID=S0263822322010522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8223&client=summon