3D/2D Perovskite Single Crystals Heterojunction for Suppressed Ions Migration in Hard X‐Ray Detection
Halide perovskites exhibit diverse properties depending on their compositions. However, integrating desired properties into one material is still challenging. Here, a facile solution‐processed epitaxial growth method to grow 2D perovskite single crystal on top of 3D perovskite single crystal, which...
Saved in:
| Published in: | Advanced functional materials Vol. 31; no. 49 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc
01.12.2021
|
| Subjects: | |
| ISSN: | 1616-301X, 1616-3028 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Halide perovskites exhibit diverse properties depending on their compositions. However, integrating desired properties into one material is still challenging. Here, a facile solution‐processed epitaxial growth method to grow 2D perovskite single crystal on top of 3D perovskite single crystal, which can passivate the surface defects for improved device performance is reported. Short formamidine (FA+) ions are replaced by long organic cations, which can fully align and cover the single crystal surface to prevent the ions migration or short FA+ ions volatilization. The thickness of epitaxial layer can be finely adjusted by controlling the growth time. The defect density of single crystals heterojunction is only 3.18 × 109 cm−3, and the carrier mobility is 80.43 cm2 V−1 s−1, which is greater than that of the control 3D perovskite single crystal. This study for the first time realized large area 3D/2D perovskite single crystals heterojunction, which suppressed ions migration and exhibited advanced performance in hard X‐rays detection applications. This strategy also provides a way to grow large area 2D perovskite single crystal from solution processes.
The 2D epitaxial layer of the 3D/2D perovskite single crystals heterojunction can passivate the surface defects and suppress ion migration or short formamidine FA+ ion volatilization, which boost its optoelectric properties. The 3D/2D heterojunction X‐ray detector exhibits stable response to 120 kVp hard X‐rays, with the lowest detectable dose rate of 55 nGyairs−1. |
|---|---|
| AbstractList | Halide perovskites exhibit diverse properties depending on their compositions. However, integrating desired properties into one material is still challenging. Here, a facile solution‐processed epitaxial growth method to grow 2D perovskite single crystal on top of 3D perovskite single crystal, which can passivate the surface defects for improved device performance is reported. Short formamidine (FA+) ions are replaced by long organic cations, which can fully align and cover the single crystal surface to prevent the ions migration or short FA+ ions volatilization. The thickness of epitaxial layer can be finely adjusted by controlling the growth time. The defect density of single crystals heterojunction is only 3.18 × 109 cm−3, and the carrier mobility is 80.43 cm2 V−1 s−1, which is greater than that of the control 3D perovskite single crystal. This study for the first time realized large area 3D/2D perovskite single crystals heterojunction, which suppressed ions migration and exhibited advanced performance in hard X‐rays detection applications. This strategy also provides a way to grow large area 2D perovskite single crystal from solution processes. Halide perovskites exhibit diverse properties depending on their compositions. However, integrating desired properties into one material is still challenging. Here, a facile solution‐processed epitaxial growth method to grow 2D perovskite single crystal on top of 3D perovskite single crystal, which can passivate the surface defects for improved device performance is reported. Short formamidine (FA+) ions are replaced by long organic cations, which can fully align and cover the single crystal surface to prevent the ions migration or short FA+ ions volatilization. The thickness of epitaxial layer can be finely adjusted by controlling the growth time. The defect density of single crystals heterojunction is only 3.18 × 109 cm−3, and the carrier mobility is 80.43 cm2 V−1 s−1, which is greater than that of the control 3D perovskite single crystal. This study for the first time realized large area 3D/2D perovskite single crystals heterojunction, which suppressed ions migration and exhibited advanced performance in hard X‐rays detection applications. This strategy also provides a way to grow large area 2D perovskite single crystal from solution processes. The 2D epitaxial layer of the 3D/2D perovskite single crystals heterojunction can passivate the surface defects and suppress ion migration or short formamidine FA+ ion volatilization, which boost its optoelectric properties. The 3D/2D heterojunction X‐ray detector exhibits stable response to 120 kVp hard X‐rays, with the lowest detectable dose rate of 55 nGyairs−1. Halide perovskites exhibit diverse properties depending on their compositions. However, integrating desired properties into one material is still challenging. Here, a facile solution‐processed epitaxial growth method to grow 2D perovskite single crystal on top of 3D perovskite single crystal, which can passivate the surface defects for improved device performance is reported. Short formamidine (FA + ) ions are replaced by long organic cations, which can fully align and cover the single crystal surface to prevent the ions migration or short FA + ions volatilization. The thickness of epitaxial layer can be finely adjusted by controlling the growth time. The defect density of single crystals heterojunction is only 3.18 × 10 9 cm −3 , and the carrier mobility is 80.43 cm 2 V −1 s −1 , which is greater than that of the control 3D perovskite single crystal. This study for the first time realized large area 3D/2D perovskite single crystals heterojunction, which suppressed ions migration and exhibited advanced performance in hard X‐rays detection applications. This strategy also provides a way to grow large area 2D perovskite single crystal from solution processes. |
| Author | Wei, Haotong Pan, Wanting Guo, Chunjie Zhang, Huimao Yang, Bai He, Yuhong |
| Author_xml | – sequence: 1 givenname: Yuhong orcidid: 0000-0003-1915-5304 surname: He fullname: He, Yuhong organization: Jilin University – sequence: 2 givenname: Wanting surname: Pan fullname: Pan, Wanting organization: Jilin University – sequence: 3 givenname: Chunjie surname: Guo fullname: Guo, Chunjie organization: The First Hospital of Jilin University – sequence: 4 givenname: Huimao surname: Zhang fullname: Zhang, Huimao organization: The First Hospital of Jilin University – sequence: 5 givenname: Haotong surname: Wei fullname: Wei, Haotong email: hweichem@jlu.edu.cn organization: The First Hospital of Jilin University – sequence: 6 givenname: Bai surname: Yang fullname: Yang, Bai organization: The First Hospital of Jilin University |
| BookMark | eNqFkM1Kw0AUhQdRsK1uXQ-4Tjs_-euyNNYWWhSr0F2YzNyUqWkSZxIlOx_BZ_RJTFupIIire-Ce71zu6aLTvMgBoStK-pQQNhAq3fYZYZS4YUhOUIf61Hc4YeHpUdPVOepauyGEBgF3O2jNowGL8D2Y4tU-6wrwUufrDPDYNLYSmcVTqNrlps5lpYscp4XBy7osDVgLCs-K3OKFXhux3-ocT4VRePX5_vEgGhy18J67QGdpmwaX37OHniY3j-OpM7-7nY1Hc0dyGhDHI6GQioBKGIgApKDABAOmXC45lyRJAyXSVvuJSFyXBNJTvie4GnoBDUHxHro-5JameKnBVvGmqE3enoyZTzxGXcpY63IPLmkKaw2ksdTV_oPKCJ3FlMS7SuNdpfGx0hbr_8JKo7fCNH8DwwPwpjNo_nHHo2iy-GG_AP_njbI |
| CitedBy_id | crossref_primary_10_1016_j_cej_2025_162481 crossref_primary_10_1002_adma_202304523 crossref_primary_10_1002_smtd_202400425 crossref_primary_10_1002_smll_202409962 crossref_primary_10_1002_adom_202300399 crossref_primary_10_1021_acsami_5c03064 crossref_primary_10_1002_adma_202211977 crossref_primary_10_1088_2631_7990_acab40 crossref_primary_10_1002_smll_202503460 crossref_primary_10_1002_smll_202501696 crossref_primary_10_1016_j_nanoen_2023_109055 crossref_primary_10_1002_adfm_202422003 crossref_primary_10_1002_adfm_202513676 crossref_primary_10_1016_j_isci_2023_107935 crossref_primary_10_1088_1402_4896_ad1fc5 crossref_primary_10_1021_acsphotonics_5c01099 crossref_primary_10_1063_5_0147065 crossref_primary_10_1002_adfm_202203329 crossref_primary_10_1002_smsc_202300085 crossref_primary_10_1063_5_0239662 crossref_primary_10_1002_adma_202309588 crossref_primary_10_1109_LED_2023_3311473 crossref_primary_10_3389_fphy_2023_1114242 crossref_primary_10_1002_adom_202200449 crossref_primary_10_1002_adfm_202214339 crossref_primary_10_1002_smll_202308242 crossref_primary_10_1002_admt_202300714 crossref_primary_10_1021_acsenergylett_5c00938 crossref_primary_10_1002_eom2_12258 crossref_primary_10_1002_aenm_202201472 crossref_primary_10_1002_smtd_202200500 crossref_primary_10_1007_s40843_024_3159_8 crossref_primary_10_1002_pssr_202400243 crossref_primary_10_1063_5_0153306 crossref_primary_10_1002_adom_202302396 crossref_primary_10_1002_adfm_202312871 crossref_primary_10_1007_s40820_023_01118_1 crossref_primary_10_3390_sym14061099 crossref_primary_10_1063_5_0252837 crossref_primary_10_1088_2752_5724_ac9248 crossref_primary_10_1039_D3NR02801A crossref_primary_10_1002_smll_202311649 crossref_primary_10_1016_j_optmat_2025_117110 crossref_primary_10_1002_advs_202205536 crossref_primary_10_1002_adfm_202400817 crossref_primary_10_1002_lpor_202300654 crossref_primary_10_1002_inf2_12560 crossref_primary_10_1038_s41377_024_01521_2 crossref_primary_10_1002_adom_202403123 crossref_primary_10_1021_acsami_5c04169 |
| Cites_doi | 10.1002/pssr.201004378 10.1038/ncomms10334 10.1002/adfm.201804128 10.1002/adma.202001581 10.1002/aenm.201501803 10.1039/C5EE03255E 10.1021/acsenergylett.0c01022 10.1016/j.matlet.2010.11.071 10.1002/adma.202003790 10.1038/s41565-021-00848-w 10.1038/s41467-019-08981-w 10.1021/acs.chemmater.5b04107 10.1021/acsenergylett.8b00047 10.1126/science.aad5845 10.1039/C6TA04949D 10.1039/C8TC02334D 10.3390/s110505112 10.1039/C6EE03014A 10.1002/aenm.201501310 10.1039/C5TC03417E 10.1039/C5EE03874J 10.1021/acsenergylett.7b00442 10.1021/acsenergylett.6b00002 10.1038/nature24032 10.1126/science.1228604 10.1021/acs.chemmater.9b05101 10.1002/adma.201102450 10.1002/aenm.202000197 10.1038/srep43794 10.1021/acs.accounts.5b00420 10.1039/c3ee43822h 10.1039/D0TC04250A 10.1039/C4CS00458B 10.1021/nl400349b 10.1016/j.scib.2020.06.024 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.202104880 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adfm_202104880 ADFM202104880 |
| Genre | article |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 2017TD‐06 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 O8X 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3170-508acd0edb2ea7eca1e2a2e2d43c33c0bf7daf3c36bab4407c5d65a3d95718ed3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 78 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000693720300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Sun Nov 30 04:46:17 EST 2025 Sat Nov 29 07:21:38 EST 2025 Tue Nov 18 20:57:41 EST 2025 Wed Jan 22 16:26:52 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 49 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3170-508acd0edb2ea7eca1e2a2e2d43c33c0bf7daf3c36bab4407c5d65a3d95718ed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1915-5304 |
| PQID | 2605214122 |
| PQPubID | 2045204 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2605214122 crossref_citationtrail_10_1002_adfm_202104880 crossref_primary_10_1002_adfm_202104880 wiley_primary_10_1002_adfm_202104880_ADFM202104880 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2020 2020 2020 2021; 5 32 10 9 2021; 16 2016; 6 2018; 28 2016; 1 2018 2017; 3 2 2016 2011 2017 2016; 4 11 550 45 2019; 10 2017 2018 2016 2016; 7 6 7 49 2011; 65 2011; 23 2015 2015 2017 2016 2016; 28 5 10 9 9 2020; 32 2020; 65 2014; 7 2012 2016 2016 2013; 338 351 4 13 2011; 5 e_1_2_10_1_1 e_1_2_10_2_1 e_1_2_10_1_2 e_1_2_10_1_3 e_1_2_10_2_3 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_1_4 e_1_2_10_2_2 e_1_2_10_3_1 e_1_2_10_4_3 e_1_2_10_6_1 e_1_2_10_13_4 e_1_2_10_16_1 e_1_2_10_2_4 e_1_2_10_4_2 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_4_5 e_1_2_10_6_3 e_1_2_10_7_2 e_1_2_10_8_1 e_1_2_10_13_2 e_1_2_10_14_1 e_1_2_10_4_4 e_1_2_10_6_2 e_1_2_10_7_1 e_1_2_10_13_3 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_6_4 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_10_1 e_1_2_10_11_1 |
| References_xml | – volume: 1 start-page: 32 year: 2016 publication-title: ACS Energy Lett. – volume: 32 start-page: 2501 year: 2020 publication-title: Chem. Mater. – volume: 10 start-page: 1066 year: 2019 publication-title: Nat. Commun. – volume: 7 6 7 49 start-page: 8042 286 year: 2017 2018 2016 2016 publication-title: Sci. Rep. J. Mater. Chem. C Nat. Commun. Acc. Chem. Res. – volume: 65 start-page: 677 year: 2011 publication-title: Mater. Lett. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 5 start-page: 22 year: 2011 publication-title: Phys. Status Solidi RRL – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 28 5 10 9 9 start-page: 284 361 1989 656 year: 2015 2015 2017 2016 2016 publication-title: Chem. Mater. Adv. Energy Mater. Energy Environ. Sci. Energy Environ. Sci. Energy Environ. Sci. – volume: 23 start-page: 4163 year: 2011 publication-title: Adv. Mater. – volume: 16 start-page: 584 year: 2021 publication-title: Nat. Nanotechnol. – volume: 5 32 10 9 start-page: 2580 1429 year: 2020 2020 2020 2021 publication-title: ACS Energy Lett. Adv. Mater. Adv. Energy Mater. J. Mater. Chem. C – volume: 4 11 550 45 start-page: 11 5112 87 655 year: 2016 2011 2017 2016 publication-title: J. Mater. Chem. C Sensors Nature Chem. Soc. Rev. – volume: 7 start-page: 982 year: 2014 publication-title: Energy Environ. Sci. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 3 2 start-page: 684 1571 year: 2018 2017 publication-title: ACS Energy Lett. ACS Energy Lett. – volume: 65 start-page: 1832 year: 2020 publication-title: Sci. Bull. – volume: 338 351 4 13 start-page: 643 151 1764 year: 2012 2016 2016 2013 publication-title: Science Science J. Mater. Chem. A Nano Lett. – ident: e_1_2_10_18_1 doi: 10.1002/pssr.201004378 – ident: e_1_2_10_6_3 doi: 10.1038/ncomms10334 – ident: e_1_2_10_10_1 doi: 10.1002/adfm.201804128 – ident: e_1_2_10_13_2 doi: 10.1002/adma.202001581 – ident: e_1_2_10_14_1 doi: 10.1002/aenm.201501803 – ident: e_1_2_10_4_5 doi: 10.1039/C5EE03255E – ident: e_1_2_10_13_1 doi: 10.1021/acsenergylett.0c01022 – ident: e_1_2_10_11_1 doi: 10.1016/j.matlet.2010.11.071 – ident: e_1_2_10_5_1 doi: 10.1002/adma.202003790 – ident: e_1_2_10_9_1 doi: 10.1038/s41565-021-00848-w – ident: e_1_2_10_15_1 doi: 10.1038/s41467-019-08981-w – ident: e_1_2_10_4_1 doi: 10.1021/acs.chemmater.5b04107 – ident: e_1_2_10_7_1 doi: 10.1021/acsenergylett.8b00047 – ident: e_1_2_10_2_2 doi: 10.1126/science.aad5845 – ident: e_1_2_10_2_3 doi: 10.1039/C6TA04949D – ident: e_1_2_10_6_2 doi: 10.1039/C8TC02334D – ident: e_1_2_10_1_2 doi: 10.3390/s110505112 – ident: e_1_2_10_4_3 doi: 10.1039/C6EE03014A – ident: e_1_2_10_4_2 doi: 10.1002/aenm.201501310 – ident: e_1_2_10_1_1 doi: 10.1039/C5TC03417E – ident: e_1_2_10_4_4 doi: 10.1039/C5EE03874J – ident: e_1_2_10_7_2 doi: 10.1021/acsenergylett.7b00442 – ident: e_1_2_10_17_1 doi: 10.1021/acsenergylett.6b00002 – ident: e_1_2_10_1_3 doi: 10.1038/nature24032 – ident: e_1_2_10_2_1 doi: 10.1126/science.1228604 – ident: e_1_2_10_8_1 doi: 10.1021/acs.chemmater.9b05101 – ident: e_1_2_10_16_1 doi: 10.1002/adma.201102450 – ident: e_1_2_10_13_3 doi: 10.1002/aenm.202000197 – ident: e_1_2_10_6_1 doi: 10.1038/srep43794 – ident: e_1_2_10_6_4 doi: 10.1021/acs.accounts.5b00420 – ident: e_1_2_10_3_1 doi: 10.1039/c3ee43822h – ident: e_1_2_10_13_4 doi: 10.1039/D0TC04250A – ident: e_1_2_10_1_4 doi: 10.1039/C4CS00458B – ident: e_1_2_10_2_4 doi: 10.1021/nl400349b – ident: e_1_2_10_12_1 doi: 10.1016/j.scib.2020.06.024 |
| SSID | ssj0017734 |
| Score | 2.6065922 |
| Snippet | Halide perovskites exhibit diverse properties depending on their compositions. However, integrating desired properties into one material is still challenging.... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | 3D/2D perovskite single crystals Carrier mobility Crystal defects Crystal growth Crystal surfaces Epitaxial growth hard X‐rays detection heterojunction Heterojunctions Materials science Perovskites Single crystals solution‐processed epitaxial growth suppressed ions migration Surface defects Thickness |
| Title | 3D/2D Perovskite Single Crystals Heterojunction for Suppressed Ions Migration in Hard X‐Ray Detection |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202104880 https://www.proquest.com/docview/2605214122 |
| Volume | 31 |
| WOSCitedRecordID | wos000693720300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFH_o5kEP_henU3IQPJW1Sdqux7E6Jrgx1MluJU1SmYxO2jnYzY_gZ_STmLRdNw8i6C0tSSjvT98vycvvAVwJk7qUhaYRSeoYFJu2wRSwMBzXCxWCjZpRluX7dOf2-83RyBus3eLP-SHKDTftGdn_Wjs4C9PGijSUiUjfJFdLFm2Dm1DFynjtClT9-87wrjxJcN38ZNmxdI6XNVoSN5q48X2G74FphTbXMWsWdDp7___cfdgtACdq5RZyABsyPoSdNRrCI3gmfgP7aCCT6TzVu7noQb2fSNROFgo8TlLU1Ukz0xcVA7UekQK6SJcDzYjHBbpVlot64-fcmNA4RjofAI0-3z_u2QL5cpble8XHMOzcPLa7RlGAweBEF6RR4I1xYUoRYslcyZklMcMSC0o4IdwMI1ewSLWdkIVULQ25LRybEeHZKuRJQU6gEk9jeQpIKFyGsfAc6gmaoULCPaGwRchI022KGhhL6Qe8YCfXRTImQc6rjAMtwKAUYA2uy_6vOS_Hjz3rS2UGhX-mgV7FYYtaGNcAZ2r7ZZag5Xd65dPZXwadw7Zu57kwdajMkjd5AVt8PhunyWVht1-0Q-37 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dS8MwFL34BeqD3-J0ah4En8raJGvXx7E6Jm5D_GJvJU3SMRmdbFPYmz_B3-gvMbftqj6IIL61JQ0lOek9SU7OBThTNve4iGwr1ty1OLWrljDEwnI9PzIMNq7Fqcr3oe11u7Vez7_O1YR4FibzhygW3HBkpP9rHOC4IF35dA0VKsaj5GbOgiBchGVusGRAvhzcNO_bxVaC52Vby66DIi-nN3dutGnlew3fI9Mn3fxKWtOo09z8h-_dgo2ccpJ6hpFtWNDJDqx_MSLchT4LKjQg13o8epngei65Nc-HmjTGM0MfhxPSQtnM6NFEQexJYqguwYSgqfW4IpcGu6Qz6GdwIoOEoCKA9N5f327EjAR6miq-kj24b17cNVpWnoLBkgxT0hj6JqSytYqoFp6WwtFUUE0VZ5IxaUexp0Rsrt1IRNxMDmVVuVXBlF81QU8rtg9LySjRB0CUYWaUKt_lvuIpL2TSV4ZdRILVvJoqgTVv_lDm_uSYJmMYZs7KNMQGDIsGLMF5Uf4pc-b4sWR53pthPkInIc7jqMMdSktA0377pZawHjQ7xd3hX146hdXWXacdti-7V0ewhs8zZUwZlqbjZ30MK_JlOpiMT3IQfwAAFPHr |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7oFNEH7-K85kHwqaxNsnZ9HNaiOMfwxt5KmqRjMjrZprA3f4K_0V9iTttVfRBBfGtDEsrJSc-X5Mt3AE6UzT0uYttKNHctTu26JQywsFzPjw2CTRpJxvJ9aHntdqPb9TsFmxDvwuT6EOWGG86M7H-NE1w_qaT2qRoqVIJXyc2aBZ1wHhY4ZpKpwEJwE963yqMEz8uPll0HSV5Od6bcaNPa9x6-R6ZPuPkVtGZRJ1z7h-9dh9UCcpJm7iMbMKfTTVj5IkS4BT0W1GhAOno0fBnjfi65NeUDTc5GUwMfB2NygbSZ4aOJgjiSxEBdgglBM-lxRS6N75Lrfi93J9JPCTICSPf99e1GTEmgJxnjK92G-_D87uzCKlIwWJJhShoD34RUtlYx1cLTUjiaCqqp4kwyJu048ZRIzLMbi5ibxaGsK7cumPLrJuhpxXagkg5TvQtEGWRGqfJd7iue4UImfWXQRSxYw2uoKlgz80ey0CfHNBmDKFdWphEaMCoNWIXTsv5TrszxY82D2WhGxQwdR7iOow53KK0Czcbtl16iZhBel297f2l0DEudIIxal-2rfVjG4pwYcwCVyehZH8KifJn0x6Ojwoc_AJ5T8WY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D%2F2D+Perovskite+Single+Crystals+Heterojunction+for+Suppressed+Ions+Migration+in+Hard+X%E2%80%90Ray+Detection&rft.jtitle=Advanced+functional+materials&rft.au=He%2C+Yuhong&rft.au=Pan%2C+Wanting&rft.au=Guo%2C+Chunjie&rft.au=Zhang%2C+Huimao&rft.date=2021-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=49&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202104880&rft.externalDBID=10.1002%252Fadfm.202104880&rft.externalDocID=ADFM202104880 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |