Sparse learning via Boolean relaxations
We introduce novel relaxations for cardinality-constrained learning problems, including least-squares regression as a special but important case. Our approach is based on reformulating a cardinality-constrained problem exactly as a Boolean program, to which standard convex relaxations such as the La...
Saved in:
| Published in: | Mathematical programming Vol. 151; no. 1; pp. 63 - 87 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2015
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0025-5610, 1436-4646 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We introduce novel relaxations for cardinality-constrained learning problems, including least-squares regression as a special but important case. Our approach is based on reformulating a cardinality-constrained problem exactly as a Boolean program, to which standard convex relaxations such as the Lasserre and Sherali-Adams hierarchies can be applied. We analyze the first-order relaxation in detail, deriving necessary and sufficient conditions for exactness in a unified manner. In the special case of least-squares regression, we show that these conditions are satisfied with high probability for random ensembles satisfying suitable incoherence conditions, similar to results on
ℓ
1
-relaxations. In contrast to known methods, our relaxations yield lower bounds on the objective, and it can be verified whether or not the relaxation is exact. If it is not, we show that randomization based on the relaxed solution offers a principled way to generate provably good feasible solutions. This property enables us to obtain high quality estimates even if incoherence conditions are not met, as might be expected in real datasets. We numerically illustrate the performance of the relaxation-randomization strategy in both synthetic and real high-dimensional datasets, revealing substantial improvements relative to
ℓ
1
-based methods and greedy selection heuristics. |
|---|---|
| AbstractList | We introduce novel relaxations for cardinality-constrained learning problems, including least-squares regression as a special but important case. Our approach is based on reformulating a cardinality-constrained problem exactly as a Boolean program, to which standard convex relaxations such as the Lasserre and Sherali-Adams hierarchies can be applied. We analyze the first-order relaxation in detail, deriving necessary and sufficient conditions for exactness in a unified manner. In the special case of least-squares regression, we show that these conditions are satisfied with high probability for random ensembles satisfying suitable incoherence conditions, similar to results on
ℓ
1
-relaxations. In contrast to known methods, our relaxations yield lower bounds on the objective, and it can be verified whether or not the relaxation is exact. If it is not, we show that randomization based on the relaxed solution offers a principled way to generate provably good feasible solutions. This property enables us to obtain high quality estimates even if incoherence conditions are not met, as might be expected in real datasets. We numerically illustrate the performance of the relaxation-randomization strategy in both synthetic and real high-dimensional datasets, revealing substantial improvements relative to
ℓ
1
-based methods and greedy selection heuristics. (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Special Issue: International Symposium on Mathematical Programming, Pittsburgh, July 2015 We introduce novel relaxations for cardinality-constrained learning problems, including least-squares regression as a special but important case. Our approach is based on reformulating a cardinality-constrained problem exactly as a Boolean program, to which standard convex relaxations such as the Lasserre and Sherali-Adams hierarchies can be applied. We analyze the first-order relaxation in detail, deriving necessary and sufficient conditions for exactness in a unified manner. In the special case of least-squares regression, we show that these conditions are satisfied with high probability for random ensembles satisfying suitable incoherence conditions, similar to results on ...-relaxations. In contrast to known methods, our relaxations yield lower bounds on the objective, and it can be verified whether or not the relaxation is exact. If it is not, we show that randomization based on the relaxed solution offers a principled way to generate provably good feasible solutions. This property enables us to obtain high quality estimates even if incoherence conditions are not met, as might be expected in real datasets. We numerically illustrate the performance of the relaxation-randomization strategy in both synthetic and real high-dimensional datasets, revealing substantial improvements relative to ...-based methods and greedy selection heuristics. |
| Author | Wainwright, Martin J. Pilanci, Mert El Ghaoui, Laurent |
| Author_xml | – sequence: 1 givenname: Mert surname: Pilanci fullname: Pilanci, Mert organization: Department of Electrical Engineering and Computer Sciences, University of California – sequence: 2 givenname: Martin J. surname: Wainwright fullname: Wainwright, Martin J. organization: Department of Electrical Engineering and Computer Sciences and Department of Statistics, University of California – sequence: 3 givenname: Laurent surname: El Ghaoui fullname: El Ghaoui, Laurent email: elghaoui@berkeley.edu organization: Department of Electrical Engineering and Computer Sciences, University of California |
| BookMark | eNp9kE1LAzEQhoNUcFv9Ad4WPHiKziSbbHrU4hcUPNh7yMakbFmTmmxF_71b14MIehoG3mfm5ZmSSYjBEXKKcIEA9WVGQKgpoKCg5hXFA1JgxSWtZCUnpABgggqJcESmOW8AALlSBTl_2pqUXdk5k0Ib1uVba8rrGIc9lMl15t30bQz5mBx602V38j1nZHV7s1rc0-Xj3cPiakktR9lT78HW2HDVAFhuLAiDwDw27LlCyYT1c2NlLRlzteOidnNl0Ekw3jUOFJ-Rs_HsNsXXncu93sRdCsNHjVIhE0pUbEjVY8qmmHNyXtu2_-rZJ9N2GkHvpehRih6k6L0UjQOJv8htal9M-viXYSOTh2xYu_Sj05_QJ5qhdHg |
| CODEN | MHPGA4 |
| CitedBy_id | crossref_primary_10_1007_s10851_020_01014_y crossref_primary_10_1007_s10107_021_01712_4 crossref_primary_10_1287_moor_2015_0737 crossref_primary_10_1287_ijoo_2022_0079 crossref_primary_10_1214_19_STS701 crossref_primary_10_1137_19M1245414 crossref_primary_10_1007_s10994_021_06123_2 crossref_primary_10_1007_s10107_021_01734_y crossref_primary_10_1137_23M1549444 crossref_primary_10_1016_j_trc_2017_08_028 crossref_primary_10_1080_10556788_2023_2278091 crossref_primary_10_1080_01621459_2022_2108816 crossref_primary_10_1007_s00500_023_08839_w crossref_primary_10_1007_s11590_019_01482_1 crossref_primary_10_1137_20M1346778 crossref_primary_10_1007_s10898_019_00826_6 crossref_primary_10_1007_s10994_021_06085_5 crossref_primary_10_1007_s10107_023_01933_9 crossref_primary_10_1016_j_trpro_2017_05_055 crossref_primary_10_1214_20_STS806 crossref_primary_10_1287_opre_2021_2182 crossref_primary_10_3390_s22114081 crossref_primary_10_1080_10556788_2017_1322081 crossref_primary_10_1093_bioinformatics_btaf186 crossref_primary_10_1287_ijoo_2023_0003 crossref_primary_10_1137_23M1580905 crossref_primary_10_1287_ijoc_2020_1031 crossref_primary_10_1137_16M1059333 crossref_primary_10_1016_j_orl_2022_01_007 crossref_primary_10_1007_s10851_019_00917_9 crossref_primary_10_1137_21M142770X |
| Cites_doi | 10.1111/j.1467-9868.2005.00503.x 10.1214/009053606000000281 10.1109/TIT.2006.871582 10.1109/TIT.2009.2032816 10.1109/TIT.2005.858979 10.1017/CBO9780511801389 10.1109/TIT.2005.860430 10.1007/978-3-642-20192-9 10.1109/TIT.2009.2016018 10.1017/CBO9780511804441 10.1006/jmps.1999.1278 10.1214/ECP.v15-1544 10.1287/moor.28.3.470.16391 10.1017/CBO9780511814075 10.1137/0801013 10.1137/0403036 10.1214/08-AOS620 10.1109/18.985947 10.1146/annurev-statistics-022513-115643 10.2139/ssrn.912637 10.1111/j.2517-6161.1996.tb02080.x 10.1007/978-1-84800-155-8_7 10.1007/s10107-010-0416-0 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015 |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015 |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L.0 L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10107-015-0894-1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database (subscription) Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 87 |
| ExternalDocumentID | 3687280911 10_1007_s10107_015_0894_1 |
| Genre | Feature |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L.0 L7M L~C L~D PKEHL PQEST PQUKI PRINS PUEGO Q9U |
| ID | FETCH-LOGICAL-c316t-ff0c71b38b00c3ac05a102f1b2d41625cf9ac67622e7e357e98a1e60afebe083 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 46 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000354623300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Thu Sep 25 00:38:30 EDT 2025 Tue Nov 18 22:06:23 EST 2025 Sat Nov 29 03:33:58 EST 2025 Fri Feb 21 02:32:40 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | 68T05 Learning and adaptive systems 90C25 Convex programming 90C09 Boolean programming Sparsity 90C06 Large-scale problems Machine learning Convex relaxation Combinatorial optimization Regularization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-ff0c71b38b00c3ac05a102f1b2d41625cf9ac67622e7e357e98a1e60afebe083 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| PQID | 1681258542 |
| PQPubID | 25307 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_1681258542 crossref_citationtrail_10_1007_s10107_015_0894_1 crossref_primary_10_1007_s10107_015_0894_1 springer_journals_10_1007_s10107_015_0894_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-06-01 |
| PublicationDateYYYYMMDD | 2015-06-01 |
| PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2015 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Lovász, Schrijver (CR19) 1991; 1 Wainwright (CR33) 2009; 55 Laurent (CR17) 2003; 28 CR16 Oliveira (CR26) 2010; 15 CR37 Zhao, Yu (CR38) 2006; 7 Markowitz (CR20) 1959 CR35 Zou, Hastie (CR39) 2005; 67 CR31 Wainwright (CR34) 2014; 1 Candes, Tao (CR6) 2005; 51 Dekel, Singer (CR11) 2007; 19 Donoho (CR12) 2006; 52 Donoho, Elad, Temlyakov (CR13) 2006; 52 CR2 Davidson, Szarek (CR10) 2001 Bühlmann, van de Geer (CR5) 2011 CR8 Wasserman (CR36) 2000; 44 Boyd, Vandenberghe (CR4) 2004 Grant, Boyd, Blondel, Boyd, Kimura (CR15) 2008 CR28 Ahlswede, Winter (CR1) 2002; 48 CR9 CR27 McCullagh, Nelder (CR21) 1989 Ledoux (CR18) 2001 CR25 Bickel, Ritov, Tsybakov (CR3) 2009; 37 CR24 Wainwright (CR32) 2009; 55 Meinshausen, Bühlmann (CR22) 2006; 34 Tibshirani (CR30) 1996; 58 Fuchs (CR14) 2004; 2 Cristianini, Shawe-Taylor (CR7) 2000 Motwani, Raghavan (CR23) 1995 Sherali, Adams (CR29) 1990; 3 894_CR25 894_CR24 R Tibshirani (894_CR30) 1996; 58 JJ Fuchs (894_CR14) 2004; 2 RI Oliveira (894_CR26) 2010; 15 MJ Wainwright (894_CR33) 2009; 55 HD Sherali (894_CR29) 1990; 3 P Zhao (894_CR38) 2006; 7 HM Markowitz (894_CR20) 1959 M Laurent (894_CR17) 2003; 28 L Lovász (894_CR19) 1991; 1 894_CR9 R Motwani (894_CR23) 1995 MJ Wainwright (894_CR34) 2014; 1 894_CR8 O Dekel (894_CR11) 2007; 19 Larry Wasserman (894_CR36) 2000; 44 894_CR16 894_CR2 DL Donoho (894_CR13) 2006; 52 S Boyd (894_CR4) 2004 R Ahlswede (894_CR1) 2002; 48 P Bühlmann (894_CR5) 2011 EJ Candes (894_CR6) 2005; 51 DL Donoho (894_CR12) 2006; 52 894_CR31 894_CR37 894_CR35 H Zou (894_CR39) 2005; 67 N Cristianini (894_CR7) 2000 M Ledoux (894_CR18) 2001 KR Davidson (894_CR10) 2001 PJ Bickel (894_CR3) 2009; 37 M Grant (894_CR15) 2008 MJ Wainwright (894_CR32) 2009; 55 P McCullagh (894_CR21) 1989 N Meinshausen (894_CR22) 2006; 34 894_CR28 894_CR27 |
| References_xml | – volume: 67 start-page: 301 issue: 2 year: 2005 end-page: 320 ident: CR39 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.1467-9868.2005.00503.x – volume: 7 start-page: 2541 year: 2006 end-page: 2567 ident: CR38 article-title: On model selection consistency of Lasso publication-title: J. Mach. Learn. Res. – year: 1989 ident: CR21 publication-title: Generalized Linear Models. Monographs on Statistics and Applied Probability 37 – volume: 34 start-page: 1436 year: 2006 end-page: 1462 ident: CR22 article-title: High-dimensional graphs and variable selection with the Lasso publication-title: Ann. Stat. doi: 10.1214/009053606000000281 – volume: 52 start-page: 1289 issue: 4 year: 2006 end-page: 1306 ident: CR12 publication-title: Compress. sensing. IEEE Trans. Info. Theory doi: 10.1109/TIT.2006.871582 – ident: CR2 – ident: CR16 – ident: CR37 – year: 1959 ident: CR20 publication-title: Portf. Sel. – volume: 55 start-page: 5728 year: 2009 end-page: 5741 ident: CR32 article-title: Information-theoretic bounds on sparsity recovery in the high-dimensional and noisy setting publication-title: IEEE Trans. Info. Theory doi: 10.1109/TIT.2009.2032816 – volume: 51 start-page: 4203 issue: 12 year: 2005 end-page: 4215 ident: CR6 article-title: Decoding by linear programming publication-title: IEEE Trans. Info. Theory doi: 10.1109/TIT.2005.858979 – year: 2000 ident: CR7 publication-title: An Introduction to Support Vector Machines (and Other Kernel Based Learning Methods) doi: 10.1017/CBO9780511801389 – volume: 52 start-page: 6 issue: 1 year: 2006 end-page: 18 ident: CR13 article-title: Stable recovery of sparse overcomplete representations in the presence of noise publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2005.860430 – year: 2001 ident: CR18 publication-title: The Concentration of Measure Phenomenon – volume: 58 start-page: 267 issue: 1 year: 1996 end-page: 288 ident: CR30 article-title: Regression shrinkage and selection via the Lasso publication-title: J. R. Stat. Soc. Ser. B – year: 2011 ident: CR5 publication-title: Statistics for High-Dimensional Data. Springer Series in Statistics doi: 10.1007/978-3-642-20192-9 – ident: CR35 – volume: 55 start-page: 2183 year: 2009 end-page: 2202 ident: CR33 article-title: Sharp thresholds for high-dimensional and noisy sparsity recovery using -constrained quadratic programming (Lasso) publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2009.2016018 – year: 2004 ident: CR4 publication-title: Convex Optimization doi: 10.1017/CBO9780511804441 – volume: 44 start-page: 92 issue: 1 year: 2000 end-page: 107 ident: CR36 article-title: Bayesian model selection and model averaging publication-title: J. Math. Psychol. doi: 10.1006/jmps.1999.1278 – ident: CR8 – volume: 19 start-page: 345 year: 2007 ident: CR11 article-title: Support vector machines on a budget publication-title: Adv. Neural Inf. Process. Syst. – ident: CR25 – volume: 1 start-page: 233 year: 2014 end-page: 253 ident: CR34 article-title: Structured regularizers: statistical and computational issues publication-title: Annu. Rev. Stat. Appl. – ident: CR27 – volume: 15 start-page: 203 year: 2010 end-page: 212 ident: CR26 article-title: Sums of random Hermitian matrices and an inequality by Rudelson publication-title: Elec. Comm. Prob. doi: 10.1214/ECP.v15-1544 – volume: 28 start-page: 470 year: 2003 end-page: 496 ident: CR17 article-title: A comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre relaxations for 0–1 programming publication-title: Math. Oper. Res. doi: 10.1287/moor.28.3.470.16391 – volume: 2 start-page: 533 year: 2004 end-page: 536 ident: CR14 article-title: Recovery of exact sparse representations in the presence of noise publication-title: ICASSP – start-page: 317 year: 2001 end-page: 336 ident: CR10 article-title: Local operator theory, random matrices and Banach spaces publication-title: Handbook of Banach Spaces – ident: CR31 – year: 1995 ident: CR23 publication-title: Randomized Algorithms doi: 10.1017/CBO9780511814075 – ident: CR9 – volume: 1 start-page: 166 year: 1991 end-page: 190 ident: CR19 article-title: Cones of matrices and set-functions and 0–1 optimization publication-title: SIAM J. Optim. doi: 10.1137/0801013 – volume: 3 start-page: 411 year: 1990 end-page: 430 ident: CR29 article-title: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems publication-title: SIAM J. Discrete Math. doi: 10.1137/0403036 – ident: CR28 – volume: 37 start-page: 1705 issue: 4 year: 2009 end-page: 1732 ident: CR3 article-title: Simultaneous analysis of Lasso and Dantzig selector publication-title: Ann. Stat. doi: 10.1214/08-AOS620 – start-page: 95 year: 2008 end-page: 110 ident: CR15 article-title: Graph implementations for nonsmooth convex programs publication-title: Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences – ident: CR24 – volume: 48 start-page: 569 issue: 3 year: 2002 end-page: 579 ident: CR1 article-title: Strong converse for identification via quantum channels publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.985947 – volume: 7 start-page: 2541 year: 2006 ident: 894_CR38 publication-title: J. Mach. Learn. Res. – volume: 37 start-page: 1705 issue: 4 year: 2009 ident: 894_CR3 publication-title: Ann. Stat. doi: 10.1214/08-AOS620 – volume: 44 start-page: 92 issue: 1 year: 2000 ident: 894_CR36 publication-title: J. Math. Psychol. doi: 10.1006/jmps.1999.1278 – volume: 34 start-page: 1436 year: 2006 ident: 894_CR22 publication-title: Ann. Stat. doi: 10.1214/009053606000000281 – volume: 19 start-page: 345 year: 2007 ident: 894_CR11 publication-title: Adv. Neural Inf. Process. Syst. – volume: 15 start-page: 203 year: 2010 ident: 894_CR26 publication-title: Elec. Comm. Prob. doi: 10.1214/ECP.v15-1544 – ident: 894_CR28 – volume: 67 start-page: 301 issue: 2 year: 2005 ident: 894_CR39 publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.1467-9868.2005.00503.x – ident: 894_CR8 – volume: 52 start-page: 6 issue: 1 year: 2006 ident: 894_CR13 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2005.860430 – volume-title: Statistics for High-Dimensional Data. Springer Series in Statistics year: 2011 ident: 894_CR5 doi: 10.1007/978-3-642-20192-9 – volume-title: An Introduction to Support Vector Machines (and Other Kernel Based Learning Methods) year: 2000 ident: 894_CR7 doi: 10.1017/CBO9780511801389 – volume: 3 start-page: 411 year: 1990 ident: 894_CR29 publication-title: SIAM J. Discrete Math. doi: 10.1137/0403036 – volume: 48 start-page: 569 issue: 3 year: 2002 ident: 894_CR1 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.985947 – ident: 894_CR2 – volume-title: Convex Optimization year: 2004 ident: 894_CR4 doi: 10.1017/CBO9780511804441 – ident: 894_CR24 – volume: 1 start-page: 233 year: 2014 ident: 894_CR34 publication-title: Annu. Rev. Stat. Appl. doi: 10.1146/annurev-statistics-022513-115643 – ident: 894_CR25 doi: 10.2139/ssrn.912637 – ident: 894_CR31 – volume: 52 start-page: 1289 issue: 4 year: 2006 ident: 894_CR12 publication-title: Compress. sensing. IEEE Trans. Info. Theory doi: 10.1109/TIT.2006.871582 – ident: 894_CR27 – ident: 894_CR35 – start-page: 317 volume-title: Handbook of Banach Spaces year: 2001 ident: 894_CR10 – volume: 28 start-page: 470 year: 2003 ident: 894_CR17 publication-title: Math. Oper. Res. doi: 10.1287/moor.28.3.470.16391 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 894_CR30 publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: 894_CR16 – start-page: 95 volume-title: Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences year: 2008 ident: 894_CR15 doi: 10.1007/978-1-84800-155-8_7 – volume: 55 start-page: 5728 year: 2009 ident: 894_CR32 publication-title: IEEE Trans. Info. Theory doi: 10.1109/TIT.2009.2032816 – volume-title: Generalized Linear Models. Monographs on Statistics and Applied Probability 37 year: 1989 ident: 894_CR21 – ident: 894_CR9 doi: 10.1007/s10107-010-0416-0 – ident: 894_CR37 – volume: 1 start-page: 166 year: 1991 ident: 894_CR19 publication-title: SIAM J. Optim. doi: 10.1137/0801013 – volume: 51 start-page: 4203 issue: 12 year: 2005 ident: 894_CR6 publication-title: IEEE Trans. Info. Theory doi: 10.1109/TIT.2005.858979 – volume: 55 start-page: 2183 year: 2009 ident: 894_CR33 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2009.2016018 – volume-title: The Concentration of Measure Phenomenon year: 2001 ident: 894_CR18 – volume: 2 start-page: 533 year: 2004 ident: 894_CR14 publication-title: ICASSP – volume-title: Randomized Algorithms year: 1995 ident: 894_CR23 doi: 10.1017/CBO9780511814075 – volume-title: Portf. Sel. year: 1959 ident: 894_CR20 |
| SSID | ssj0001388 |
| Score | 2.3863142 |
| Snippet | We introduce novel relaxations for cardinality-constrained learning problems, including least-squares regression as a special but important case. Our approach... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Special Issue: International Symposium on Mathematical Programming,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 63 |
| SubjectTerms | Artificial intelligence Boolean Calculus of Variations and Optimal Control; Optimization Combinatorics Control theory Electrical engineering Full Length Paper Machine learning Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Optimization Sparsity Studies Support vector machines Theoretical |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7o5kEP_hanU3oQBCXYNGmbnsTJhhfH0B12K2mayEDauc7hn2_SptsU3MVTCU1DeXl5-fKSfB_AFWUqipIkRFSkAlGlxxyPUlxezvGo8qgUrBSbCPt9NhpFA5twK-yxyjomloE6zYXJkd9hQ5SlsS317icfyKhGmd1VK6GxCU3DVKb9vNnp9gcvi1iMCWO1aKtBCvW-ZnV5DpfHLn3ksogi_HNmWsLNXzuk5cTT2_vvL-_DroWczkPlIwewIbND2FkhItSl5wV7a3EE168TvdyVjlWUeHPmY-508lyXM8dcfvmq0nzHMOx1h49PyAoqIEFwMENKuSLECWF6rAnChetzjS8UTrxU4zLPFyriItDh0ZOhJH4oI8axDFyudFdrrHYCjSzP5Ck4OHBpSFOl12uKBpSzQOKESxJwRvRTtsCtbRkLSzZuNC_e4yVNsjF_rM0fG_PHuAU3i08mFdPGusrt2uSxHXRFvLR3C27rTlt5_VdjZ-sbO4dtr_QSk3ppQ2M2_ZQXsCXms3ExvbQe9w0CSNow priority: 102 providerName: ProQuest |
| Title | Sparse learning via Boolean relaxations |
| URI | https://link.springer.com/article/10.1007/s10107-015-0894-1 https://www.proquest.com/docview/1681258542 |
| Volume | 151 |
| WOSCitedRecordID | wos000354623300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: 7WY dateStart: 20011001 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M0C dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: P5Z dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: K7- dateStart: 20011001 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M7S dateStart: 20011001 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: BENPR dateStart: 20011001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M2P dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPfovTOfogCEqhadMmfXRjQ5CN4YZOX0qaJjKQbaxz-Od76dptigr6cuVoGspdcrlLcr8DuKBch2EcM5vKRNpU45wTYUKy5ByXapcqybNiE6zd5v1-2MnzuNPitntxJJlZ6pVkN5Jdk_Rth4fUxpBnwzdgMyZE7z4szC_xOC_qtBrnoDjK_K6Lz4vR0sP8ciiarTXN3X_95R7s5K6ldTMfC_uwpoYHsL0COIhca4HSmh7CZXeMYa2y8soRL9ZsIKzaaIT80DJJLu_z7bwj6DUbvfqtnRdOsKVHgqmttSMZiT2Oc0p6Qjq-QD9Ck9hN0P9yfalDIQM0g65iyvOZCrkgKnCERpWiT3YMpeFoqE7AIoFDGU00xmWaBlTwQJFYKC8Q3MOnKoNTCDCSOai4qW3xGi3hkI1AIhRIZAQSkTJcLT4ZzxE1fmtcKbQS5ZMrjYjBTMMwh7pluC60sPL6p85O_9T6DLbcTI1mx6UCpenkTZ3DppxNB-mkCuvs8akKG7VGu3OP3B2zkbacuqFux1DWRdrxn6vZ-PwAA1rVcQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB50FdSDb3F99qAISrFJs216EPGJsg8E9-AtpGkiC7K77q6vH-V_dNLHrgp68-CphLah7fd1MpNk5gPYYdxEURyHLlOJcpnBf05GCUmTcygzlGnFU7GJsNHgd3fRzRi8F7kwdltlYRNTQ510lJ0jPyS2UBb6towedx9dqxplV1cLCY2MFlX99oIhW__o-hzx3aX08qJ5duXmqgKu8kkwcI3xVEhinyPhlC-VV5E4yBoS0wSdE1pRJpIqQBtBdaj9SqgjLokOPGnwfdFhwW7HYYJh3GV_q7p3NjT8xOe8UIi1bkmxiJpl6pF0j2fF9XjEXPJ1GBz5tt-WY9NR7nLun32feZjN3WnnJOP_Aozp9iLMfCqyiK36sDJtfwn2brsYymsnV8u4d55b0jntdLDddmxiz2s2hbkMzb947BUotTttvQoOCTwWssRgLGpYwCQPNIml9gPJfTzqMngFdELlhdStnseDGJWAtmgLRFtYtAUpw_7wlm5WReS3izcKhEVuUPpiBG8ZDgqOfDr9U2drv3e2DVNXzXpN1K4b1XWYpilB7RTTBpQGvSe9CZPqedDq97ZSqjsg_pg6H0TLNYo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9kiuiD3-J0ah8EQSlr2rRNH_0aijqGG7K3kqaJDKQbax3--V76sU1RQXwqadMQ7nLJXe7udwAnlKkgiCLfpCIWJlUoczyISZ6cY1NlUylYXmzCb7dZvx90yjqnaRXtXrkki5wGjdKUZM1RrJpziW8kD5l0TYsF1ETzZ5HiGx3T9dR9nm7FxGGsqtmqFYXKrfndEJ8Pppm2-cVBmp87rfV_z3gD1kqV07go1sgmLMhkC1bngAix9ThFb0234bQ7QnNXGmVFiRdjMuDG5XCI7cTQyS_vxTXfDvRaN72rW7MsqGAKh3iZqZQlfBI5DGVNOFxYLkf9QpHIjlEvs12hAi483B5t6UvH9WXAOJGexRWyGnW1Xaglw0TugUE8i_o0VmivKepRzjxJIi4djzMHn7IOVkXMUJRg47rmxWs4g0nWBAmRIKEmSEjqcDb9ZVQgbfzWuVFxKCyFLg2JxlJD84fadTivODL3-afB9v_U-xiWO9et8OGufX8AK3bOUX0p04BaNn6Th7AkJtkgHR_lS_EDtULZ_g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+learning+via+Boolean+relaxations&rft.jtitle=Mathematical+programming&rft.au=Pilanci%2C+Mert&rft.au=Wainwright%2C+Martin+J.&rft.au=El+Ghaoui%2C+Laurent&rft.date=2015-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=151&rft.issue=1&rft.spage=63&rft.epage=87&rft_id=info:doi/10.1007%2Fs10107-015-0894-1&rft.externalDocID=10_1007_s10107_015_0894_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |