3D/2D Perovskite Single Crystals Heterojunction for Suppressed Ions Migration in Hard X‐Ray Detection

Halide perovskites exhibit diverse properties depending on their compositions. However, integrating desired properties into one material is still challenging. Here, a facile solution‐processed epitaxial growth method to grow 2D perovskite single crystal on top of 3D perovskite single crystal, which...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials Vol. 31; no. 49
Main Authors: He, Yuhong, Pan, Wanting, Guo, Chunjie, Zhang, Huimao, Wei, Haotong, Yang, Bai
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 01.12.2021
Subjects:
ISSN:1616-301X, 1616-3028
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Halide perovskites exhibit diverse properties depending on their compositions. However, integrating desired properties into one material is still challenging. Here, a facile solution‐processed epitaxial growth method to grow 2D perovskite single crystal on top of 3D perovskite single crystal, which can passivate the surface defects for improved device performance is reported. Short formamidine (FA+) ions are replaced by long organic cations, which can fully align and cover the single crystal surface to prevent the ions migration or short FA+ ions volatilization. The thickness of epitaxial layer can be finely adjusted by controlling the growth time. The defect density of single crystals heterojunction is only 3.18 × 109 cm−3, and the carrier mobility is 80.43 cm2 V−1 s−1, which is greater than that of the control 3D perovskite single crystal. This study for the first time realized large area 3D/2D perovskite single crystals heterojunction, which suppressed ions migration and exhibited advanced performance in hard X‐rays detection applications. This strategy also provides a way to grow large area 2D perovskite single crystal from solution processes. The 2D epitaxial layer of the 3D/2D perovskite single crystals heterojunction can passivate the surface defects and suppress ion migration or short formamidine FA+ ion volatilization, which boost its optoelectric properties. The 3D/2D heterojunction X‐ray detector exhibits stable response to 120 kVp hard X‐rays, with the lowest detectable dose rate of 55 nGyairs−1.
AbstractList Halide perovskites exhibit diverse properties depending on their compositions. However, integrating desired properties into one material is still challenging. Here, a facile solution‐processed epitaxial growth method to grow 2D perovskite single crystal on top of 3D perovskite single crystal, which can passivate the surface defects for improved device performance is reported. Short formamidine (FA+) ions are replaced by long organic cations, which can fully align and cover the single crystal surface to prevent the ions migration or short FA+ ions volatilization. The thickness of epitaxial layer can be finely adjusted by controlling the growth time. The defect density of single crystals heterojunction is only 3.18 × 109 cm−3, and the carrier mobility is 80.43 cm2 V−1 s−1, which is greater than that of the control 3D perovskite single crystal. This study for the first time realized large area 3D/2D perovskite single crystals heterojunction, which suppressed ions migration and exhibited advanced performance in hard X‐rays detection applications. This strategy also provides a way to grow large area 2D perovskite single crystal from solution processes.
Halide perovskites exhibit diverse properties depending on their compositions. However, integrating desired properties into one material is still challenging. Here, a facile solution‐processed epitaxial growth method to grow 2D perovskite single crystal on top of 3D perovskite single crystal, which can passivate the surface defects for improved device performance is reported. Short formamidine (FA+) ions are replaced by long organic cations, which can fully align and cover the single crystal surface to prevent the ions migration or short FA+ ions volatilization. The thickness of epitaxial layer can be finely adjusted by controlling the growth time. The defect density of single crystals heterojunction is only 3.18 × 109 cm−3, and the carrier mobility is 80.43 cm2 V−1 s−1, which is greater than that of the control 3D perovskite single crystal. This study for the first time realized large area 3D/2D perovskite single crystals heterojunction, which suppressed ions migration and exhibited advanced performance in hard X‐rays detection applications. This strategy also provides a way to grow large area 2D perovskite single crystal from solution processes. The 2D epitaxial layer of the 3D/2D perovskite single crystals heterojunction can passivate the surface defects and suppress ion migration or short formamidine FA+ ion volatilization, which boost its optoelectric properties. The 3D/2D heterojunction X‐ray detector exhibits stable response to 120 kVp hard X‐rays, with the lowest detectable dose rate of 55 nGyairs−1.
Halide perovskites exhibit diverse properties depending on their compositions. However, integrating desired properties into one material is still challenging. Here, a facile solution‐processed epitaxial growth method to grow 2D perovskite single crystal on top of 3D perovskite single crystal, which can passivate the surface defects for improved device performance is reported. Short formamidine (FA + ) ions are replaced by long organic cations, which can fully align and cover the single crystal surface to prevent the ions migration or short FA + ions volatilization. The thickness of epitaxial layer can be finely adjusted by controlling the growth time. The defect density of single crystals heterojunction is only 3.18 × 10 9 cm −3 , and the carrier mobility is 80.43 cm 2 V −1 s −1 , which is greater than that of the control 3D perovskite single crystal. This study for the first time realized large area 3D/2D perovskite single crystals heterojunction, which suppressed ions migration and exhibited advanced performance in hard X‐rays detection applications. This strategy also provides a way to grow large area 2D perovskite single crystal from solution processes.
Author Wei, Haotong
Pan, Wanting
Guo, Chunjie
Zhang, Huimao
Yang, Bai
He, Yuhong
Author_xml – sequence: 1
  givenname: Yuhong
  orcidid: 0000-0003-1915-5304
  surname: He
  fullname: He, Yuhong
  organization: Jilin University
– sequence: 2
  givenname: Wanting
  surname: Pan
  fullname: Pan, Wanting
  organization: Jilin University
– sequence: 3
  givenname: Chunjie
  surname: Guo
  fullname: Guo, Chunjie
  organization: The First Hospital of Jilin University
– sequence: 4
  givenname: Huimao
  surname: Zhang
  fullname: Zhang, Huimao
  organization: The First Hospital of Jilin University
– sequence: 5
  givenname: Haotong
  surname: Wei
  fullname: Wei, Haotong
  email: hweichem@jlu.edu.cn
  organization: The First Hospital of Jilin University
– sequence: 6
  givenname: Bai
  surname: Yang
  fullname: Yang, Bai
  organization: The First Hospital of Jilin University
BookMark eNqFkM1Kw0AUhQdRsK1uXQ-4Tjs_-euyNNYWWhSr0F2YzNyUqWkSZxIlOx_BZ_RJTFupIIire-Ce71zu6aLTvMgBoStK-pQQNhAq3fYZYZS4YUhOUIf61Hc4YeHpUdPVOepauyGEBgF3O2jNowGL8D2Y4tU-6wrwUufrDPDYNLYSmcVTqNrlps5lpYscp4XBy7osDVgLCs-K3OKFXhux3-ocT4VRePX5_vEgGhy18J67QGdpmwaX37OHniY3j-OpM7-7nY1Hc0dyGhDHI6GQioBKGIgApKDABAOmXC45lyRJAyXSVvuJSFyXBNJTvie4GnoBDUHxHro-5JameKnBVvGmqE3enoyZTzxGXcpY63IPLmkKaw2ksdTV_oPKCJ3FlMS7SuNdpfGx0hbr_8JKo7fCNH8DwwPwpjNo_nHHo2iy-GG_AP_njbI
CitedBy_id crossref_primary_10_1016_j_cej_2025_162481
crossref_primary_10_1002_adma_202304523
crossref_primary_10_1002_smtd_202400425
crossref_primary_10_1002_smll_202409962
crossref_primary_10_1002_adom_202300399
crossref_primary_10_1021_acsami_5c03064
crossref_primary_10_1002_adma_202211977
crossref_primary_10_1088_2631_7990_acab40
crossref_primary_10_1002_smll_202503460
crossref_primary_10_1002_smll_202501696
crossref_primary_10_1016_j_nanoen_2023_109055
crossref_primary_10_1002_adfm_202422003
crossref_primary_10_1002_adfm_202513676
crossref_primary_10_1016_j_isci_2023_107935
crossref_primary_10_1088_1402_4896_ad1fc5
crossref_primary_10_1021_acsphotonics_5c01099
crossref_primary_10_1063_5_0147065
crossref_primary_10_1002_adfm_202203329
crossref_primary_10_1002_smsc_202300085
crossref_primary_10_1063_5_0239662
crossref_primary_10_1002_adma_202309588
crossref_primary_10_1109_LED_2023_3311473
crossref_primary_10_3389_fphy_2023_1114242
crossref_primary_10_1002_adom_202200449
crossref_primary_10_1002_adfm_202214339
crossref_primary_10_1002_smll_202308242
crossref_primary_10_1002_admt_202300714
crossref_primary_10_1021_acsenergylett_5c00938
crossref_primary_10_1002_eom2_12258
crossref_primary_10_1002_aenm_202201472
crossref_primary_10_1002_smtd_202200500
crossref_primary_10_1007_s40843_024_3159_8
crossref_primary_10_1002_pssr_202400243
crossref_primary_10_1063_5_0153306
crossref_primary_10_1002_adom_202302396
crossref_primary_10_1002_adfm_202312871
crossref_primary_10_1007_s40820_023_01118_1
crossref_primary_10_3390_sym14061099
crossref_primary_10_1063_5_0252837
crossref_primary_10_1088_2752_5724_ac9248
crossref_primary_10_1039_D3NR02801A
crossref_primary_10_1002_smll_202311649
crossref_primary_10_1016_j_optmat_2025_117110
crossref_primary_10_1002_advs_202205536
crossref_primary_10_1002_adfm_202400817
crossref_primary_10_1002_lpor_202300654
crossref_primary_10_1002_inf2_12560
crossref_primary_10_1038_s41377_024_01521_2
crossref_primary_10_1002_adom_202403123
crossref_primary_10_1021_acsami_5c04169
Cites_doi 10.1002/pssr.201004378
10.1038/ncomms10334
10.1002/adfm.201804128
10.1002/adma.202001581
10.1002/aenm.201501803
10.1039/C5EE03255E
10.1021/acsenergylett.0c01022
10.1016/j.matlet.2010.11.071
10.1002/adma.202003790
10.1038/s41565-021-00848-w
10.1038/s41467-019-08981-w
10.1021/acs.chemmater.5b04107
10.1021/acsenergylett.8b00047
10.1126/science.aad5845
10.1039/C6TA04949D
10.1039/C8TC02334D
10.3390/s110505112
10.1039/C6EE03014A
10.1002/aenm.201501310
10.1039/C5TC03417E
10.1039/C5EE03874J
10.1021/acsenergylett.7b00442
10.1021/acsenergylett.6b00002
10.1038/nature24032
10.1126/science.1228604
10.1021/acs.chemmater.9b05101
10.1002/adma.201102450
10.1002/aenm.202000197
10.1038/srep43794
10.1021/acs.accounts.5b00420
10.1039/c3ee43822h
10.1039/D0TC04250A
10.1039/C4CS00458B
10.1021/nl400349b
10.1016/j.scib.2020.06.024
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202104880
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202104880
ADFM202104880
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 2017TD‐06
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3170-508acd0edb2ea7eca1e2a2e2d43c33c0bf7daf3c36bab4407c5d65a3d95718ed3
IEDL.DBID DRFUL
ISICitedReferencesCount 78
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000693720300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Sun Nov 30 04:46:17 EST 2025
Sat Nov 29 07:21:38 EST 2025
Tue Nov 18 20:57:41 EST 2025
Wed Jan 22 16:26:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 49
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3170-508acd0edb2ea7eca1e2a2e2d43c33c0bf7daf3c36bab4407c5d65a3d95718ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1915-5304
PQID 2605214122
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2605214122
crossref_citationtrail_10_1002_adfm_202104880
crossref_primary_10_1002_adfm_202104880
wiley_primary_10_1002_adfm_202104880_ADFM202104880
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020 2020 2020 2021; 5 32 10 9
2021; 16
2016; 6
2018; 28
2016; 1
2018 2017; 3 2
2016 2011 2017 2016; 4 11 550 45
2019; 10
2017 2018 2016 2016; 7 6 7 49
2011; 65
2011; 23
2015 2015 2017 2016 2016; 28 5 10 9 9
2020; 32
2020; 65
2014; 7
2012 2016 2016 2013; 338 351 4 13
2011; 5
e_1_2_10_1_1
e_1_2_10_2_1
e_1_2_10_1_2
e_1_2_10_1_3
e_1_2_10_2_3
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_1_4
e_1_2_10_2_2
e_1_2_10_3_1
e_1_2_10_4_3
e_1_2_10_6_1
e_1_2_10_13_4
e_1_2_10_16_1
e_1_2_10_2_4
e_1_2_10_4_2
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_4_5
e_1_2_10_6_3
e_1_2_10_7_2
e_1_2_10_8_1
e_1_2_10_13_2
e_1_2_10_14_1
e_1_2_10_4_4
e_1_2_10_6_2
e_1_2_10_7_1
e_1_2_10_13_3
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_6_4
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_11_1
References_xml – volume: 1
  start-page: 32
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 32
  start-page: 2501
  year: 2020
  publication-title: Chem. Mater.
– volume: 10
  start-page: 1066
  year: 2019
  publication-title: Nat. Commun.
– volume: 7 6 7 49
  start-page: 8042 286
  year: 2017 2018 2016 2016
  publication-title: Sci. Rep. J. Mater. Chem. C Nat. Commun. Acc. Chem. Res.
– volume: 65
  start-page: 677
  year: 2011
  publication-title: Mater. Lett.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 22
  year: 2011
  publication-title: Phys. Status Solidi RRL
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 28 5 10 9 9
  start-page: 284 361 1989 656
  year: 2015 2015 2017 2016 2016
  publication-title: Chem. Mater. Adv. Energy Mater. Energy Environ. Sci. Energy Environ. Sci. Energy Environ. Sci.
– volume: 23
  start-page: 4163
  year: 2011
  publication-title: Adv. Mater.
– volume: 16
  start-page: 584
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 5 32 10 9
  start-page: 2580 1429
  year: 2020 2020 2020 2021
  publication-title: ACS Energy Lett. Adv. Mater. Adv. Energy Mater. J. Mater. Chem. C
– volume: 4 11 550 45
  start-page: 11 5112 87 655
  year: 2016 2011 2017 2016
  publication-title: J. Mater. Chem. C Sensors Nature Chem. Soc. Rev.
– volume: 7
  start-page: 982
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 3 2
  start-page: 684 1571
  year: 2018 2017
  publication-title: ACS Energy Lett. ACS Energy Lett.
– volume: 65
  start-page: 1832
  year: 2020
  publication-title: Sci. Bull.
– volume: 338 351 4 13
  start-page: 643 151 1764
  year: 2012 2016 2016 2013
  publication-title: Science Science J. Mater. Chem. A Nano Lett.
– ident: e_1_2_10_18_1
  doi: 10.1002/pssr.201004378
– ident: e_1_2_10_6_3
  doi: 10.1038/ncomms10334
– ident: e_1_2_10_10_1
  doi: 10.1002/adfm.201804128
– ident: e_1_2_10_13_2
  doi: 10.1002/adma.202001581
– ident: e_1_2_10_14_1
  doi: 10.1002/aenm.201501803
– ident: e_1_2_10_4_5
  doi: 10.1039/C5EE03255E
– ident: e_1_2_10_13_1
  doi: 10.1021/acsenergylett.0c01022
– ident: e_1_2_10_11_1
  doi: 10.1016/j.matlet.2010.11.071
– ident: e_1_2_10_5_1
  doi: 10.1002/adma.202003790
– ident: e_1_2_10_9_1
  doi: 10.1038/s41565-021-00848-w
– ident: e_1_2_10_15_1
  doi: 10.1038/s41467-019-08981-w
– ident: e_1_2_10_4_1
  doi: 10.1021/acs.chemmater.5b04107
– ident: e_1_2_10_7_1
  doi: 10.1021/acsenergylett.8b00047
– ident: e_1_2_10_2_2
  doi: 10.1126/science.aad5845
– ident: e_1_2_10_2_3
  doi: 10.1039/C6TA04949D
– ident: e_1_2_10_6_2
  doi: 10.1039/C8TC02334D
– ident: e_1_2_10_1_2
  doi: 10.3390/s110505112
– ident: e_1_2_10_4_3
  doi: 10.1039/C6EE03014A
– ident: e_1_2_10_4_2
  doi: 10.1002/aenm.201501310
– ident: e_1_2_10_1_1
  doi: 10.1039/C5TC03417E
– ident: e_1_2_10_4_4
  doi: 10.1039/C5EE03874J
– ident: e_1_2_10_7_2
  doi: 10.1021/acsenergylett.7b00442
– ident: e_1_2_10_17_1
  doi: 10.1021/acsenergylett.6b00002
– ident: e_1_2_10_1_3
  doi: 10.1038/nature24032
– ident: e_1_2_10_2_1
  doi: 10.1126/science.1228604
– ident: e_1_2_10_8_1
  doi: 10.1021/acs.chemmater.9b05101
– ident: e_1_2_10_16_1
  doi: 10.1002/adma.201102450
– ident: e_1_2_10_13_3
  doi: 10.1002/aenm.202000197
– ident: e_1_2_10_6_1
  doi: 10.1038/srep43794
– ident: e_1_2_10_6_4
  doi: 10.1021/acs.accounts.5b00420
– ident: e_1_2_10_3_1
  doi: 10.1039/c3ee43822h
– ident: e_1_2_10_13_4
  doi: 10.1039/D0TC04250A
– ident: e_1_2_10_1_4
  doi: 10.1039/C4CS00458B
– ident: e_1_2_10_2_4
  doi: 10.1021/nl400349b
– ident: e_1_2_10_12_1
  doi: 10.1016/j.scib.2020.06.024
SSID ssj0017734
Score 2.6065922
Snippet Halide perovskites exhibit diverse properties depending on their compositions. However, integrating desired properties into one material is still challenging....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 3D/2D perovskite single crystals
Carrier mobility
Crystal defects
Crystal growth
Crystal surfaces
Epitaxial growth
hard X‐rays detection
heterojunction
Heterojunctions
Materials science
Perovskites
Single crystals
solution‐processed epitaxial growth
suppressed ions migration
Surface defects
Thickness
Title 3D/2D Perovskite Single Crystals Heterojunction for Suppressed Ions Migration in Hard X‐Ray Detection
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202104880
https://www.proquest.com/docview/2605214122
Volume 31
WOSCitedRecordID wos000693720300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFH_o5kEP_henU3IQPJW1Sdqux7E6Jrgx1MluJU1SmYxO2jnYzY_gZ_STmLRdNw8i6C0tSSjvT98vycvvAVwJk7qUhaYRSeoYFJu2wRSwMBzXCxWCjZpRluX7dOf2-83RyBus3eLP-SHKDTftGdn_Wjs4C9PGijSUiUjfJFdLFm2Dm1DFynjtClT9-87wrjxJcN38ZNmxdI6XNVoSN5q48X2G74FphTbXMWsWdDp7___cfdgtACdq5RZyABsyPoSdNRrCI3gmfgP7aCCT6TzVu7noQb2fSNROFgo8TlLU1Ukz0xcVA7UekQK6SJcDzYjHBbpVlot64-fcmNA4RjofAI0-3z_u2QL5cpble8XHMOzcPLa7RlGAweBEF6RR4I1xYUoRYslcyZklMcMSC0o4IdwMI1ewSLWdkIVULQ25LRybEeHZKuRJQU6gEk9jeQpIKFyGsfAc6gmaoULCPaGwRchI022KGhhL6Qe8YCfXRTImQc6rjAMtwKAUYA2uy_6vOS_Hjz3rS2UGhX-mgV7FYYtaGNcAZ2r7ZZag5Xd65dPZXwadw7Zu57kwdajMkjd5AVt8PhunyWVht1-0Q-37
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dS8MwFL34BeqD3-J0ah4En8raJGvXx7E6Jm5D_GJvJU3SMRmdbFPYmz_B3-gvMbftqj6IIL61JQ0lOek9SU7OBThTNve4iGwr1ty1OLWrljDEwnI9PzIMNq7Fqcr3oe11u7Vez7_O1YR4FibzhygW3HBkpP9rHOC4IF35dA0VKsaj5GbOgiBchGVusGRAvhzcNO_bxVaC52Vby66DIi-nN3dutGnlew3fI9Mn3fxKWtOo09z8h-_dgo2ccpJ6hpFtWNDJDqx_MSLchT4LKjQg13o8epngei65Nc-HmjTGM0MfhxPSQtnM6NFEQexJYqguwYSgqfW4IpcGu6Qz6GdwIoOEoCKA9N5f327EjAR6miq-kj24b17cNVpWnoLBkgxT0hj6JqSytYqoFp6WwtFUUE0VZ5IxaUexp0Rsrt1IRNxMDmVVuVXBlF81QU8rtg9LySjRB0CUYWaUKt_lvuIpL2TSV4ZdRILVvJoqgTVv_lDm_uSYJmMYZs7KNMQGDIsGLMF5Uf4pc-b4sWR53pthPkInIc7jqMMdSktA0377pZawHjQ7xd3hX146hdXWXacdti-7V0ewhs8zZUwZlqbjZ30MK_JlOpiMT3IQfwAAFPHr
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7oFNEH7-K85kHwqaxNsnZ9HNaiOMfwxt5KmqRjMjrZprA3f4K_0V9iTttVfRBBfGtDEsrJSc-X5Mt3AE6UzT0uYttKNHctTu26JQywsFzPjw2CTRpJxvJ9aHntdqPb9TsFmxDvwuT6EOWGG86M7H-NE1w_qaT2qRoqVIJXyc2aBZ1wHhY4ZpKpwEJwE963yqMEz8uPll0HSV5Od6bcaNPa9x6-R6ZPuPkVtGZRJ1z7h-9dh9UCcpJm7iMbMKfTTVj5IkS4BT0W1GhAOno0fBnjfi65NeUDTc5GUwMfB2NygbSZ4aOJgjiSxEBdgglBM-lxRS6N75Lrfi93J9JPCTICSPf99e1GTEmgJxnjK92G-_D87uzCKlIwWJJhShoD34RUtlYx1cLTUjiaCqqp4kwyJu048ZRIzLMbi5ibxaGsK7cumPLrJuhpxXagkg5TvQtEGWRGqfJd7iue4UImfWXQRSxYw2uoKlgz80ey0CfHNBmDKFdWphEaMCoNWIXTsv5TrszxY82D2WhGxQwdR7iOow53KK0Czcbtl16iZhBel297f2l0DEudIIxal-2rfVjG4pwYcwCVyehZH8KifJn0x6Ojwoc_AJ5T8WY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D%2F2D+Perovskite+Single+Crystals+Heterojunction+for+Suppressed+Ions+Migration+in+Hard+X%E2%80%90Ray+Detection&rft.jtitle=Advanced+functional+materials&rft.au=He%2C+Yuhong&rft.au=Pan%2C+Wanting&rft.au=Guo%2C+Chunjie&rft.au=Zhang%2C+Huimao&rft.date=2021-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=49&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202104880&rft.externalDBID=10.1002%252Fadfm.202104880&rft.externalDocID=ADFM202104880
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon