Impedance Spectroscopy: A Versatile Technique to Understand Solution‐Processed Optoelectronic Devices

Solution‐processed optoelectronic devices based on conjugated polymers, colloidal quantum dots (CQDs), halide perovskites, and so on are now emerging as a new‐generation semiconductor technology which prevails its conventional counterparts in terms of low fabrication cost, ease of scalable manufactu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physica status solidi. PSS-RRL. Rapid research letters Ročník 13; číslo 5
Hlavní autoři: Ali, Shmshad, Chang, Shuai, Imran, Muhammad, Shi, Qingfan, Chen, Yu, Zhong, Haizheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin WILEY?VCH Verlag Berlin GmbH 01.05.2019
Wiley Subscription Services, Inc
Témata:
ISSN:1862-6254, 1862-6270
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Solution‐processed optoelectronic devices based on conjugated polymers, colloidal quantum dots (CQDs), halide perovskites, and so on are now emerging as a new‐generation semiconductor technology which prevails its conventional counterparts in terms of low fabrication cost, ease of scalable manufacturing, and abundant material designability. However, the solution‐processed thin films obtained through spin‐coating, spray, inkjet printing, and doctor blading usually suffer from low film quality and a high defect density especially at the interfaces of different functional layers. Currently, the most significant subject is to address the non‐ideal interfaces for achieving improved performance of the devices. Impedance spectroscopy (IS) is a universal technique that can help to examine the charge behavior at the interfaces in an electrochemical or solid‐state multilayered device. Owing to its ability to elucidate the charge transfer, charge transport, and accumulation within the interfaces of electrochemical or multilayered devices with minimal effects to the devices themselves, the use of IS has increased vividly in the last decades. This review provides the basic principles of IS and its applications on solution‐processed optoelectronic devices. Solution‐processed thin film devices usually suffer from low fabrication quality and high defect density especially at the interfaces of different functional layers. This review provides the development of impedance spectroscopy in solution‐processed electrochemical or multilayered devices as a tool to elucidate the charge transfer, transport, and accumulation within the interfaces with minimal effects to the devices themselves.
AbstractList Solution‐processed optoelectronic devices based on conjugated polymers, colloidal quantum dots (CQDs), halide perovskites, and so on are now emerging as a new‐generation semiconductor technology which prevails its conventional counterparts in terms of low fabrication cost, ease of scalable manufacturing, and abundant material designability. However, the solution‐processed thin films obtained through spin‐coating, spray, inkjet printing, and doctor blading usually suffer from low film quality and a high defect density especially at the interfaces of different functional layers. Currently, the most significant subject is to address the non‐ideal interfaces for achieving improved performance of the devices. Impedance spectroscopy (IS) is a universal technique that can help to examine the charge behavior at the interfaces in an electrochemical or solid‐state multilayered device. Owing to its ability to elucidate the charge transfer, charge transport, and accumulation within the interfaces of electrochemical or multilayered devices with minimal effects to the devices themselves, the use of IS has increased vividly in the last decades. This review provides the basic principles of IS and its applications on solution‐processed optoelectronic devices. Solution‐processed thin film devices usually suffer from low fabrication quality and high defect density especially at the interfaces of different functional layers. This review provides the development of impedance spectroscopy in solution‐processed electrochemical or multilayered devices as a tool to elucidate the charge transfer, transport, and accumulation within the interfaces with minimal effects to the devices themselves.
Solution‐processed optoelectronic devices based on conjugated polymers, colloidal quantum dots (CQDs), halide perovskites, and so on are now emerging as a new‐generation semiconductor technology which prevails its conventional counterparts in terms of low fabrication cost, ease of scalable manufacturing, and abundant material designability. However, the solution‐processed thin films obtained through spin‐coating, spray, inkjet printing, and doctor blading usually suffer from low film quality and a high defect density especially at the interfaces of different functional layers. Currently, the most significant subject is to address the non‐ideal interfaces for achieving improved performance of the devices. Impedance spectroscopy (IS) is a universal technique that can help to examine the charge behavior at the interfaces in an electrochemical or solid‐state multilayered device. Owing to its ability to elucidate the charge transfer, charge transport, and accumulation within the interfaces of electrochemical or multilayered devices with minimal effects to the devices themselves, the use of IS has increased vividly in the last decades. This review provides the basic principles of IS and its applications on solution‐processed optoelectronic devices.
Author Imran, Muhammad
Chang, Shuai
Chen, Yu
Shi, Qingfan
Zhong, Haizheng
Ali, Shmshad
Author_xml – sequence: 1
  givenname: Shmshad
  surname: Ali
  fullname: Ali, Shmshad
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Shuai
  surname: Chang
  fullname: Chang, Shuai
  email: schang@bit.edu.cn
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Muhammad
  surname: Imran
  fullname: Imran, Muhammad
  organization: Beijing Institute of Technology
– sequence: 4
  givenname: Qingfan
  surname: Shi
  fullname: Shi, Qingfan
  organization: Beijing Institute of Technology
– sequence: 5
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Haizheng
  orcidid: 0000-0002-2662-7472
  surname: Zhong
  fullname: Zhong, Haizheng
  email: hzzhong@bit.edu.cn
  organization: Beijing Institute of Technology
BookMark eNqFkE1LAzEQhoMo2FavngOeW5Pd7G7qrdSvQqHFtl6XbDKrW7bJmqRKb_4Ef6O_xNRKBUGcywzM-8zH20aH2mhA6IySHiUkumics72IUE5IwskBalGeRt00ysjhvk7YMWo7twySfsbiFnocrRpQQkvAswakt8ZJ02wu8QA_gHXCVzXgOcgnXT2vAXuDF1qFhhda4Zmp174y-uPtfWqNBOdA4UnjDdRfo3Ql8RW8VKFzgo5KUTs4_c4dtLi5ng_vuuPJ7Wg4GHdlTDPSjRMqE-Ac4lRIxSLGOJWRYpQVKY0UL6hKIStTVZSqBEEKJVgR84wVSZGUvIg76Hw3t7EmHOx8vjRrq8PKPArBkn6SxkHV26lk-NdZKPPGVithNzkl-dbMfGtmvjczAOwXICsvtr97K6r6b6y_w16DjZt_luTT2ez-h_0EBWaPuQ
CitedBy_id crossref_primary_10_1039_D0QM00983K
crossref_primary_10_1016_j_mssp_2022_106641
crossref_primary_10_1007_s00289_024_05581_7
crossref_primary_10_1039_C9QM00768G
crossref_primary_10_1002_anie_202415856
crossref_primary_10_1016_j_cej_2023_144508
crossref_primary_10_1002_eom2_12268
crossref_primary_10_1039_D1SE01279G
crossref_primary_10_1134_S1063783425601298
crossref_primary_10_1007_s40843_022_2313_1
crossref_primary_10_1002_ange_202415856
crossref_primary_10_1016_j_solener_2019_09_056
crossref_primary_10_1016_j_orgel_2024_107120
crossref_primary_10_3390_condmat10030038
crossref_primary_10_1039_D1MH02060A
Cites_doi 10.1016/j.orgel.2008.06.007
10.1021/acsenergylett.8b00641
10.1116/1.588396
10.1021/acs.jpclett.6b01176
10.1021/acs.jpcc.7b01047
10.1088/1742-6596/700/1/012053
10.1021/acsenergylett.8b00465
10.1021/am2013568
10.1021/jp011817x
10.1016/j.cplett.2006.02.060
10.1016/S0009-2614(98)00162-6
10.1021/acs.jpcc.5b02984
10.1021/acs.jpclett.5b02273
10.1021/am500074s
10.1021/acsami.5b07197
10.1021/acs.jpclett.6b02193
10.3938/jkps.51.1011
10.1021/acsami.5b06070
10.1016/j.solmat.2004.07.017
10.1021/am100312v
10.1002/adma.201204306
10.1021/ph500001e
10.1038/ncomms3242
10.1016/j.solmat.2009.10.015
10.3390/ma10050482
10.1016/S0038-1101(01)00044-2
10.1021/nl504086v
10.1016/S0013-4686(01)00540-0
10.1016/j.rser.2017.05.159
10.1021/nn2048153
10.1039/C7TC00202E
10.1002/ijch.201500007
10.1016/S0022-0248(97)00079-1
10.1021/acsami.5b12127
10.1021/jp4074015
10.1021/acsami.7b00141
10.1021/jp509896u
10.1021/acsaem.8b00301
10.1002/adma.201502490
10.1038/s41560-018-0200-6
10.1021/jz500059v
10.1038/ncomms6404
10.1016/j.nanoen.2017.07.034
10.1021/acs.jpcc.7b02394
10.1021/acsomega.8b01626
10.1021/acs.jpcc.8b01033
10.1016/j.ijleo.2015.05.091
10.1021/jp510837q
10.1117/12.846115
10.1021/acs.jpcc.7b11010
10.1021/nl302161n
10.1109/5.649651
10.1016/j.synthmet.2017.02.022
10.1039/C7TC04599A
10.1038/s41467-018-04986-z
10.1039/c0cp02249g
10.1126/science.269.5227.1086
10.1021/nl505011f
10.1021/nn901074r
10.1021/acsnano.5b00437
10.1007/978-1-4614-8933-7
10.1021/nl1037787
10.1021/jp5069076
10.1021/nl404252e
10.1021/jacs.8b03526
10.1063/1.3295902
10.1063/1.4812487
10.1039/C6CP08424A
10.1021/jacs.5b08535
10.1007/978-3-319-32655-9
10.1021/nn204382k
10.1021/acs.jpclett.8b02138
10.1002/aenm.201702772
10.1021/acs.jpclett.5b02229
10.1063/1.123738
10.1088/0022-3727/46/5/055102
10.1088/1361-6463/aa9d30
10.1021/acsami.6b03198
10.1016/j.orgel.2015.07.057
10.1021/acs.jpclett.7b00763
10.1002/adfm.201102687
10.1126/science.aac5523
10.1021/am508211e
10.1002/adma.201000726
10.1021/acsami.6b15660
10.1016/j.apsusc.2015.02.003
10.1021/am506308t
10.1021/acsami.6b05468
10.1016/S0013-4686(02)00444-9
10.1002/adma.201801387
10.1021/jp052768h
10.1021/acs.jpcc.6b01728
10.1155/2014/851705
10.1021/cm501595u
10.1021/acs.jpcc.7b00979
10.1038/natrevmats.2016.100
10.1021/am900446x
10.1021/nn503569p
10.1021/nl1038456
10.1063/1.2222063
10.1063/1.4978346
10.1021/jp5086284
10.1039/C2TA00674J
10.1021/acs.jpcc.8b02141
10.1021/acsami.8b13101
10.1021/nn400656n
10.1021/jp061693u
10.1002/0471716243
10.1021/acsnano.7b04935
10.1063/1.3204484
10.1016/j.orgel.2015.11.018
10.1021/nn4005473
10.1021/jp0527406
10.1021/jp066178a
10.1063/1.3153970
10.1021/acsnano.6b07617
10.1039/C6TC04639H
10.1021/nn506638n
10.1021/acsnano.5b07217
10.1002/smll.201701711
10.1002/adfm.201200880
10.1016/j.tsf.2006.11.186
10.1063/1.4991030
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1002/pssr.201800580
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1862-6270
EndPage n/a
ExternalDocumentID 10_1002_pssr_201800580
PSSR201800580
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21603012
– fundername: Science and Technology Innovation Foundation of Shenzhen
  funderid: JCYJ20170817114726048
GroupedDBID 05W
0R~
123
1OC
31~
33P
3SF
4.4
52U
8-1
8UM
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2W
PQQKQ
ROL
SUPJJ
WBKPD
WGJPS
WIH
WIK
WOHZO
WXSBR
WYISQ
XV2
ZZTAW
~S-
AAYXX
ADMLS
AEYWJ
AGQPQ
AGYGG
ALUQN
CITATION
7U5
8FD
L7M
ID FETCH-LOGICAL-c3170-351c5e88e36acd424481c2d414b612d8b1d6e7f6dbfdfea0bda4b3874b5b5f8b3
IEDL.DBID DRFUL
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000471310100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1862-6254
IngestDate Fri Jul 25 06:25:21 EDT 2025
Sat Nov 29 03:31:28 EST 2025
Tue Nov 18 22:35:12 EST 2025
Wed Jan 22 17:06:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3170-351c5e88e36acd424481c2d414b612d8b1d6e7f6dbfdfea0bda4b3874b5b5f8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2662-7472
PQID 2222459563
PQPubID 1036348
PageCount 16
ParticipantIDs proquest_journals_2222459563
crossref_primary_10_1002_pssr_201800580
crossref_citationtrail_10_1002_pssr_201800580
wiley_primary_10_1002_pssr_201800580_PSSR201800580
PublicationCentury 2000
PublicationDate May 2019
2019-05-00
20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
– name: Weinheim
PublicationTitle Physica status solidi. PSS-RRL. Rapid research letters
PublicationYear 2019
Publisher WILEY?VCH Verlag Berlin GmbH
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY?VCH Verlag Berlin GmbH
– name: Wiley Subscription Services, Inc
References 2017; 5
2018; 122
2017; 8
2017; 2
2013; 25
2013; 4
2013; 1
2010; 107
1997; 85
2008; 9
2014; 26
2011; 11
2016; 700
2011; 13
2013; 7
2001; 45
2012; 12
2001; 46
2017; 9
2001; 105
2014; 1
2010; 22
2018; 6
2018; 9
2002; 47
2018; 8
2014; 5
2018; 3
2015; 137
2018; 1
2017; 39
2015; 332
2017; 79
2013; 117
2005; 109
2016; 353
2014; 14
2018; 30
2017; 121
1998; 287
2014; 8
2010; 2
2014; 6
2012; 22
2009; 7415
2014; 118
2015; 15
2015; 6
2018; 140
2015; 126
2013; 46
1995; 13
2015; 55
1997; 178
2016; 10
2006; 110
2005; 87
2013; 102
2005
2014; 2014
2007; 51
2011; 4
2015; 9
2015; 7
2016; 120
2017; 51
2015; 26
2016; 7
1998; 5647
2007; 515
2015; 27
1997; 31
2017; 11
2017; 10
2007; 111
2017; 13
2009; 8
1995; 269
2016
2015; 119
2017; 19
1999; 74
2014
2016; 29
2009; 3
2012; 6
2009; 1
2018; 10
2016; 8
2006; 100
2016; 053901
2010; 94
2009; 105
2017; 227
2006; 422
2009; 106
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
Manzanares J. A. (e_1_2_8_108_1) 1998; 5647
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Matsui T. (e_1_2_8_7_1) 2016; 053901
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
Vlaskina S. I. (e_1_2_8_16_1) 1997; 31
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
Fabregat‐santiago F. (e_1_2_8_53_1) 2009; 8
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 29
  start-page: 13
  year: 2016
  publication-title: Org. Electron
– volume: 45
  start-page: 427
  year: 2001
  publication-title: Solid. State. Electron
– volume: 8
  start-page: 558
  year: 2009
  publication-title: Energy Environ. Sci
– volume: 79
  start-page: 814
  year: 2017
  publication-title: Renew. Sustain. Energy Rev
– year: 2005
– volume: 87
  start-page: 117
  year: 2005
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 94
  start-page: 366
  year: 2010
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 9
  start-page: 2608
  year: 2018
  publication-title: Nat. Commun
– volume: 1
  start-page: 2079
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 122
  start-page: 4822
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 312
  year: 2011
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 682
  year: 2018
  publication-title: Nat. Energy
– volume: 8
  start-page: 5453
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 46
  start-page: 3457
  year: 2001
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 873
  year: 2012
  publication-title: ACS Nano
– volume: 9
  start-page: 11224
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 265
  year: 2015
  publication-title: Org. Electron
– volume: 119
  start-page: 3456
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 2242
  year: 2013
  publication-title: Nat. Commun
– year: 2014
– volume: 22
  start-page: 4547
  year: 2012
  publication-title: Adv. Funct. Mater
– volume: 15
  start-page: 2104
  year: 2015
  publication-title: Nano Lett
– volume: 47
  start-page: 4213
  year: 2002
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 634
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 5647
  start-page: 4327
  year: 1998
  publication-title: J. Phys
– volume: 6
  start-page: 22451
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 847
  year: 2008
  publication-title: Org. Electron
– volume: 100
  start-page: 034510
  year: 2006
  publication-title: J. Appl. Phys
– volume: 11
  start-page: 717
  year: 2011
  publication-title: Nano Lett
– volume: 6
  start-page: 6537
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7415
  start-page: 74150G‐1
  year: 2009
  publication-title: Proc. SPIE
– volume: 11
  start-page: 9405
  year: 2017
  publication-title: ACS Nano
– volume: 3
  start-page: 10042
  year: 2018
  publication-title: ACS Omega
– volume: 13
  start-page: 2570
  year: 1995
  publication-title: J. Vac. Sci. Technol. B Microelectron. Nanom. Struct
– volume: 14
  start-page: 888
  year: 2014
  publication-title: Nano Lett
– volume: 3
  start-page: 1044
  year: 2018
  publication-title: ACS Energy Lett
– volume: 31
  start-page: 117
  year: 1997
  publication-title: J. Korean Phys. Soc
– volume: 269
  start-page: 1086
  year: 1995
  publication-title: Science
– volume: 6
  start-page: 3092
  year: 2012
  publication-title: ACS Nano
– volume: 13
  start-page: 9083
  year: 2011
  publication-title: Phys. Chem. Chem. Phys
– volume: 6
  start-page: 4693
  year: 2015
  publication-title: J. Phys. Chem. Lett
– year: 2016
– volume: 7
  start-page: 23223
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 3581
  year: 2009
  publication-title: ACS Nano
– volume: 22
  start-page: E210
  year: 2010
  publication-title: Adv. Mater
– volume: 105
  start-page: 124513
  year: 2009
  publication-title: J. Appl. Phys
– volume: 106
  start-page: 044507
  year: 2009
  publication-title: J. Appl. Phys
– volume: 7
  start-page: 3091
  year: 2016
  publication-title: J. Phys. Chem. Lett
– volume: 74
  start-page: 1951
  year: 1999
  publication-title: Appl. Phys. Lett
– volume: 51
  start-page: 1011
  year: 2007
  publication-title: J. Korean Phys. Soc
– volume: 55
  start-page: 990
  year: 2015
  publication-title: Isr. J. Chem
– volume: 30
  start-page: 1801387
  year: 2018
  publication-title: Adv. Mater
– volume: 053901
  start-page: 106
  year: 2016
  publication-title: Appl. Phys. Lett
– volume: 10
  start-page: 482
  year: 2017
  publication-title: Materials
– volume: 3
  start-page: 1477
  year: 2018
  publication-title: ACS Energy Lett
– volume: 7
  start-page: 5105
  year: 2016
  publication-title: J. Phys. Chem. Lett
– volume: 118
  start-page: 22913
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 10321
  year: 2014
  publication-title: ACS Nano
– volume: 287
  start-page: 83
  year: 1998
  publication-title: Chem. Phys. Lett
– volume: 227
  start-page: 43
  year: 2017
  publication-title: Synth. Met
– volume: 6
  start-page: 1008
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 27
  start-page: 5196
  year: 2015
  publication-title: Adv. Mater
– volume: 10
  start-page: 1572
  year: 2016
  publication-title: ACS Nano
– volume: 700
  start-page: 012053
  year: 2016
  publication-title: J. Phys. Conf. Ser
– volume: 9
  start-page: 023504
  year: 2017
  publication-title: J. Renew. Sustain. Energy
– volume: 110
  start-page: 13872
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 85
  start-page: 1740
  year: 1997
  publication-title: Proc. IEEE
– volume: 178
  start-page: 56
  year: 1997
  publication-title: J. Cryst. Growth
– volume: 15
  start-page: 1101
  year: 2015
  publication-title: Nano Lett
– volume: 121
  start-page: 9757
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 19
  start-page: 5959
  year: 2017
  publication-title: Phys. Chem. Chem. Phys
– volume: 7
  start-page: 4135
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 122
  start-page: 1973
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 2412
  year: 2017
  publication-title: J. Phys. Chem. Lett
– volume: 8
  start-page: 18189
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 377
  year: 2014
  publication-title: ACS Photonics
– volume: 353
  start-page: aac5523
  year: 2016
  publication-title: Science
– volume: 13
  start-page: 1701711
  year: 2017
  publication-title: Small
– volume: 46
  start-page: 055102
  year: 2013
  publication-title: J. Phys. D: Appl. Phys
– volume: 121
  start-page: 5515
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 5404
  year: 2014
  publication-title: Nat. Commun
– volume: 118
  start-page: 25802
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 126
  start-page: 1595
  year: 2015
  publication-title: Optik
– volume: 515
  start-page: 4783
  year: 2007
  publication-title: Thin Solid Films
– volume: 10
  start-page: 37335
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 111
  start-page: 6550
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 137
  start-page: 13130
  year: 2015
  publication-title: J. Am. Chem. Soc
– volume: 5
  start-page: 680
  year: 2014
  publication-title: J. Phys. Chem. Lett
– volume: 22
  start-page: 1511
  year: 2012
  publication-title: Adv. Funct. Mater
– volume: 119
  start-page: 14919
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 12
  start-page: 4360
  year: 2012
  publication-title: Nano Lett
– volume: 117
  start-page: 21949
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 39
  start-page: 478
  year: 2017
  publication-title: Nano Energy
– volume: 2014
  start-page: 851705
  year: 2014
  publication-title: Int. J. Photoenergy
– volume: 5
  start-page: 076102
  year: 2017
  publication-title: APL Mater
– volume: 11
  start-page: 661
  year: 2011
  publication-title: Nano Lett
– volume: 120
  start-page: 8023
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: 16100
  year: 2017
  publication-title: Nat. Rev. Mater
– volume: 9
  start-page: 13269
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 908
  year: 2015
  publication-title: ACS Nano
– volume: 422
  start-page: 184
  year: 2006
  publication-title: J. Phys. Chem. Lett
– volume: 121
  start-page: 9131
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 140
  start-page: 6984
  year: 2018
  publication-title: J. Am. Chem. Soc
– volume: 1
  start-page: 2592
  year: 2018
  publication-title: ACS Appl. Energy Mater
– volume: 107
  start-page: 044504
  year: 2010
  publication-title: J. Appl. Phys
– volume: 9
  start-page: 1561
  year: 2015
  publication-title: ACS Nano
– volume: 25
  start-page: 1646
  year: 2013
  publication-title: Adv. Mater
– volume: 7
  start-page: 4210
  year: 2013
  publication-title: ACS Nano
– volume: 105
  start-page: 11419
  year: 2001
  publication-title: J. Phys. Chem. B
– volume: 9
  start-page: 5240
  year: 2018
  publication-title: J. Phys. Chem. Lett
– volume: 102
  start-page: 253303
  year: 2013
  publication-title: Appl. Phys. Lett
– volume: 8
  start-page: 1702772
  year: 2018
  publication-title: Adv. Energy Mater
– volume: 109
  start-page: 14945
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 122
  start-page: 11651
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 23507
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 2107
  year: 2009
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 18526
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 51
  start-page: 025110
  year: 2017
  publication-title: J. Phys. D. Appl. Phys
– volume: 7
  start-page: 2292
  year: 2013
  publication-title: ACS Nano
– volume: 26
  start-page: 4004
  year: 2014
  publication-title: Chem. Mater
– volume: 6
  start-page: 4633
  year: 2015
  publication-title: J. Phys. Chem. Lett
– volume: 5
  start-page: 5643
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 332
  start-page: 716
  year: 2015
  publication-title: Appl. Surf. Sci
– volume: 2
  start-page: 2254
  year: 2010
  publication-title: ACS Appl. Mater. Interfaces
– volume: 119
  start-page: 4444
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 11
  start-page: 6586
  year: 2017
  publication-title: ACS Nano
– volume: 109
  start-page: 17913
  year: 2005
  publication-title: J. Phys. Chem. B
– ident: e_1_2_8_65_1
  doi: 10.1016/j.orgel.2008.06.007
– ident: e_1_2_8_103_1
  doi: 10.1021/acsenergylett.8b00641
– ident: e_1_2_8_21_1
  doi: 10.1116/1.588396
– ident: e_1_2_8_98_1
  doi: 10.1021/acs.jpclett.6b01176
– ident: e_1_2_8_96_1
  doi: 10.1021/acs.jpcc.7b01047
– ident: e_1_2_8_57_1
  doi: 10.1088/1742-6596/700/1/012053
– ident: e_1_2_8_94_1
  doi: 10.1021/acsenergylett.8b00465
– ident: e_1_2_8_122_1
  doi: 10.1021/am2013568
– ident: e_1_2_8_120_1
  doi: 10.1021/jp011817x
– ident: e_1_2_8_121_1
  doi: 10.1016/j.cplett.2006.02.060
– ident: e_1_2_8_112_1
  doi: 10.1016/S0009-2614(98)00162-6
– ident: e_1_2_8_81_1
  doi: 10.1021/acs.jpcc.5b02984
– ident: e_1_2_8_80_1
  doi: 10.1021/acs.jpclett.5b02273
– ident: e_1_2_8_59_1
  doi: 10.1021/am500074s
– ident: e_1_2_8_63_1
  doi: 10.1021/acsami.5b07197
– ident: e_1_2_8_79_1
  doi: 10.1021/acs.jpclett.6b02193
– ident: e_1_2_8_123_1
  doi: 10.3938/jkps.51.1011
– ident: e_1_2_8_9_1
  doi: 10.1021/acsami.5b06070
– ident: e_1_2_8_48_1
  doi: 10.1016/j.solmat.2004.07.017
– ident: e_1_2_8_67_1
  doi: 10.1021/am100312v
– ident: e_1_2_8_64_1
  doi: 10.1002/adma.201204306
– ident: e_1_2_8_12_1
  doi: 10.1021/ph500001e
– ident: e_1_2_8_86_1
  doi: 10.1038/ncomms3242
– ident: e_1_2_8_61_1
  doi: 10.1016/j.solmat.2009.10.015
– ident: e_1_2_8_20_1
  doi: 10.3390/ma10050482
– ident: e_1_2_8_23_1
  doi: 10.1016/S0038-1101(01)00044-2
– ident: e_1_2_8_26_1
  doi: 10.1021/nl504086v
– ident: e_1_2_8_45_1
  doi: 10.1016/S0013-4686(01)00540-0
– ident: e_1_2_8_40_1
  doi: 10.1016/j.rser.2017.05.159
– ident: e_1_2_8_75_1
  doi: 10.1021/nn2048153
– ident: e_1_2_8_110_1
  doi: 10.1039/C7TC00202E
– ident: e_1_2_8_56_1
  doi: 10.1002/ijch.201500007
– ident: e_1_2_8_22_1
  doi: 10.1016/S0022-0248(97)00079-1
– ident: e_1_2_8_14_1
  doi: 10.1021/acsami.5b12127
– ident: e_1_2_8_18_1
  doi: 10.1021/jp4074015
– ident: e_1_2_8_78_1
  doi: 10.1021/acsami.7b00141
– ident: e_1_2_8_84_1
  doi: 10.1021/jp509896u
– ident: e_1_2_8_34_1
  doi: 10.1021/acsaem.8b00301
– ident: e_1_2_8_127_1
  doi: 10.1002/adma.201502490
– ident: e_1_2_8_36_1
  doi: 10.1038/s41560-018-0200-6
– ident: e_1_2_8_104_1
  doi: 10.1021/jz500059v
– ident: e_1_2_8_28_1
  doi: 10.1038/ncomms6404
– ident: e_1_2_8_68_1
  doi: 10.1016/j.nanoen.2017.07.034
– ident: e_1_2_8_76_1
  doi: 10.1021/acs.jpcc.7b02394
– ident: e_1_2_8_99_1
  doi: 10.1021/acsomega.8b01626
– ident: e_1_2_8_100_1
  doi: 10.1021/acs.jpcc.8b01033
– ident: e_1_2_8_124_1
  doi: 10.1016/j.ijleo.2015.05.091
– ident: e_1_2_8_82_1
  doi: 10.1021/jp510837q
– ident: e_1_2_8_117_1
  doi: 10.1117/12.846115
– ident: e_1_2_8_106_1
  doi: 10.1021/acs.jpcc.7b11010
– ident: e_1_2_8_11_1
  doi: 10.1021/nl302161n
– ident: e_1_2_8_15_1
  doi: 10.1109/5.649651
– ident: e_1_2_8_87_1
  doi: 10.1016/j.synthmet.2017.02.022
– ident: e_1_2_8_125_1
  doi: 10.1039/C7TC04599A
– ident: e_1_2_8_38_1
  doi: 10.1038/s41467-018-04986-z
– ident: e_1_2_8_60_1
  doi: 10.1039/c0cp02249g
– ident: e_1_2_8_109_1
  doi: 10.1126/science.269.5227.1086
– ident: e_1_2_8_4_1
  doi: 10.1021/nl505011f
– ident: e_1_2_8_32_1
  doi: 10.1021/nn901074r
– ident: e_1_2_8_8_1
  doi: 10.1021/acsnano.5b00437
– ident: e_1_2_8_42_1
  doi: 10.1007/978-1-4614-8933-7
– ident: e_1_2_8_3_1
  doi: 10.1021/nl1037787
– ident: e_1_2_8_85_1
  doi: 10.1021/jp5069076
– ident: e_1_2_8_95_1
  doi: 10.1021/nl404252e
– ident: e_1_2_8_25_1
  doi: 10.1021/jacs.8b03526
– ident: e_1_2_8_6_1
  doi: 10.1063/1.3295902
– ident: e_1_2_8_118_1
  doi: 10.1063/1.4812487
– ident: e_1_2_8_91_1
  doi: 10.1039/C6CP08424A
– ident: e_1_2_8_102_1
  doi: 10.1021/jacs.5b08535
– ident: e_1_2_8_41_1
  doi: 10.1007/978-3-319-32655-9
– ident: e_1_2_8_54_1
  doi: 10.1021/nn204382k
– ident: e_1_2_8_114_1
  doi: 10.1021/acs.jpclett.8b02138
– ident: e_1_2_8_92_1
  doi: 10.1002/aenm.201702772
– ident: e_1_2_8_97_1
  doi: 10.1021/acs.jpclett.5b02229
– ident: e_1_2_8_17_1
  doi: 10.1063/1.123738
– ident: e_1_2_8_119_1
  doi: 10.1088/0022-3727/46/5/055102
– volume: 31
  start-page: 117
  year: 1997
  ident: e_1_2_8_16_1
  publication-title: J. Korean Phys. Soc
– ident: e_1_2_8_93_1
  doi: 10.1088/1361-6463/aa9d30
– ident: e_1_2_8_77_1
  doi: 10.1021/acsami.6b03198
– ident: e_1_2_8_83_1
  doi: 10.1016/j.orgel.2015.07.057
– ident: e_1_2_8_128_1
  doi: 10.1021/acs.jpclett.7b00763
– ident: e_1_2_8_111_1
  doi: 10.1002/adfm.201102687
– ident: e_1_2_8_69_1
  doi: 10.1126/science.aac5523
– ident: e_1_2_8_5_1
  doi: 10.1021/am508211e
– ident: e_1_2_8_43_1
  doi: 10.1002/adma.201000726
– ident: e_1_2_8_31_1
  doi: 10.1021/acsami.6b15660
– ident: e_1_2_8_58_1
  doi: 10.1016/j.apsusc.2015.02.003
– ident: e_1_2_8_13_1
  doi: 10.1021/am506308t
– ident: e_1_2_8_30_1
  doi: 10.1021/acsami.6b05468
– ident: e_1_2_8_46_1
  doi: 10.1016/S0013-4686(02)00444-9
– ident: e_1_2_8_37_1
  doi: 10.1002/adma.201801387
– volume: 8
  start-page: 558
  year: 2009
  ident: e_1_2_8_53_1
  publication-title: Energy Environ. Sci
– ident: e_1_2_8_47_1
  doi: 10.1021/jp052768h
– ident: e_1_2_8_105_1
  doi: 10.1021/acs.jpcc.6b01728
– ident: e_1_2_8_44_1
  doi: 10.1155/2014/851705
– ident: e_1_2_8_71_1
  doi: 10.1021/cm501595u
– ident: e_1_2_8_89_1
  doi: 10.1021/acs.jpcc.7b00979
– ident: e_1_2_8_35_1
  doi: 10.1038/natrevmats.2016.100
– ident: e_1_2_8_66_1
  doi: 10.1021/am900446x
– ident: e_1_2_8_27_1
  doi: 10.1021/nn503569p
– ident: e_1_2_8_10_1
  doi: 10.1021/nl1038456
– ident: e_1_2_8_52_1
  doi: 10.1063/1.2222063
– ident: e_1_2_8_73_1
  doi: 10.1063/1.4978346
– ident: e_1_2_8_72_1
  doi: 10.1021/jp5086284
– ident: e_1_2_8_51_1
  doi: 10.1039/C2TA00674J
– ident: e_1_2_8_107_1
  doi: 10.1021/acs.jpcc.8b02141
– ident: e_1_2_8_115_1
  doi: 10.1021/acsami.8b13101
– ident: e_1_2_8_33_1
  doi: 10.1021/nn400656n
– ident: e_1_2_8_49_1
  doi: 10.1021/jp061693u
– ident: e_1_2_8_39_1
  doi: 10.1002/0471716243
– volume: 5647
  start-page: 4327
  year: 1998
  ident: e_1_2_8_108_1
  publication-title: J. Phys
– ident: e_1_2_8_2_1
  doi: 10.1021/acsnano.7b04935
– ident: e_1_2_8_74_1
  doi: 10.1063/1.3204484
– ident: e_1_2_8_29_1
  doi: 10.1016/j.orgel.2015.11.018
– ident: e_1_2_8_55_1
  doi: 10.1021/nn4005473
– volume: 053901
  start-page: 106
  year: 2016
  ident: e_1_2_8_7_1
  publication-title: Appl. Phys. Lett
– ident: e_1_2_8_24_1
  doi: 10.1021/jp0527406
– ident: e_1_2_8_50_1
  doi: 10.1021/jp066178a
– ident: e_1_2_8_62_1
  doi: 10.1063/1.3153970
– ident: e_1_2_8_126_1
  doi: 10.1021/acsnano.6b07617
– ident: e_1_2_8_88_1
  doi: 10.1039/C6TC04639H
– ident: e_1_2_8_70_1
  doi: 10.1021/nn506638n
– ident: e_1_2_8_19_1
  doi: 10.1021/acsnano.5b07217
– ident: e_1_2_8_101_1
  doi: 10.1002/smll.201701711
– ident: e_1_2_8_113_1
  doi: 10.1002/adfm.201200880
– ident: e_1_2_8_116_1
  doi: 10.1016/j.tsf.2006.11.186
– ident: e_1_2_8_90_1
  doi: 10.1063/1.4991030
SSID ssj0059743
Score 2.3866642
SecondaryResourceType review_article
Snippet Solution‐processed optoelectronic devices based on conjugated polymers, colloidal quantum dots (CQDs), halide perovskites, and so on are now emerging as a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Charge transfer
Charge transport
Colloiding
Devices
Impedance spectroscopy
Inkjet printing
metal halide perovskites
Optoelectronic devices
Perovskites
Quantum dots
solution processing
Spectrum analysis
Thin films
Title Impedance Spectroscopy: A Versatile Technique to Understand Solution‐Processed Optoelectronic Devices
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssr.201800580
https://www.proquest.com/docview/2222459563
Volume 13
WOSCitedRecordID wos000471310100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1862-6270
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059743
  issn: 1862-6254
  databaseCode: DRFUL
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7IpuCLd3E6JQ-CT2W9pG3q23AOhTHHLuJbSZpUhLGWrQq--RP8jf4Sk_Sy7UEEfWshDSUnJ-c74ZzvA7iUJqYW40TmJg43sEe4QYklDGo5Eo8rii-tPPfY8_t98vQUDFa6-HN-iOrCTXmGPq-Vg1O2aC1JQ1MZQ1RpFlHKeDJpr9ty8-Ia1DvD7qRXnsYKL-sie4ncDYn1cUncaNqt9RnWA9MSba5iVh10urv__9092CkAJ2rnO2QfNsTsALZ04We0OITne4mbuTI9UlL0mSK3TNL3a9RG6ipN2m0q0LgkekVZgiZVOwwq79S-Pj6LhgPB0UOaJUtxHdQR-iw6gkn3dnxzZxTiC0bkKDEax7UiVxAiHI9GXLXDESuyObYwk6CIE2ZxT_ixx1nMY0FNxilmDvExc5kbE-YcQ22WzMQJIOxpk0v3Z1QJnrHYV_pOlIg4wIFpNsAoVz6MCmZyJZAxDXNOZTtUixdWi9eAq2p8mnNy_DiyWRoyLHxzEUpEZGNX5oVOA2xtsl9mCQej0bB6O_3LR2ewLZ-DvFKyCbVs_irOYTN6y14W84tiz34DUT7uzA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB6kVfTiW6xW3YPgKbRJNsnWW7GWFmMtfUhvIZvdiFDa0kbBmz_B3-gvcSev2oMI4jFhs4Sd2dlvh5nvA7hUJvZ1Lpi6m5hCozYTms90qfm6qfA4UnzFynOPrtPpsNGo1k2rCbEXJuGHyBNuuDPieI0bHBPSlSVr6EwdIlibxVAaT93ai1T5klWAYqPXHLpZOEbAHFfZK-iuKbBPM-bGqlFZnWH1ZFrCze-gNT51mjv_8L-7sJ1CTlJPfGQP1uRkHzbi0s9gcQBPbYWcBRqfoBh9hPSW09nbNakTTKYpy40lGWRUrySakmHeEEOyrNrn-0faciAFeZhF06W8DmnIOBodwrB5O7hpaan8ghaYKEdjWnpgScakafuBwIY4pgeGoDrlChYJxnVhSye0BQ9FKP0qFz7lJnMot7gVMm4eQWEynchjINSOja4CAPdR8oyHDio8-UyGNVqrVkugZUvvBSk3OUpkjL2EVdnwcPG8fPFKcJWPnyWsHD-OLGeW9NLdufAUJjKopW6GZgmM2Ga_zOJ1-_1e_nTyl48uYLM1uHc9t925O4Ut9b6W1E2WoRDNX-QZrAev0fNifp468BeiN_K8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA6yqfjiXZxOzYPgU9napG3q23AWh2OOXWRvpWlSEcZatir45k_wN_pLzOlt7kEE8bElDSXnki_hnO9D6FKZ2Ne5YOpsQoRGLSY0n-lS83Wi8DhQfKXKc49du9djk4nTz6sJoRcm44coL9wgMtJ8DQEuYxE2lqyhsdpEoDaLgTSeOrVXqelYKjar7YE77hbpGABzWmWvoLumwD4tmBubRmN1htWdaQk3v4PWdNdxd_7hf3fRdg45cSvzkT20Jmf7aCMt_QwWB-ipo5CzAONjEKNPgN4yit-ucQvDZZqy3FTiUUH1ipMIj8uGGFzcqn2-f-QtB1LghziJlvI6uC3TbHSIxu7t6OZOy-UXtICAHA0x9cCUjEli-YGAhjimB4agOuUKFgnGdWFJO7QED0Uo_SYXPuWE2ZSb3AwZJ0eoMotm8hhhaqVGVwmA-yB5xkMbFJ58JkOHOs1mDWnF0ntBzk0OEhlTL2NVNjxYPK9cvBq6KsfHGSvHjyPrhSW9PDoXnsJEhnIW0yI1ZKQ2-2UWrz8cDsqnk798dIE2-23X63Z696doS712srLJOqok8xd5htaD1-R5MT_P_fcLQGHyNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impedance+Spectroscopy%3A+A+Versatile+Technique+to+Understand+Solution%E2%80%90Processed+Optoelectronic+Devices&rft.jtitle=Physica+status+solidi.+PSS-RRL.+Rapid+research+letters&rft.au=Ali%2C+Shmshad&rft.au=Chang%2C+Shuai&rft.au=Imran%2C+Muhammad&rft.au=Shi%2C+Qingfan&rft.date=2019-05-01&rft.pub=WILEY%3FVCH+Verlag+Berlin+GmbH&rft.issn=1862-6254&rft.eissn=1862-6270&rft.volume=13&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fpssr.201800580&rft.externalDBID=10.1002%252Fpssr.201800580&rft.externalDocID=PSSR201800580
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6254&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6254&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6254&client=summon