Sparse learning via Boolean relaxations

We introduce novel relaxations for cardinality-constrained learning problems, including least-squares regression as a special but important case. Our approach is based on reformulating a cardinality-constrained problem exactly as a Boolean program, to which standard convex relaxations such as the La...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming Vol. 151; no. 1; pp. 63 - 87
Main Authors: Pilanci, Mert, Wainwright, Martin J., El Ghaoui, Laurent
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2015
Springer Nature B.V
Subjects:
ISSN:0025-5610, 1436-4646
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We introduce novel relaxations for cardinality-constrained learning problems, including least-squares regression as a special but important case. Our approach is based on reformulating a cardinality-constrained problem exactly as a Boolean program, to which standard convex relaxations such as the Lasserre and Sherali-Adams hierarchies can be applied. We analyze the first-order relaxation in detail, deriving necessary and sufficient conditions for exactness in a unified manner. In the special case of least-squares regression, we show that these conditions are satisfied with high probability for random ensembles satisfying suitable incoherence conditions, similar to results on ℓ 1 -relaxations. In contrast to known methods, our relaxations yield lower bounds on the objective, and it can be verified whether or not the relaxation is exact. If it is not, we show that randomization based on the relaxed solution offers a principled way to generate provably good feasible solutions. This property enables us to obtain high quality estimates even if incoherence conditions are not met, as might be expected in real datasets. We numerically illustrate the performance of the relaxation-randomization strategy in both synthetic and real high-dimensional datasets, revealing substantial improvements relative to ℓ 1 -based methods and greedy selection heuristics.
AbstractList We introduce novel relaxations for cardinality-constrained learning problems, including least-squares regression as a special but important case. Our approach is based on reformulating a cardinality-constrained problem exactly as a Boolean program, to which standard convex relaxations such as the Lasserre and Sherali-Adams hierarchies can be applied. We analyze the first-order relaxation in detail, deriving necessary and sufficient conditions for exactness in a unified manner. In the special case of least-squares regression, we show that these conditions are satisfied with high probability for random ensembles satisfying suitable incoherence conditions, similar to results on ℓ 1 -relaxations. In contrast to known methods, our relaxations yield lower bounds on the objective, and it can be verified whether or not the relaxation is exact. If it is not, we show that randomization based on the relaxed solution offers a principled way to generate provably good feasible solutions. This property enables us to obtain high quality estimates even if incoherence conditions are not met, as might be expected in real datasets. We numerically illustrate the performance of the relaxation-randomization strategy in both synthetic and real high-dimensional datasets, revealing substantial improvements relative to ℓ 1 -based methods and greedy selection heuristics.
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Special Issue: International Symposium on Mathematical Programming, Pittsburgh, July 2015 We introduce novel relaxations for cardinality-constrained learning problems, including least-squares regression as a special but important case. Our approach is based on reformulating a cardinality-constrained problem exactly as a Boolean program, to which standard convex relaxations such as the Lasserre and Sherali-Adams hierarchies can be applied. We analyze the first-order relaxation in detail, deriving necessary and sufficient conditions for exactness in a unified manner. In the special case of least-squares regression, we show that these conditions are satisfied with high probability for random ensembles satisfying suitable incoherence conditions, similar to results on ...-relaxations. In contrast to known methods, our relaxations yield lower bounds on the objective, and it can be verified whether or not the relaxation is exact. If it is not, we show that randomization based on the relaxed solution offers a principled way to generate provably good feasible solutions. This property enables us to obtain high quality estimates even if incoherence conditions are not met, as might be expected in real datasets. We numerically illustrate the performance of the relaxation-randomization strategy in both synthetic and real high-dimensional datasets, revealing substantial improvements relative to ...-based methods and greedy selection heuristics.
Author Wainwright, Martin J.
Pilanci, Mert
El Ghaoui, Laurent
Author_xml – sequence: 1
  givenname: Mert
  surname: Pilanci
  fullname: Pilanci, Mert
  organization: Department of Electrical Engineering and Computer Sciences, University of California
– sequence: 2
  givenname: Martin J.
  surname: Wainwright
  fullname: Wainwright, Martin J.
  organization: Department of Electrical Engineering and Computer Sciences and Department of Statistics, University of California
– sequence: 3
  givenname: Laurent
  surname: El Ghaoui
  fullname: El Ghaoui, Laurent
  email: elghaoui@berkeley.edu
  organization: Department of Electrical Engineering and Computer Sciences, University of California
BookMark eNp9kE1LAzEQhoNUcFv9Ad4WPHiKziSbbHrU4hcUPNh7yMakbFmTmmxF_71b14MIehoG3mfm5ZmSSYjBEXKKcIEA9WVGQKgpoKCg5hXFA1JgxSWtZCUnpABgggqJcESmOW8AALlSBTl_2pqUXdk5k0Ib1uVba8rrGIc9lMl15t30bQz5mBx602V38j1nZHV7s1rc0-Xj3cPiakktR9lT78HW2HDVAFhuLAiDwDw27LlCyYT1c2NlLRlzteOidnNl0Ekw3jUOFJ-Rs_HsNsXXncu93sRdCsNHjVIhE0pUbEjVY8qmmHNyXtu2_-rZJ9N2GkHvpehRih6k6L0UjQOJv8htal9M-viXYSOTh2xYu_Sj05_QJ5qhdHg
CODEN MHPGA4
CitedBy_id crossref_primary_10_1007_s10851_020_01014_y
crossref_primary_10_1007_s10107_021_01712_4
crossref_primary_10_1287_moor_2015_0737
crossref_primary_10_1287_ijoo_2022_0079
crossref_primary_10_1214_19_STS701
crossref_primary_10_1137_19M1245414
crossref_primary_10_1007_s10994_021_06123_2
crossref_primary_10_1007_s10107_021_01734_y
crossref_primary_10_1137_23M1549444
crossref_primary_10_1016_j_trc_2017_08_028
crossref_primary_10_1080_10556788_2023_2278091
crossref_primary_10_1080_01621459_2022_2108816
crossref_primary_10_1007_s00500_023_08839_w
crossref_primary_10_1007_s11590_019_01482_1
crossref_primary_10_1137_20M1346778
crossref_primary_10_1007_s10898_019_00826_6
crossref_primary_10_1007_s10994_021_06085_5
crossref_primary_10_1007_s10107_023_01933_9
crossref_primary_10_1016_j_trpro_2017_05_055
crossref_primary_10_1214_20_STS806
crossref_primary_10_1287_opre_2021_2182
crossref_primary_10_3390_s22114081
crossref_primary_10_1080_10556788_2017_1322081
crossref_primary_10_1093_bioinformatics_btaf186
crossref_primary_10_1287_ijoo_2023_0003
crossref_primary_10_1137_23M1580905
crossref_primary_10_1287_ijoc_2020_1031
crossref_primary_10_1137_16M1059333
crossref_primary_10_1016_j_orl_2022_01_007
crossref_primary_10_1007_s10851_019_00917_9
crossref_primary_10_1137_21M142770X
Cites_doi 10.1111/j.1467-9868.2005.00503.x
10.1214/009053606000000281
10.1109/TIT.2006.871582
10.1109/TIT.2009.2032816
10.1109/TIT.2005.858979
10.1017/CBO9780511801389
10.1109/TIT.2005.860430
10.1007/978-3-642-20192-9
10.1109/TIT.2009.2016018
10.1017/CBO9780511804441
10.1006/jmps.1999.1278
10.1214/ECP.v15-1544
10.1287/moor.28.3.470.16391
10.1017/CBO9780511814075
10.1137/0801013
10.1137/0403036
10.1214/08-AOS620
10.1109/18.985947
10.1146/annurev-statistics-022513-115643
10.2139/ssrn.912637
10.1111/j.2517-6161.1996.tb02080.x
10.1007/978-1-84800-155-8_7
10.1007/s10107-010-0416-0
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10107-015-0894-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database (subscription)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 87
ExternalDocumentID 3687280911
10_1007_s10107_015_0894_1
Genre Feature
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L.0
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c316t-ff0c71b38b00c3ac05a102f1b2d41625cf9ac67622e7e357e98a1e60afebe083
IEDL.DBID RSV
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000354623300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Thu Sep 25 00:38:30 EDT 2025
Tue Nov 18 22:06:23 EST 2025
Sat Nov 29 03:33:58 EST 2025
Fri Feb 21 02:32:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 68T05 Learning and adaptive systems
90C25 Convex programming
90C09 Boolean programming
Sparsity
90C06 Large-scale problems
Machine learning
Convex relaxation
Combinatorial optimization
Regularization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-ff0c71b38b00c3ac05a102f1b2d41625cf9ac67622e7e357e98a1e60afebe083
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1681258542
PQPubID 25307
PageCount 25
ParticipantIDs proquest_journals_1681258542
crossref_citationtrail_10_1007_s10107_015_0894_1
crossref_primary_10_1007_s10107_015_0894_1
springer_journals_10_1007_s10107_015_0894_1
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2015
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Lovász, Schrijver (CR19) 1991; 1
Wainwright (CR33) 2009; 55
Laurent (CR17) 2003; 28
CR16
Oliveira (CR26) 2010; 15
CR37
Zhao, Yu (CR38) 2006; 7
Markowitz (CR20) 1959
CR35
Zou, Hastie (CR39) 2005; 67
CR31
Wainwright (CR34) 2014; 1
Candes, Tao (CR6) 2005; 51
Dekel, Singer (CR11) 2007; 19
Donoho (CR12) 2006; 52
Donoho, Elad, Temlyakov (CR13) 2006; 52
CR2
Davidson, Szarek (CR10) 2001
Bühlmann, van de Geer (CR5) 2011
CR8
Wasserman (CR36) 2000; 44
Boyd, Vandenberghe (CR4) 2004
Grant, Boyd, Blondel, Boyd, Kimura (CR15) 2008
CR28
Ahlswede, Winter (CR1) 2002; 48
CR9
CR27
McCullagh, Nelder (CR21) 1989
Ledoux (CR18) 2001
CR25
Bickel, Ritov, Tsybakov (CR3) 2009; 37
CR24
Wainwright (CR32) 2009; 55
Meinshausen, Bühlmann (CR22) 2006; 34
Tibshirani (CR30) 1996; 58
Fuchs (CR14) 2004; 2
Cristianini, Shawe-Taylor (CR7) 2000
Motwani, Raghavan (CR23) 1995
Sherali, Adams (CR29) 1990; 3
894_CR25
894_CR24
R Tibshirani (894_CR30) 1996; 58
JJ Fuchs (894_CR14) 2004; 2
RI Oliveira (894_CR26) 2010; 15
MJ Wainwright (894_CR33) 2009; 55
HD Sherali (894_CR29) 1990; 3
P Zhao (894_CR38) 2006; 7
HM Markowitz (894_CR20) 1959
M Laurent (894_CR17) 2003; 28
L Lovász (894_CR19) 1991; 1
894_CR9
R Motwani (894_CR23) 1995
MJ Wainwright (894_CR34) 2014; 1
894_CR8
O Dekel (894_CR11) 2007; 19
Larry Wasserman (894_CR36) 2000; 44
894_CR16
894_CR2
DL Donoho (894_CR13) 2006; 52
S Boyd (894_CR4) 2004
R Ahlswede (894_CR1) 2002; 48
P Bühlmann (894_CR5) 2011
EJ Candes (894_CR6) 2005; 51
DL Donoho (894_CR12) 2006; 52
894_CR31
894_CR37
894_CR35
H Zou (894_CR39) 2005; 67
N Cristianini (894_CR7) 2000
M Ledoux (894_CR18) 2001
KR Davidson (894_CR10) 2001
PJ Bickel (894_CR3) 2009; 37
M Grant (894_CR15) 2008
MJ Wainwright (894_CR32) 2009; 55
P McCullagh (894_CR21) 1989
N Meinshausen (894_CR22) 2006; 34
894_CR28
894_CR27
References_xml – volume: 67
  start-page: 301
  issue: 2
  year: 2005
  end-page: 320
  ident: CR39
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 7
  start-page: 2541
  year: 2006
  end-page: 2567
  ident: CR38
  article-title: On model selection consistency of Lasso
  publication-title: J. Mach. Learn. Res.
– year: 1989
  ident: CR21
  publication-title: Generalized Linear Models. Monographs on Statistics and Applied Probability 37
– volume: 34
  start-page: 1436
  year: 2006
  end-page: 1462
  ident: CR22
  article-title: High-dimensional graphs and variable selection with the Lasso
  publication-title: Ann. Stat.
  doi: 10.1214/009053606000000281
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  end-page: 1306
  ident: CR12
  publication-title: Compress. sensing. IEEE Trans. Info. Theory
  doi: 10.1109/TIT.2006.871582
– ident: CR2
– ident: CR16
– ident: CR37
– year: 1959
  ident: CR20
  publication-title: Portf. Sel.
– volume: 55
  start-page: 5728
  year: 2009
  end-page: 5741
  ident: CR32
  article-title: Information-theoretic bounds on sparsity recovery in the high-dimensional and noisy setting
  publication-title: IEEE Trans. Info. Theory
  doi: 10.1109/TIT.2009.2032816
– volume: 51
  start-page: 4203
  issue: 12
  year: 2005
  end-page: 4215
  ident: CR6
  article-title: Decoding by linear programming
  publication-title: IEEE Trans. Info. Theory
  doi: 10.1109/TIT.2005.858979
– year: 2000
  ident: CR7
  publication-title: An Introduction to Support Vector Machines (and Other Kernel Based Learning Methods)
  doi: 10.1017/CBO9780511801389
– volume: 52
  start-page: 6
  issue: 1
  year: 2006
  end-page: 18
  ident: CR13
  article-title: Stable recovery of sparse overcomplete representations in the presence of noise
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.860430
– year: 2001
  ident: CR18
  publication-title: The Concentration of Measure Phenomenon
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  end-page: 288
  ident: CR30
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. R. Stat. Soc. Ser. B
– year: 2011
  ident: CR5
  publication-title: Statistics for High-Dimensional Data. Springer Series in Statistics
  doi: 10.1007/978-3-642-20192-9
– ident: CR35
– volume: 55
  start-page: 2183
  year: 2009
  end-page: 2202
  ident: CR33
  article-title: Sharp thresholds for high-dimensional and noisy sparsity recovery using -constrained quadratic programming (Lasso)
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2009.2016018
– year: 2004
  ident: CR4
  publication-title: Convex Optimization
  doi: 10.1017/CBO9780511804441
– volume: 44
  start-page: 92
  issue: 1
  year: 2000
  end-page: 107
  ident: CR36
  article-title: Bayesian model selection and model averaging
  publication-title: J. Math. Psychol.
  doi: 10.1006/jmps.1999.1278
– ident: CR8
– volume: 19
  start-page: 345
  year: 2007
  ident: CR11
  article-title: Support vector machines on a budget
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: CR25
– volume: 1
  start-page: 233
  year: 2014
  end-page: 253
  ident: CR34
  article-title: Structured regularizers: statistical and computational issues
  publication-title: Annu. Rev. Stat. Appl.
– ident: CR27
– volume: 15
  start-page: 203
  year: 2010
  end-page: 212
  ident: CR26
  article-title: Sums of random Hermitian matrices and an inequality by Rudelson
  publication-title: Elec. Comm. Prob.
  doi: 10.1214/ECP.v15-1544
– volume: 28
  start-page: 470
  year: 2003
  end-page: 496
  ident: CR17
  article-title: A comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre relaxations for 0–1 programming
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.28.3.470.16391
– volume: 2
  start-page: 533
  year: 2004
  end-page: 536
  ident: CR14
  article-title: Recovery of exact sparse representations in the presence of noise
  publication-title: ICASSP
– start-page: 317
  year: 2001
  end-page: 336
  ident: CR10
  article-title: Local operator theory, random matrices and Banach spaces
  publication-title: Handbook of Banach Spaces
– ident: CR31
– year: 1995
  ident: CR23
  publication-title: Randomized Algorithms
  doi: 10.1017/CBO9780511814075
– ident: CR9
– volume: 1
  start-page: 166
  year: 1991
  end-page: 190
  ident: CR19
  article-title: Cones of matrices and set-functions and 0–1 optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/0801013
– volume: 3
  start-page: 411
  year: 1990
  end-page: 430
  ident: CR29
  article-title: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/0403036
– ident: CR28
– volume: 37
  start-page: 1705
  issue: 4
  year: 2009
  end-page: 1732
  ident: CR3
  article-title: Simultaneous analysis of Lasso and Dantzig selector
  publication-title: Ann. Stat.
  doi: 10.1214/08-AOS620
– start-page: 95
  year: 2008
  end-page: 110
  ident: CR15
  article-title: Graph implementations for nonsmooth convex programs
  publication-title: Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences
– ident: CR24
– volume: 48
  start-page: 569
  issue: 3
  year: 2002
  end-page: 579
  ident: CR1
  article-title: Strong converse for identification via quantum channels
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.985947
– volume: 7
  start-page: 2541
  year: 2006
  ident: 894_CR38
  publication-title: J. Mach. Learn. Res.
– volume: 37
  start-page: 1705
  issue: 4
  year: 2009
  ident: 894_CR3
  publication-title: Ann. Stat.
  doi: 10.1214/08-AOS620
– volume: 44
  start-page: 92
  issue: 1
  year: 2000
  ident: 894_CR36
  publication-title: J. Math. Psychol.
  doi: 10.1006/jmps.1999.1278
– volume: 34
  start-page: 1436
  year: 2006
  ident: 894_CR22
  publication-title: Ann. Stat.
  doi: 10.1214/009053606000000281
– volume: 19
  start-page: 345
  year: 2007
  ident: 894_CR11
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 15
  start-page: 203
  year: 2010
  ident: 894_CR26
  publication-title: Elec. Comm. Prob.
  doi: 10.1214/ECP.v15-1544
– ident: 894_CR28
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 894_CR39
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: 894_CR8
– volume: 52
  start-page: 6
  issue: 1
  year: 2006
  ident: 894_CR13
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.860430
– volume-title: Statistics for High-Dimensional Data. Springer Series in Statistics
  year: 2011
  ident: 894_CR5
  doi: 10.1007/978-3-642-20192-9
– volume-title: An Introduction to Support Vector Machines (and Other Kernel Based Learning Methods)
  year: 2000
  ident: 894_CR7
  doi: 10.1017/CBO9780511801389
– volume: 3
  start-page: 411
  year: 1990
  ident: 894_CR29
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/0403036
– volume: 48
  start-page: 569
  issue: 3
  year: 2002
  ident: 894_CR1
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.985947
– ident: 894_CR2
– volume-title: Convex Optimization
  year: 2004
  ident: 894_CR4
  doi: 10.1017/CBO9780511804441
– ident: 894_CR24
– volume: 1
  start-page: 233
  year: 2014
  ident: 894_CR34
  publication-title: Annu. Rev. Stat. Appl.
  doi: 10.1146/annurev-statistics-022513-115643
– ident: 894_CR25
  doi: 10.2139/ssrn.912637
– ident: 894_CR31
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: 894_CR12
  publication-title: Compress. sensing. IEEE Trans. Info. Theory
  doi: 10.1109/TIT.2006.871582
– ident: 894_CR27
– ident: 894_CR35
– start-page: 317
  volume-title: Handbook of Banach Spaces
  year: 2001
  ident: 894_CR10
– volume: 28
  start-page: 470
  year: 2003
  ident: 894_CR17
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.28.3.470.16391
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 894_CR30
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: 894_CR16
– start-page: 95
  volume-title: Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences
  year: 2008
  ident: 894_CR15
  doi: 10.1007/978-1-84800-155-8_7
– volume: 55
  start-page: 5728
  year: 2009
  ident: 894_CR32
  publication-title: IEEE Trans. Info. Theory
  doi: 10.1109/TIT.2009.2032816
– volume-title: Generalized Linear Models. Monographs on Statistics and Applied Probability 37
  year: 1989
  ident: 894_CR21
– ident: 894_CR9
  doi: 10.1007/s10107-010-0416-0
– ident: 894_CR37
– volume: 1
  start-page: 166
  year: 1991
  ident: 894_CR19
  publication-title: SIAM J. Optim.
  doi: 10.1137/0801013
– volume: 51
  start-page: 4203
  issue: 12
  year: 2005
  ident: 894_CR6
  publication-title: IEEE Trans. Info. Theory
  doi: 10.1109/TIT.2005.858979
– volume: 55
  start-page: 2183
  year: 2009
  ident: 894_CR33
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2009.2016018
– volume-title: The Concentration of Measure Phenomenon
  year: 2001
  ident: 894_CR18
– volume: 2
  start-page: 533
  year: 2004
  ident: 894_CR14
  publication-title: ICASSP
– volume-title: Randomized Algorithms
  year: 1995
  ident: 894_CR23
  doi: 10.1017/CBO9780511814075
– volume-title: Portf. Sel.
  year: 1959
  ident: 894_CR20
SSID ssj0001388
Score 2.3863142
Snippet We introduce novel relaxations for cardinality-constrained learning problems, including least-squares regression as a special but important case. Our approach...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Special Issue: International Symposium on Mathematical Programming,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 63
SubjectTerms Artificial intelligence
Boolean
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Control theory
Electrical engineering
Full Length Paper
Machine learning
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimization
Sparsity
Studies
Support vector machines
Theoretical
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7o5kEP_hanU3oQBCXYNGmbnsTJhhfH0B12K2mayEDauc7hn2_SptsU3MVTCU1DeXl5-fKSfB_AFWUqipIkRFSkAlGlxxyPUlxezvGo8qgUrBSbCPt9NhpFA5twK-yxyjomloE6zYXJkd9hQ5SlsS317icfyKhGmd1VK6GxCU3DVKb9vNnp9gcvi1iMCWO1aKtBCvW-ZnV5DpfHLn3ksogi_HNmWsLNXzuk5cTT2_vvL-_DroWczkPlIwewIbND2FkhItSl5wV7a3EE168TvdyVjlWUeHPmY-508lyXM8dcfvmq0nzHMOx1h49PyAoqIEFwMENKuSLECWF6rAnChetzjS8UTrxU4zLPFyriItDh0ZOhJH4oI8axDFyudFdrrHYCjSzP5Ck4OHBpSFOl12uKBpSzQOKESxJwRvRTtsCtbRkLSzZuNC_e4yVNsjF_rM0fG_PHuAU3i08mFdPGusrt2uSxHXRFvLR3C27rTlt5_VdjZ-sbO4dtr_QSk3ppQ2M2_ZQXsCXms3ExvbQe9w0CSNow
  priority: 102
  providerName: ProQuest
Title Sparse learning via Boolean relaxations
URI https://link.springer.com/article/10.1007/s10107-015-0894-1
https://www.proquest.com/docview/1681258542
Volume 151
WOSCitedRecordID wos000354623300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: 7WY
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M0C
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: P5Z
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: K7-
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M7S
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: BENPR
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M2P
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPfovTOfogCEqhadMmfXRjQ5CN4YZOX0qaJjKQbaxz-Od76dptigr6cuVoGspdcrlLcr8DuKBch2EcM5vKRNpU45wTYUKy5ByXapcqybNiE6zd5v1-2MnzuNPitntxJJlZ6pVkN5Jdk_Rth4fUxpBnwzdgMyZE7z4szC_xOC_qtBrnoDjK_K6Lz4vR0sP8ciiarTXN3X_95R7s5K6ldTMfC_uwpoYHsL0COIhca4HSmh7CZXeMYa2y8soRL9ZsIKzaaIT80DJJLu_z7bwj6DUbvfqtnRdOsKVHgqmttSMZiT2Oc0p6Qjq-QD9Ck9hN0P9yfalDIQM0g65iyvOZCrkgKnCERpWiT3YMpeFoqE7AIoFDGU00xmWaBlTwQJFYKC8Q3MOnKoNTCDCSOai4qW3xGi3hkI1AIhRIZAQSkTJcLT4ZzxE1fmtcKbQS5ZMrjYjBTMMwh7pluC60sPL6p85O_9T6DLbcTI1mx6UCpenkTZ3DppxNB-mkCuvs8akKG7VGu3OP3B2zkbacuqFux1DWRdrxn6vZ-PwAA1rVcQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB50FdSDb3F99qAISrFJs216EPGJsg8E9-AtpGkiC7K77q6vH-V_dNLHrgp68-CphLah7fd1MpNk5gPYYdxEURyHLlOJcpnBf05GCUmTcygzlGnFU7GJsNHgd3fRzRi8F7kwdltlYRNTQ510lJ0jPyS2UBb6towedx9dqxplV1cLCY2MFlX99oIhW__o-hzx3aX08qJ5duXmqgKu8kkwcI3xVEhinyPhlC-VV5E4yBoS0wSdE1pRJpIqQBtBdaj9SqgjLokOPGnwfdFhwW7HYYJh3GV_q7p3NjT8xOe8UIi1bkmxiJpl6pF0j2fF9XjEXPJ1GBz5tt-WY9NR7nLun32feZjN3WnnJOP_Aozp9iLMfCqyiK36sDJtfwn2brsYymsnV8u4d55b0jntdLDddmxiz2s2hbkMzb947BUotTttvQoOCTwWssRgLGpYwCQPNIml9gPJfTzqMngFdELlhdStnseDGJWAtmgLRFtYtAUpw_7wlm5WReS3izcKhEVuUPpiBG8ZDgqOfDr9U2drv3e2DVNXzXpN1K4b1XWYpilB7RTTBpQGvSe9CZPqedDq97ZSqjsg_pg6H0TLNYo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9kiuiD3-J0ah8EQSlr2rRNH_0aijqGG7K3kqaJDKQbax3--V76sU1RQXwqadMQ7nLJXe7udwAnlKkgiCLfpCIWJlUoczyISZ6cY1NlUylYXmzCb7dZvx90yjqnaRXtXrkki5wGjdKUZM1RrJpziW8kD5l0TYsF1ETzZ5HiGx3T9dR9nm7FxGGsqtmqFYXKrfndEJ8Pppm2-cVBmp87rfV_z3gD1kqV07go1sgmLMhkC1bngAix9ThFb0234bQ7QnNXGmVFiRdjMuDG5XCI7cTQyS_vxTXfDvRaN72rW7MsqGAKh3iZqZQlfBI5DGVNOFxYLkf9QpHIjlEvs12hAi483B5t6UvH9WXAOJGexRWyGnW1Xaglw0TugUE8i_o0VmivKepRzjxJIi4djzMHn7IOVkXMUJRg47rmxWs4g0nWBAmRIKEmSEjqcDb9ZVQgbfzWuVFxKCyFLg2JxlJD84fadTivODL3-afB9v_U-xiWO9et8OGufX8AK3bOUX0p04BaNn6Th7AkJtkgHR_lS_EDtULZ_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+learning+via+Boolean+relaxations&rft.jtitle=Mathematical+programming&rft.au=Pilanci%2C+Mert&rft.au=Wainwright%2C+Martin+J.&rft.au=El+Ghaoui%2C+Laurent&rft.date=2015-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=151&rft.issue=1&rft.spage=63&rft.epage=87&rft_id=info:doi/10.1007%2Fs10107-015-0894-1&rft.externalDocID=10_1007_s10107_015_0894_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon