Impedance Spectroscopy: A Versatile Technique to Understand Solution‐Processed Optoelectronic Devices
Solution‐processed optoelectronic devices based on conjugated polymers, colloidal quantum dots (CQDs), halide perovskites, and so on are now emerging as a new‐generation semiconductor technology which prevails its conventional counterparts in terms of low fabrication cost, ease of scalable manufactu...
Uloženo v:
| Vydáno v: | Physica status solidi. PSS-RRL. Rapid research letters Ročník 13; číslo 5 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin
WILEY?VCH Verlag Berlin GmbH
01.05.2019
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 1862-6254, 1862-6270 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Solution‐processed optoelectronic devices based on conjugated polymers, colloidal quantum dots (CQDs), halide perovskites, and so on are now emerging as a new‐generation semiconductor technology which prevails its conventional counterparts in terms of low fabrication cost, ease of scalable manufacturing, and abundant material designability. However, the solution‐processed thin films obtained through spin‐coating, spray, inkjet printing, and doctor blading usually suffer from low film quality and a high defect density especially at the interfaces of different functional layers. Currently, the most significant subject is to address the non‐ideal interfaces for achieving improved performance of the devices. Impedance spectroscopy (IS) is a universal technique that can help to examine the charge behavior at the interfaces in an electrochemical or solid‐state multilayered device. Owing to its ability to elucidate the charge transfer, charge transport, and accumulation within the interfaces of electrochemical or multilayered devices with minimal effects to the devices themselves, the use of IS has increased vividly in the last decades. This review provides the basic principles of IS and its applications on solution‐processed optoelectronic devices.
Solution‐processed thin film devices usually suffer from low fabrication quality and high defect density especially at the interfaces of different functional layers. This review provides the development of impedance spectroscopy in solution‐processed electrochemical or multilayered devices as a tool to elucidate the charge transfer, transport, and accumulation within the interfaces with minimal effects to the devices themselves. |
|---|---|
| AbstractList | Solution‐processed optoelectronic devices based on conjugated polymers, colloidal quantum dots (CQDs), halide perovskites, and so on are now emerging as a new‐generation semiconductor technology which prevails its conventional counterparts in terms of low fabrication cost, ease of scalable manufacturing, and abundant material designability. However, the solution‐processed thin films obtained through spin‐coating, spray, inkjet printing, and doctor blading usually suffer from low film quality and a high defect density especially at the interfaces of different functional layers. Currently, the most significant subject is to address the non‐ideal interfaces for achieving improved performance of the devices. Impedance spectroscopy (IS) is a universal technique that can help to examine the charge behavior at the interfaces in an electrochemical or solid‐state multilayered device. Owing to its ability to elucidate the charge transfer, charge transport, and accumulation within the interfaces of electrochemical or multilayered devices with minimal effects to the devices themselves, the use of IS has increased vividly in the last decades. This review provides the basic principles of IS and its applications on solution‐processed optoelectronic devices.
Solution‐processed thin film devices usually suffer from low fabrication quality and high defect density especially at the interfaces of different functional layers. This review provides the development of impedance spectroscopy in solution‐processed electrochemical or multilayered devices as a tool to elucidate the charge transfer, transport, and accumulation within the interfaces with minimal effects to the devices themselves. Solution‐processed optoelectronic devices based on conjugated polymers, colloidal quantum dots (CQDs), halide perovskites, and so on are now emerging as a new‐generation semiconductor technology which prevails its conventional counterparts in terms of low fabrication cost, ease of scalable manufacturing, and abundant material designability. However, the solution‐processed thin films obtained through spin‐coating, spray, inkjet printing, and doctor blading usually suffer from low film quality and a high defect density especially at the interfaces of different functional layers. Currently, the most significant subject is to address the non‐ideal interfaces for achieving improved performance of the devices. Impedance spectroscopy (IS) is a universal technique that can help to examine the charge behavior at the interfaces in an electrochemical or solid‐state multilayered device. Owing to its ability to elucidate the charge transfer, charge transport, and accumulation within the interfaces of electrochemical or multilayered devices with minimal effects to the devices themselves, the use of IS has increased vividly in the last decades. This review provides the basic principles of IS and its applications on solution‐processed optoelectronic devices. |
| Author | Imran, Muhammad Chang, Shuai Chen, Yu Shi, Qingfan Zhong, Haizheng Ali, Shmshad |
| Author_xml | – sequence: 1 givenname: Shmshad surname: Ali fullname: Ali, Shmshad organization: Beijing Institute of Technology – sequence: 2 givenname: Shuai surname: Chang fullname: Chang, Shuai email: schang@bit.edu.cn organization: Beijing Institute of Technology – sequence: 3 givenname: Muhammad surname: Imran fullname: Imran, Muhammad organization: Beijing Institute of Technology – sequence: 4 givenname: Qingfan surname: Shi fullname: Shi, Qingfan organization: Beijing Institute of Technology – sequence: 5 givenname: Yu surname: Chen fullname: Chen, Yu organization: Beijing Institute of Technology – sequence: 6 givenname: Haizheng orcidid: 0000-0002-2662-7472 surname: Zhong fullname: Zhong, Haizheng email: hzzhong@bit.edu.cn organization: Beijing Institute of Technology |
| BookMark | eNqFkE1LAzEQhoMo2FavngOeW5Pd7G7qrdSvQqHFtl6XbDKrW7bJmqRKb_4Ef6O_xNRKBUGcywzM-8zH20aH2mhA6IySHiUkumics72IUE5IwskBalGeRt00ysjhvk7YMWo7twySfsbiFnocrRpQQkvAswakt8ZJ02wu8QA_gHXCVzXgOcgnXT2vAXuDF1qFhhda4Zmp174y-uPtfWqNBOdA4UnjDdRfo3Ql8RW8VKFzgo5KUTs4_c4dtLi5ng_vuuPJ7Wg4GHdlTDPSjRMqE-Ac4lRIxSLGOJWRYpQVKY0UL6hKIStTVZSqBEEKJVgR84wVSZGUvIg76Hw3t7EmHOx8vjRrq8PKPArBkn6SxkHV26lk-NdZKPPGVithNzkl-dbMfGtmvjczAOwXICsvtr97K6r6b6y_w16DjZt_luTT2ez-h_0EBWaPuQ |
| CitedBy_id | crossref_primary_10_1039_D0QM00983K crossref_primary_10_1016_j_mssp_2022_106641 crossref_primary_10_1007_s00289_024_05581_7 crossref_primary_10_1039_C9QM00768G crossref_primary_10_1002_anie_202415856 crossref_primary_10_1016_j_cej_2023_144508 crossref_primary_10_1002_eom2_12268 crossref_primary_10_1039_D1SE01279G crossref_primary_10_1134_S1063783425601298 crossref_primary_10_1007_s40843_022_2313_1 crossref_primary_10_1002_ange_202415856 crossref_primary_10_1016_j_solener_2019_09_056 crossref_primary_10_1016_j_orgel_2024_107120 crossref_primary_10_3390_condmat10030038 crossref_primary_10_1039_D1MH02060A |
| Cites_doi | 10.1016/j.orgel.2008.06.007 10.1021/acsenergylett.8b00641 10.1116/1.588396 10.1021/acs.jpclett.6b01176 10.1021/acs.jpcc.7b01047 10.1088/1742-6596/700/1/012053 10.1021/acsenergylett.8b00465 10.1021/am2013568 10.1021/jp011817x 10.1016/j.cplett.2006.02.060 10.1016/S0009-2614(98)00162-6 10.1021/acs.jpcc.5b02984 10.1021/acs.jpclett.5b02273 10.1021/am500074s 10.1021/acsami.5b07197 10.1021/acs.jpclett.6b02193 10.3938/jkps.51.1011 10.1021/acsami.5b06070 10.1016/j.solmat.2004.07.017 10.1021/am100312v 10.1002/adma.201204306 10.1021/ph500001e 10.1038/ncomms3242 10.1016/j.solmat.2009.10.015 10.3390/ma10050482 10.1016/S0038-1101(01)00044-2 10.1021/nl504086v 10.1016/S0013-4686(01)00540-0 10.1016/j.rser.2017.05.159 10.1021/nn2048153 10.1039/C7TC00202E 10.1002/ijch.201500007 10.1016/S0022-0248(97)00079-1 10.1021/acsami.5b12127 10.1021/jp4074015 10.1021/acsami.7b00141 10.1021/jp509896u 10.1021/acsaem.8b00301 10.1002/adma.201502490 10.1038/s41560-018-0200-6 10.1021/jz500059v 10.1038/ncomms6404 10.1016/j.nanoen.2017.07.034 10.1021/acs.jpcc.7b02394 10.1021/acsomega.8b01626 10.1021/acs.jpcc.8b01033 10.1016/j.ijleo.2015.05.091 10.1021/jp510837q 10.1117/12.846115 10.1021/acs.jpcc.7b11010 10.1021/nl302161n 10.1109/5.649651 10.1016/j.synthmet.2017.02.022 10.1039/C7TC04599A 10.1038/s41467-018-04986-z 10.1039/c0cp02249g 10.1126/science.269.5227.1086 10.1021/nl505011f 10.1021/nn901074r 10.1021/acsnano.5b00437 10.1007/978-1-4614-8933-7 10.1021/nl1037787 10.1021/jp5069076 10.1021/nl404252e 10.1021/jacs.8b03526 10.1063/1.3295902 10.1063/1.4812487 10.1039/C6CP08424A 10.1021/jacs.5b08535 10.1007/978-3-319-32655-9 10.1021/nn204382k 10.1021/acs.jpclett.8b02138 10.1002/aenm.201702772 10.1021/acs.jpclett.5b02229 10.1063/1.123738 10.1088/0022-3727/46/5/055102 10.1088/1361-6463/aa9d30 10.1021/acsami.6b03198 10.1016/j.orgel.2015.07.057 10.1021/acs.jpclett.7b00763 10.1002/adfm.201102687 10.1126/science.aac5523 10.1021/am508211e 10.1002/adma.201000726 10.1021/acsami.6b15660 10.1016/j.apsusc.2015.02.003 10.1021/am506308t 10.1021/acsami.6b05468 10.1016/S0013-4686(02)00444-9 10.1002/adma.201801387 10.1021/jp052768h 10.1021/acs.jpcc.6b01728 10.1155/2014/851705 10.1021/cm501595u 10.1021/acs.jpcc.7b00979 10.1038/natrevmats.2016.100 10.1021/am900446x 10.1021/nn503569p 10.1021/nl1038456 10.1063/1.2222063 10.1063/1.4978346 10.1021/jp5086284 10.1039/C2TA00674J 10.1021/acs.jpcc.8b02141 10.1021/acsami.8b13101 10.1021/nn400656n 10.1021/jp061693u 10.1002/0471716243 10.1021/acsnano.7b04935 10.1063/1.3204484 10.1016/j.orgel.2015.11.018 10.1021/nn4005473 10.1021/jp0527406 10.1021/jp066178a 10.1063/1.3153970 10.1021/acsnano.6b07617 10.1039/C6TC04639H 10.1021/nn506638n 10.1021/acsnano.5b07217 10.1002/smll.201701711 10.1002/adfm.201200880 10.1016/j.tsf.2006.11.186 10.1063/1.4991030 |
| ContentType | Journal Article |
| Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION 7U5 8FD L7M |
| DOI | 10.1002/pssr.201800580 |
| DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1862-6270 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_pssr_201800580 PSSR201800580 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21603012 – fundername: Science and Technology Innovation Foundation of Shenzhen funderid: JCYJ20170817114726048 |
| GroupedDBID | 05W 0R~ 123 1OC 31~ 33P 3SF 4.4 52U 8-1 8UM AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADZMN AEEZP AEIGN AEIMD AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2W PQQKQ ROL SUPJJ WBKPD WGJPS WIH WIK WOHZO WXSBR WYISQ XV2 ZZTAW ~S- AAYXX ADMLS AEYWJ AGQPQ AGYGG ALUQN CITATION 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c3170-351c5e88e36acd424481c2d414b612d8b1d6e7f6dbfdfea0bda4b3874b5b5f8b3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000471310100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1862-6254 |
| IngestDate | Fri Jul 25 06:25:21 EDT 2025 Sat Nov 29 03:31:28 EST 2025 Tue Nov 18 22:35:12 EST 2025 Wed Jan 22 17:06:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3170-351c5e88e36acd424481c2d414b612d8b1d6e7f6dbfdfea0bda4b3874b5b5f8b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2662-7472 |
| PQID | 2222459563 |
| PQPubID | 1036348 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2222459563 crossref_primary_10_1002_pssr_201800580 crossref_citationtrail_10_1002_pssr_201800580 wiley_primary_10_1002_pssr_201800580_PSSR201800580 |
| PublicationCentury | 2000 |
| PublicationDate | May 2019 2019-05-00 20190501 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin |
| PublicationPlace_xml | – name: Berlin – name: Weinheim |
| PublicationTitle | Physica status solidi. PSS-RRL. Rapid research letters |
| PublicationYear | 2019 |
| Publisher | WILEY?VCH Verlag Berlin GmbH Wiley Subscription Services, Inc |
| Publisher_xml | – name: WILEY?VCH Verlag Berlin GmbH – name: Wiley Subscription Services, Inc |
| References | 2017; 5 2018; 122 2017; 8 2017; 2 2013; 25 2013; 4 2013; 1 2010; 107 1997; 85 2008; 9 2014; 26 2011; 11 2016; 700 2011; 13 2013; 7 2001; 45 2012; 12 2001; 46 2017; 9 2001; 105 2014; 1 2010; 22 2018; 6 2018; 9 2002; 47 2018; 8 2014; 5 2018; 3 2015; 137 2018; 1 2017; 39 2015; 332 2017; 79 2013; 117 2005; 109 2016; 353 2014; 14 2018; 30 2017; 121 1998; 287 2014; 8 2010; 2 2014; 6 2012; 22 2009; 7415 2014; 118 2015; 15 2015; 6 2018; 140 2015; 126 2013; 46 1995; 13 2015; 55 1997; 178 2016; 10 2006; 110 2005; 87 2013; 102 2005 2014; 2014 2007; 51 2011; 4 2015; 9 2015; 7 2016; 120 2017; 51 2015; 26 2016; 7 1998; 5647 2007; 515 2015; 27 1997; 31 2017; 11 2017; 10 2007; 111 2017; 13 2009; 8 1995; 269 2016 2015; 119 2017; 19 1999; 74 2014 2016; 29 2009; 3 2012; 6 2009; 1 2018; 10 2016; 8 2006; 100 2016; 053901 2010; 94 2009; 105 2017; 227 2006; 422 2009; 106 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 Manzanares J. A. (e_1_2_8_108_1) 1998; 5647 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Matsui T. (e_1_2_8_7_1) 2016; 053901 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 Vlaskina S. I. (e_1_2_8_16_1) 1997; 31 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 Fabregat‐santiago F. (e_1_2_8_53_1) 2009; 8 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 |
| References_xml | – volume: 29 start-page: 13 year: 2016 publication-title: Org. Electron – volume: 45 start-page: 427 year: 2001 publication-title: Solid. State. Electron – volume: 8 start-page: 558 year: 2009 publication-title: Energy Environ. Sci – volume: 79 start-page: 814 year: 2017 publication-title: Renew. Sustain. Energy Rev – year: 2005 – volume: 87 start-page: 117 year: 2005 publication-title: Sol. Energy Mater. Sol. Cells – volume: 94 start-page: 366 year: 2010 publication-title: Sol. Energy Mater. Sol. Cells – volume: 9 start-page: 2608 year: 2018 publication-title: Nat. Commun – volume: 1 start-page: 2079 year: 2013 publication-title: J. Mater. Chem. A – volume: 122 start-page: 4822 year: 2018 publication-title: J. Phys. Chem. C – volume: 4 start-page: 312 year: 2011 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 682 year: 2018 publication-title: Nat. Energy – volume: 8 start-page: 5453 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 46 start-page: 3457 year: 2001 publication-title: Electrochim. Acta – volume: 6 start-page: 873 year: 2012 publication-title: ACS Nano – volume: 9 start-page: 11224 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 265 year: 2015 publication-title: Org. Electron – volume: 119 start-page: 3456 year: 2015 publication-title: J. Phys. Chem. C – volume: 4 start-page: 2242 year: 2013 publication-title: Nat. Commun – year: 2014 – volume: 22 start-page: 4547 year: 2012 publication-title: Adv. Funct. Mater – volume: 15 start-page: 2104 year: 2015 publication-title: Nano Lett – volume: 47 start-page: 4213 year: 2002 publication-title: Electrochim. Acta – volume: 5 start-page: 634 year: 2017 publication-title: J. Mater. Chem. C – volume: 5647 start-page: 4327 year: 1998 publication-title: J. Phys – volume: 6 start-page: 22451 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 847 year: 2008 publication-title: Org. Electron – volume: 100 start-page: 034510 year: 2006 publication-title: J. Appl. Phys – volume: 11 start-page: 717 year: 2011 publication-title: Nano Lett – volume: 6 start-page: 6537 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 7415 start-page: 74150G‐1 year: 2009 publication-title: Proc. SPIE – volume: 11 start-page: 9405 year: 2017 publication-title: ACS Nano – volume: 3 start-page: 10042 year: 2018 publication-title: ACS Omega – volume: 13 start-page: 2570 year: 1995 publication-title: J. Vac. Sci. Technol. B Microelectron. Nanom. Struct – volume: 14 start-page: 888 year: 2014 publication-title: Nano Lett – volume: 3 start-page: 1044 year: 2018 publication-title: ACS Energy Lett – volume: 31 start-page: 117 year: 1997 publication-title: J. Korean Phys. Soc – volume: 269 start-page: 1086 year: 1995 publication-title: Science – volume: 6 start-page: 3092 year: 2012 publication-title: ACS Nano – volume: 13 start-page: 9083 year: 2011 publication-title: Phys. Chem. Chem. Phys – volume: 6 start-page: 4693 year: 2015 publication-title: J. Phys. Chem. Lett – year: 2016 – volume: 7 start-page: 23223 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 3581 year: 2009 publication-title: ACS Nano – volume: 22 start-page: E210 year: 2010 publication-title: Adv. Mater – volume: 105 start-page: 124513 year: 2009 publication-title: J. Appl. Phys – volume: 106 start-page: 044507 year: 2009 publication-title: J. Appl. Phys – volume: 7 start-page: 3091 year: 2016 publication-title: J. Phys. Chem. Lett – volume: 74 start-page: 1951 year: 1999 publication-title: Appl. Phys. Lett – volume: 51 start-page: 1011 year: 2007 publication-title: J. Korean Phys. Soc – volume: 55 start-page: 990 year: 2015 publication-title: Isr. J. Chem – volume: 30 start-page: 1801387 year: 2018 publication-title: Adv. Mater – volume: 053901 start-page: 106 year: 2016 publication-title: Appl. Phys. Lett – volume: 10 start-page: 482 year: 2017 publication-title: Materials – volume: 3 start-page: 1477 year: 2018 publication-title: ACS Energy Lett – volume: 7 start-page: 5105 year: 2016 publication-title: J. Phys. Chem. Lett – volume: 118 start-page: 22913 year: 2014 publication-title: J. Phys. Chem. C – volume: 8 start-page: 10321 year: 2014 publication-title: ACS Nano – volume: 287 start-page: 83 year: 1998 publication-title: Chem. Phys. Lett – volume: 227 start-page: 43 year: 2017 publication-title: Synth. Met – volume: 6 start-page: 1008 year: 2018 publication-title: J. Mater. Chem. C – volume: 27 start-page: 5196 year: 2015 publication-title: Adv. Mater – volume: 10 start-page: 1572 year: 2016 publication-title: ACS Nano – volume: 700 start-page: 012053 year: 2016 publication-title: J. Phys. Conf. Ser – volume: 9 start-page: 023504 year: 2017 publication-title: J. Renew. Sustain. Energy – volume: 110 start-page: 13872 year: 2006 publication-title: J. Phys. Chem. B – volume: 85 start-page: 1740 year: 1997 publication-title: Proc. IEEE – volume: 178 start-page: 56 year: 1997 publication-title: J. Cryst. Growth – volume: 15 start-page: 1101 year: 2015 publication-title: Nano Lett – volume: 121 start-page: 9757 year: 2017 publication-title: J. Phys. Chem. C – volume: 19 start-page: 5959 year: 2017 publication-title: Phys. Chem. Chem. Phys – volume: 7 start-page: 4135 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 122 start-page: 1973 year: 2018 publication-title: J. Phys. Chem. C – volume: 8 start-page: 2412 year: 2017 publication-title: J. Phys. Chem. Lett – volume: 8 start-page: 18189 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 377 year: 2014 publication-title: ACS Photonics – volume: 353 start-page: aac5523 year: 2016 publication-title: Science – volume: 13 start-page: 1701711 year: 2017 publication-title: Small – volume: 46 start-page: 055102 year: 2013 publication-title: J. Phys. D: Appl. Phys – volume: 121 start-page: 5515 year: 2017 publication-title: J. Phys. Chem. C – volume: 5 start-page: 5404 year: 2014 publication-title: Nat. Commun – volume: 118 start-page: 25802 year: 2014 publication-title: J. Phys. Chem. C – volume: 126 start-page: 1595 year: 2015 publication-title: Optik – volume: 515 start-page: 4783 year: 2007 publication-title: Thin Solid Films – volume: 10 start-page: 37335 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 111 start-page: 6550 year: 2007 publication-title: J. Phys. Chem. C – volume: 137 start-page: 13130 year: 2015 publication-title: J. Am. Chem. Soc – volume: 5 start-page: 680 year: 2014 publication-title: J. Phys. Chem. Lett – volume: 22 start-page: 1511 year: 2012 publication-title: Adv. Funct. Mater – volume: 119 start-page: 14919 year: 2015 publication-title: J. Phys. Chem. C – volume: 12 start-page: 4360 year: 2012 publication-title: Nano Lett – volume: 117 start-page: 21949 year: 2013 publication-title: J. Phys. Chem. C – volume: 39 start-page: 478 year: 2017 publication-title: Nano Energy – volume: 2014 start-page: 851705 year: 2014 publication-title: Int. J. Photoenergy – volume: 5 start-page: 076102 year: 2017 publication-title: APL Mater – volume: 11 start-page: 661 year: 2011 publication-title: Nano Lett – volume: 120 start-page: 8023 year: 2016 publication-title: J. Phys. Chem. C – volume: 2 start-page: 16100 year: 2017 publication-title: Nat. Rev. Mater – volume: 9 start-page: 13269 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 908 year: 2015 publication-title: ACS Nano – volume: 422 start-page: 184 year: 2006 publication-title: J. Phys. Chem. Lett – volume: 121 start-page: 9131 year: 2017 publication-title: J. Phys. Chem. C – volume: 140 start-page: 6984 year: 2018 publication-title: J. Am. Chem. Soc – volume: 1 start-page: 2592 year: 2018 publication-title: ACS Appl. Energy Mater – volume: 107 start-page: 044504 year: 2010 publication-title: J. Appl. Phys – volume: 9 start-page: 1561 year: 2015 publication-title: ACS Nano – volume: 25 start-page: 1646 year: 2013 publication-title: Adv. Mater – volume: 7 start-page: 4210 year: 2013 publication-title: ACS Nano – volume: 105 start-page: 11419 year: 2001 publication-title: J. Phys. Chem. B – volume: 9 start-page: 5240 year: 2018 publication-title: J. Phys. Chem. Lett – volume: 102 start-page: 253303 year: 2013 publication-title: Appl. Phys. Lett – volume: 8 start-page: 1702772 year: 2018 publication-title: Adv. Energy Mater – volume: 109 start-page: 14945 year: 2005 publication-title: J. Phys. Chem. B – volume: 122 start-page: 11651 year: 2018 publication-title: J. Phys. Chem. C – volume: 7 start-page: 23507 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 2107 year: 2009 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 18526 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 51 start-page: 025110 year: 2017 publication-title: J. Phys. D. Appl. Phys – volume: 7 start-page: 2292 year: 2013 publication-title: ACS Nano – volume: 26 start-page: 4004 year: 2014 publication-title: Chem. Mater – volume: 6 start-page: 4633 year: 2015 publication-title: J. Phys. Chem. Lett – volume: 5 start-page: 5643 year: 2017 publication-title: J. Mater. Chem. C – volume: 332 start-page: 716 year: 2015 publication-title: Appl. Surf. Sci – volume: 2 start-page: 2254 year: 2010 publication-title: ACS Appl. Mater. Interfaces – volume: 119 start-page: 4444 year: 2015 publication-title: J. Phys. Chem. C – volume: 11 start-page: 6586 year: 2017 publication-title: ACS Nano – volume: 109 start-page: 17913 year: 2005 publication-title: J. Phys. Chem. B – ident: e_1_2_8_65_1 doi: 10.1016/j.orgel.2008.06.007 – ident: e_1_2_8_103_1 doi: 10.1021/acsenergylett.8b00641 – ident: e_1_2_8_21_1 doi: 10.1116/1.588396 – ident: e_1_2_8_98_1 doi: 10.1021/acs.jpclett.6b01176 – ident: e_1_2_8_96_1 doi: 10.1021/acs.jpcc.7b01047 – ident: e_1_2_8_57_1 doi: 10.1088/1742-6596/700/1/012053 – ident: e_1_2_8_94_1 doi: 10.1021/acsenergylett.8b00465 – ident: e_1_2_8_122_1 doi: 10.1021/am2013568 – ident: e_1_2_8_120_1 doi: 10.1021/jp011817x – ident: e_1_2_8_121_1 doi: 10.1016/j.cplett.2006.02.060 – ident: e_1_2_8_112_1 doi: 10.1016/S0009-2614(98)00162-6 – ident: e_1_2_8_81_1 doi: 10.1021/acs.jpcc.5b02984 – ident: e_1_2_8_80_1 doi: 10.1021/acs.jpclett.5b02273 – ident: e_1_2_8_59_1 doi: 10.1021/am500074s – ident: e_1_2_8_63_1 doi: 10.1021/acsami.5b07197 – ident: e_1_2_8_79_1 doi: 10.1021/acs.jpclett.6b02193 – ident: e_1_2_8_123_1 doi: 10.3938/jkps.51.1011 – ident: e_1_2_8_9_1 doi: 10.1021/acsami.5b06070 – ident: e_1_2_8_48_1 doi: 10.1016/j.solmat.2004.07.017 – ident: e_1_2_8_67_1 doi: 10.1021/am100312v – ident: e_1_2_8_64_1 doi: 10.1002/adma.201204306 – ident: e_1_2_8_12_1 doi: 10.1021/ph500001e – ident: e_1_2_8_86_1 doi: 10.1038/ncomms3242 – ident: e_1_2_8_61_1 doi: 10.1016/j.solmat.2009.10.015 – ident: e_1_2_8_20_1 doi: 10.3390/ma10050482 – ident: e_1_2_8_23_1 doi: 10.1016/S0038-1101(01)00044-2 – ident: e_1_2_8_26_1 doi: 10.1021/nl504086v – ident: e_1_2_8_45_1 doi: 10.1016/S0013-4686(01)00540-0 – ident: e_1_2_8_40_1 doi: 10.1016/j.rser.2017.05.159 – ident: e_1_2_8_75_1 doi: 10.1021/nn2048153 – ident: e_1_2_8_110_1 doi: 10.1039/C7TC00202E – ident: e_1_2_8_56_1 doi: 10.1002/ijch.201500007 – ident: e_1_2_8_22_1 doi: 10.1016/S0022-0248(97)00079-1 – ident: e_1_2_8_14_1 doi: 10.1021/acsami.5b12127 – ident: e_1_2_8_18_1 doi: 10.1021/jp4074015 – ident: e_1_2_8_78_1 doi: 10.1021/acsami.7b00141 – ident: e_1_2_8_84_1 doi: 10.1021/jp509896u – ident: e_1_2_8_34_1 doi: 10.1021/acsaem.8b00301 – ident: e_1_2_8_127_1 doi: 10.1002/adma.201502490 – ident: e_1_2_8_36_1 doi: 10.1038/s41560-018-0200-6 – ident: e_1_2_8_104_1 doi: 10.1021/jz500059v – ident: e_1_2_8_28_1 doi: 10.1038/ncomms6404 – ident: e_1_2_8_68_1 doi: 10.1016/j.nanoen.2017.07.034 – ident: e_1_2_8_76_1 doi: 10.1021/acs.jpcc.7b02394 – ident: e_1_2_8_99_1 doi: 10.1021/acsomega.8b01626 – ident: e_1_2_8_100_1 doi: 10.1021/acs.jpcc.8b01033 – ident: e_1_2_8_124_1 doi: 10.1016/j.ijleo.2015.05.091 – ident: e_1_2_8_82_1 doi: 10.1021/jp510837q – ident: e_1_2_8_117_1 doi: 10.1117/12.846115 – ident: e_1_2_8_106_1 doi: 10.1021/acs.jpcc.7b11010 – ident: e_1_2_8_11_1 doi: 10.1021/nl302161n – ident: e_1_2_8_15_1 doi: 10.1109/5.649651 – ident: e_1_2_8_87_1 doi: 10.1016/j.synthmet.2017.02.022 – ident: e_1_2_8_125_1 doi: 10.1039/C7TC04599A – ident: e_1_2_8_38_1 doi: 10.1038/s41467-018-04986-z – ident: e_1_2_8_60_1 doi: 10.1039/c0cp02249g – ident: e_1_2_8_109_1 doi: 10.1126/science.269.5227.1086 – ident: e_1_2_8_4_1 doi: 10.1021/nl505011f – ident: e_1_2_8_32_1 doi: 10.1021/nn901074r – ident: e_1_2_8_8_1 doi: 10.1021/acsnano.5b00437 – ident: e_1_2_8_42_1 doi: 10.1007/978-1-4614-8933-7 – ident: e_1_2_8_3_1 doi: 10.1021/nl1037787 – ident: e_1_2_8_85_1 doi: 10.1021/jp5069076 – ident: e_1_2_8_95_1 doi: 10.1021/nl404252e – ident: e_1_2_8_25_1 doi: 10.1021/jacs.8b03526 – ident: e_1_2_8_6_1 doi: 10.1063/1.3295902 – ident: e_1_2_8_118_1 doi: 10.1063/1.4812487 – ident: e_1_2_8_91_1 doi: 10.1039/C6CP08424A – ident: e_1_2_8_102_1 doi: 10.1021/jacs.5b08535 – ident: e_1_2_8_41_1 doi: 10.1007/978-3-319-32655-9 – ident: e_1_2_8_54_1 doi: 10.1021/nn204382k – ident: e_1_2_8_114_1 doi: 10.1021/acs.jpclett.8b02138 – ident: e_1_2_8_92_1 doi: 10.1002/aenm.201702772 – ident: e_1_2_8_97_1 doi: 10.1021/acs.jpclett.5b02229 – ident: e_1_2_8_17_1 doi: 10.1063/1.123738 – ident: e_1_2_8_119_1 doi: 10.1088/0022-3727/46/5/055102 – volume: 31 start-page: 117 year: 1997 ident: e_1_2_8_16_1 publication-title: J. Korean Phys. Soc – ident: e_1_2_8_93_1 doi: 10.1088/1361-6463/aa9d30 – ident: e_1_2_8_77_1 doi: 10.1021/acsami.6b03198 – ident: e_1_2_8_83_1 doi: 10.1016/j.orgel.2015.07.057 – ident: e_1_2_8_128_1 doi: 10.1021/acs.jpclett.7b00763 – ident: e_1_2_8_111_1 doi: 10.1002/adfm.201102687 – ident: e_1_2_8_69_1 doi: 10.1126/science.aac5523 – ident: e_1_2_8_5_1 doi: 10.1021/am508211e – ident: e_1_2_8_43_1 doi: 10.1002/adma.201000726 – ident: e_1_2_8_31_1 doi: 10.1021/acsami.6b15660 – ident: e_1_2_8_58_1 doi: 10.1016/j.apsusc.2015.02.003 – ident: e_1_2_8_13_1 doi: 10.1021/am506308t – ident: e_1_2_8_30_1 doi: 10.1021/acsami.6b05468 – ident: e_1_2_8_46_1 doi: 10.1016/S0013-4686(02)00444-9 – ident: e_1_2_8_37_1 doi: 10.1002/adma.201801387 – volume: 8 start-page: 558 year: 2009 ident: e_1_2_8_53_1 publication-title: Energy Environ. Sci – ident: e_1_2_8_47_1 doi: 10.1021/jp052768h – ident: e_1_2_8_105_1 doi: 10.1021/acs.jpcc.6b01728 – ident: e_1_2_8_44_1 doi: 10.1155/2014/851705 – ident: e_1_2_8_71_1 doi: 10.1021/cm501595u – ident: e_1_2_8_89_1 doi: 10.1021/acs.jpcc.7b00979 – ident: e_1_2_8_35_1 doi: 10.1038/natrevmats.2016.100 – ident: e_1_2_8_66_1 doi: 10.1021/am900446x – ident: e_1_2_8_27_1 doi: 10.1021/nn503569p – ident: e_1_2_8_10_1 doi: 10.1021/nl1038456 – ident: e_1_2_8_52_1 doi: 10.1063/1.2222063 – ident: e_1_2_8_73_1 doi: 10.1063/1.4978346 – ident: e_1_2_8_72_1 doi: 10.1021/jp5086284 – ident: e_1_2_8_51_1 doi: 10.1039/C2TA00674J – ident: e_1_2_8_107_1 doi: 10.1021/acs.jpcc.8b02141 – ident: e_1_2_8_115_1 doi: 10.1021/acsami.8b13101 – ident: e_1_2_8_33_1 doi: 10.1021/nn400656n – ident: e_1_2_8_49_1 doi: 10.1021/jp061693u – ident: e_1_2_8_39_1 doi: 10.1002/0471716243 – volume: 5647 start-page: 4327 year: 1998 ident: e_1_2_8_108_1 publication-title: J. Phys – ident: e_1_2_8_2_1 doi: 10.1021/acsnano.7b04935 – ident: e_1_2_8_74_1 doi: 10.1063/1.3204484 – ident: e_1_2_8_29_1 doi: 10.1016/j.orgel.2015.11.018 – ident: e_1_2_8_55_1 doi: 10.1021/nn4005473 – volume: 053901 start-page: 106 year: 2016 ident: e_1_2_8_7_1 publication-title: Appl. Phys. Lett – ident: e_1_2_8_24_1 doi: 10.1021/jp0527406 – ident: e_1_2_8_50_1 doi: 10.1021/jp066178a – ident: e_1_2_8_62_1 doi: 10.1063/1.3153970 – ident: e_1_2_8_126_1 doi: 10.1021/acsnano.6b07617 – ident: e_1_2_8_88_1 doi: 10.1039/C6TC04639H – ident: e_1_2_8_70_1 doi: 10.1021/nn506638n – ident: e_1_2_8_19_1 doi: 10.1021/acsnano.5b07217 – ident: e_1_2_8_101_1 doi: 10.1002/smll.201701711 – ident: e_1_2_8_113_1 doi: 10.1002/adfm.201200880 – ident: e_1_2_8_116_1 doi: 10.1016/j.tsf.2006.11.186 – ident: e_1_2_8_90_1 doi: 10.1063/1.4991030 |
| SSID | ssj0059743 |
| Score | 2.3866642 |
| SecondaryResourceType | review_article |
| Snippet | Solution‐processed optoelectronic devices based on conjugated polymers, colloidal quantum dots (CQDs), halide perovskites, and so on are now emerging as a... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Charge transfer Charge transport Colloiding Devices Impedance spectroscopy Inkjet printing metal halide perovskites Optoelectronic devices Perovskites Quantum dots solution processing Spectrum analysis Thin films |
| Title | Impedance Spectroscopy: A Versatile Technique to Understand Solution‐Processed Optoelectronic Devices |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssr.201800580 https://www.proquest.com/docview/2222459563 |
| Volume | 13 |
| WOSCitedRecordID | wos000471310100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1862-6270 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059743 issn: 1862-6254 databaseCode: DRFUL dateStart: 20070101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7IpuCLd3E6JQ-CT2W9pG3q23AOhTHHLuJbSZpUhLGWrQq--RP8jf4Sk_Sy7UEEfWshDSUnJ-c74ZzvA7iUJqYW40TmJg43sEe4QYklDGo5Eo8rii-tPPfY8_t98vQUDFa6-HN-iOrCTXmGPq-Vg1O2aC1JQ1MZQ1RpFlHKeDJpr9ty8-Ia1DvD7qRXnsYKL-sie4ncDYn1cUncaNqt9RnWA9MSba5iVh10urv__9092CkAJ2rnO2QfNsTsALZ04We0OITne4mbuTI9UlL0mSK3TNL3a9RG6ipN2m0q0LgkekVZgiZVOwwq79S-Pj6LhgPB0UOaJUtxHdQR-iw6gkn3dnxzZxTiC0bkKDEax7UiVxAiHI9GXLXDESuyObYwk6CIE2ZxT_ixx1nMY0FNxilmDvExc5kbE-YcQ22WzMQJIOxpk0v3Z1QJnrHYV_pOlIg4wIFpNsAoVz6MCmZyJZAxDXNOZTtUixdWi9eAq2p8mnNy_DiyWRoyLHxzEUpEZGNX5oVOA2xtsl9mCQej0bB6O_3LR2ewLZ-DvFKyCbVs_irOYTN6y14W84tiz34DUT7uzA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB6kVfTiW6xW3YPgKbRJNsnWW7GWFmMtfUhvIZvdiFDa0kbBmz_B3-gvcSev2oMI4jFhs4Sd2dlvh5nvA7hUJvZ1Lpi6m5hCozYTms90qfm6qfA4UnzFynOPrtPpsNGo1k2rCbEXJuGHyBNuuDPieI0bHBPSlSVr6EwdIlibxVAaT93ai1T5klWAYqPXHLpZOEbAHFfZK-iuKbBPM-bGqlFZnWH1ZFrCze-gNT51mjv_8L-7sJ1CTlJPfGQP1uRkHzbi0s9gcQBPbYWcBRqfoBh9hPSW09nbNakTTKYpy40lGWRUrySakmHeEEOyrNrn-0faciAFeZhF06W8DmnIOBodwrB5O7hpaan8ghaYKEdjWnpgScakafuBwIY4pgeGoDrlChYJxnVhSye0BQ9FKP0qFz7lJnMot7gVMm4eQWEynchjINSOja4CAPdR8oyHDio8-UyGNVqrVkugZUvvBSk3OUpkjL2EVdnwcPG8fPFKcJWPnyWsHD-OLGeW9NLdufAUJjKopW6GZgmM2Ga_zOJ1-_1e_nTyl48uYLM1uHc9t925O4Ut9b6W1E2WoRDNX-QZrAev0fNifp468BeiN_K8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA6yqfjiXZxOzYPgU9napG3q23AWh2OOXWRvpWlSEcZatir45k_wN_pLzOlt7kEE8bElDSXnki_hnO9D6FKZ2Ne5YOpsQoRGLSY0n-lS83Wi8DhQfKXKc49du9djk4nTz6sJoRcm44coL9wgMtJ8DQEuYxE2lqyhsdpEoDaLgTSeOrVXqelYKjar7YE77hbpGABzWmWvoLumwD4tmBubRmN1htWdaQk3v4PWdNdxd_7hf3fRdg45cSvzkT20Jmf7aCMt_QwWB-ipo5CzAONjEKNPgN4yit-ucQvDZZqy3FTiUUH1ipMIj8uGGFzcqn2-f-QtB1LghziJlvI6uC3TbHSIxu7t6OZOy-UXtICAHA0x9cCUjEli-YGAhjimB4agOuUKFgnGdWFJO7QED0Uo_SYXPuWE2ZSb3AwZJ0eoMotm8hhhaqVGVwmA-yB5xkMbFJ58JkOHOs1mDWnF0ntBzk0OEhlTL2NVNjxYPK9cvBq6KsfHGSvHjyPrhSW9PDoXnsJEhnIW0yI1ZKQ2-2UWrz8cDsqnk798dIE2-23X63Z696doS712srLJOqok8xd5htaD1-R5MT_P_fcLQGHyNw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impedance+Spectroscopy%3A+A+Versatile+Technique+to+Understand+Solution%E2%80%90Processed+Optoelectronic+Devices&rft.jtitle=Physica+status+solidi.+PSS-RRL.+Rapid+research+letters&rft.au=Ali%2C+Shmshad&rft.au=Chang%2C+Shuai&rft.au=Imran%2C+Muhammad&rft.au=Shi%2C+Qingfan&rft.date=2019-05-01&rft.pub=WILEY%3FVCH+Verlag+Berlin+GmbH&rft.issn=1862-6254&rft.eissn=1862-6270&rft.volume=13&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fpssr.201800580&rft.externalDBID=10.1002%252Fpssr.201800580&rft.externalDocID=PSSR201800580 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6254&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6254&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6254&client=summon |