A novel modular RBF neural network based on a brain-like partition method
In this study, a modular design methodology inherited from cognitive neuroscience and neurophysiology is proposed to develop artificial neural networks, aiming to realize the powerful capability of brain—divide and conquer—when tackling complex problems. First, a density-based brain-like partition m...
Saved in:
| Published in: | Neural computing & applications Vol. 32; no. 3; pp. 899 - 911 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.02.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0941-0643, 1433-3058 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this study, a modular design methodology inherited from cognitive neuroscience and neurophysiology is proposed to develop artificial neural networks, aiming to realize the powerful capability of brain—divide and conquer—when tackling complex problems. First, a density-based brain-like partition method is developed to construct the modular architecture, with a highly connected center in each sub-network as the human brain. The whole task is also divided into different sub-tasks at this stage. Then, a compact radial basis function (RBF) network with fast learning speed and desirable generalization performance is applied as the sub-network to solve the corresponding task. On the one hand, the modular structure helps to improve the ability of neural networks on complex problems by implementing divide and conquer. On the other hand, sub-networks with considerable ability could guarantee the parsimonious and generalization of the entire neural network. Finally, the novel modular RBF (NM-RBF) network is evaluated through multiple benchmark numerical experiments, and results demonstrate that the NM-RBF network is capable of constructing a relative compact architecture during a short learning process with achievable satisfactory generalization performance, showing its effectiveness and outperformance. |
|---|---|
| AbstractList | In this study, a modular design methodology inherited from cognitive neuroscience and neurophysiology is proposed to develop artificial neural networks, aiming to realize the powerful capability of brain—divide and conquer—when tackling complex problems. First, a density-based brain-like partition method is developed to construct the modular architecture, with a highly connected center in each sub-network as the human brain. The whole task is also divided into different sub-tasks at this stage. Then, a compact radial basis function (RBF) network with fast learning speed and desirable generalization performance is applied as the sub-network to solve the corresponding task. On the one hand, the modular structure helps to improve the ability of neural networks on complex problems by implementing divide and conquer. On the other hand, sub-networks with considerable ability could guarantee the parsimonious and generalization of the entire neural network. Finally, the novel modular RBF (NM-RBF) network is evaluated through multiple benchmark numerical experiments, and results demonstrate that the NM-RBF network is capable of constructing a relative compact architecture during a short learning process with achievable satisfactory generalization performance, showing its effectiveness and outperformance. |
| Author | Wilamowski, Bogdan M. Meng, Xi Li, Wen-Jing Qiao, Jun-Fei |
| Author_xml | – sequence: 1 givenname: Jun-Fei surname: Qiao fullname: Qiao, Jun-Fei organization: Faculty of Information Technology, Beijing University of Technology, Beijing Key Laboratory of Computational Intelligence and Intelligence System – sequence: 2 givenname: Xi surname: Meng fullname: Meng, Xi email: mengxi@bjut.edu.cn organization: Faculty of Information Technology, Beijing University of Technology, Beijing Key Laboratory of Computational Intelligence and Intelligence System – sequence: 3 givenname: Wen-Jing surname: Li fullname: Li, Wen-Jing organization: Faculty of Information Technology, Beijing University of Technology, Beijing Key Laboratory of Computational Intelligence and Intelligence System – sequence: 4 givenname: Bogdan M. surname: Wilamowski fullname: Wilamowski, Bogdan M. organization: Department of Electrical and Computer Engineering, Auburn University |
| BookMark | eNp9kEFLAzEQhYMo2FZ_gLeA59Vkk02yx1qsFgqC6DlksxPddrupyVaxv96UFQRBTw9m5ps388bouPMdIHRByRUlRF5HQoqcZoSqjEnBsv0RGlHOWMZIoY7RiJQ8dQVnp2gc44oQwoUqRmgxxZ1_hxZvfL1rTcCPN3PcwS6YNkn_4cMaVyZCjX2HDa6CabqsbdaAtyb0Td-k8gb6V1-foRNn2gjn3zpBz_Pbp9l9tny4W8ymy8wyKvrM1dQI4UouJSjBiKNEFoJTKsBRy511de6cUkYoS5SDugLprKiBFQDUVmyCLoe92-DfdhB7vfK70CVLnTPOmaRlydIUHaZs8DEGcHobmo0Jn5oSfUhMD4nplJg-JKb3iZG_GNv05vBin95u_yXzgYzJpXuB8HPT39AX21CCog |
| CitedBy_id | crossref_primary_10_3390_a16100455 crossref_primary_10_1007_s00521_022_06962_7 crossref_primary_10_1016_j_psep_2024_11_063 crossref_primary_10_3233_JIFS_232396 crossref_primary_10_1080_21642583_2024_2328542 crossref_primary_10_1007_s00521_021_06582_7 crossref_primary_10_1016_j_mtcomm_2024_109950 crossref_primary_10_1007_s00500_023_08638_3 crossref_primary_10_1016_j_engappai_2023_107315 |
| Cites_doi | 10.1016/j.neucom.2017.02.041 10.1016/j.engappai.2013.09.014 10.1016/j.neucom.2005.12.126 10.1126/science.1238411 10.1007/s00500-016-2074-5 10.1126/science.1242072 10.1016/j.neucom.2008.10.014 10.1038/nature14539 10.1109/TNNLS.2011.2179669 10.1038/nrn2575 10.1109/TNNLS.2015.2401395 10.1109/TSMCB.2004.834428 10.1109/TNN.2004.836241 10.1109/MIE.2009.934790 10.1016/j.neucom.2008.10.020 10.1016/j.neunet.2008.10.006 10.1109/TII.2012.2187914 10.1016/j.neucom.2012.06.051 10.1109/TNNLS.2016.2616413 10.1109/TNN.2003.813832 10.1016/j.neunet.2015.05.001 10.1109/TNNLS.2017.2650865 10.1016/j.neucom.2012.09.038 10.1162/neco.1991.3.1.79 10.1016/j.ins.2014.02.091 10.1109/TNNLS.2013.2295813 10.1016/j.neucom.2008.11.011 10.1109/TNNLS.2012.2185059 10.1016/j.tics.2013.10.016 10.1109/TII.2015.2426012 10.1016/j.neucom.2013.02.053 10.1109/TNNLS.2013.2246578 |
| ContentType | Journal Article |
| Copyright | The Natural Computing Applications Forum 2018 Neural Computing and Applications is a copyright of Springer, (2018). All Rights Reserved. |
| Copyright_xml | – notice: The Natural Computing Applications Forum 2018 – notice: Neural Computing and Applications is a copyright of Springer, (2018). All Rights Reserved. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00521-018-3763-z |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Databases ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Architecture |
| EISSN | 1433-3058 |
| EndPage | 911 |
| ExternalDocumentID | 10_1007_s00521_018_3763_z |
| GrantInformation_xml | – fundername: “Rixin Scientist” Foundation of Beijing University of Technology grantid: 2017-RX (1)-04 – fundername: Beijing Science and Technology Project grantid: Z1511000001315010 – fundername: National Natural Science Foundation of China grantid: 61533002; 61603009 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c316t-fd1a66f9477e8630f107564116ef1c4fcfd2ff88a68c08fedbe7fc6de35ee1cb3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000512022900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-0643 |
| IngestDate | Wed Nov 05 01:38:07 EST 2025 Tue Nov 18 22:32:06 EST 2025 Sat Nov 29 02:59:10 EST 2025 Fri Feb 21 02:35:55 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Radial basis function (RBF) network Brain-like partition Second-order algorithm Modular neural network |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-fd1a66f9477e8630f107564116ef1c4fcfd2ff88a68c08fedbe7fc6de35ee1cb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2344371993 |
| PQPubID | 2043988 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2344371993 crossref_primary_10_1007_s00521_018_3763_z crossref_citationtrail_10_1007_s00521_018_3763_z springer_journals_10_1007_s00521_018_3763_z |
| PublicationCentury | 2000 |
| PublicationDate | 20200200 2020-2-00 20200201 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 2 year: 2020 text: 20200200 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2020 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Islam, Yao, Murase (CR10) 2003; 14 Goltsev, Gritsenko (CR13) 2009; 72 Sanchez, Melin (CR22) 2014; 27 Huang, Saratchandran, Sundararajan (CR28) 2005; 16 Han, Lu, Hou, Qiao (CR33) 2018; 29 Cimino, Pedrycz, Lazzerini, Marcelloni (CR14) 2009; 72 LeCun, Bengio, Hinton (CR4) 2015; 521 Valdez, Melin, Castillo (CR19) 2014; 270 Mozaffari, Scott, Chenouri (CR23) 2017; 21 Cortes, Vapnik (CR26) 1995; 20 Xie, Yu, Hewlett, Rozycki, Wilamowski (CR25) 2012; 23 Han, Zhou, Qiao, Feng (CR3) 2015; 26 Zhang, Chai, Li, Yang (CR1) 2012; 23 Bullmore, Sporns (CR7) 2009; 10 Hilgetag, Hutt (CR31) 2014; 18 Huang, Saratchandran, Sundararajan (CR27) 2004; 34 Rodriguez, Laio (CR32) 2014; 344 Huang, Zhu, Siew (CR29) 2006; 70 Ding, Feng, Wang, Fu (CR15) 2014; 125 Pukish, Rozycki, Wilamowski (CR2) 2015; 11 Tokunaga, Furukawa (CR12) 2009; 22 Yu, Reiner, Xie, Bartczak, Wilamowski (CR24) 2014; 25 Yoo, Oh, Pedrycz (CR20) 2015; 69 Wang, Zhang, Creput (CR21) 2017; 240 Hunter, Yu, Pukish, Kolbusz, Wilamowski (CR30) 2012; 8 Wilamowski (CR5) 2009; 3 Jacobs, Jordan, Nowlan, Hinton (CR9) 1991; 3 Qiao, Zhang, Bo (CR17) 2014; 125 Hoori, Motai (CR6) 2017; 29 Yang, Zeng, Zhong, Wu (CR16) 2013; 24 Wang, Chen, Zhao, Lu (CR18) 2014; 128 Park, Friston (CR8) 2013; 342 Tseng, Almogahed (CR11) 2009; 72 GB Huang (3763_CR27) 2004; 34 A Mozaffari (3763_CR23) 2017; 21 J Yang (3763_CR16) 2013; 24 C Cortes (3763_CR26) 1995; 20 F Valdez (3763_CR19) 2014; 270 D Sanchez (3763_CR22) 2014; 27 Y LeCun (3763_CR4) 2015; 521 GB Huang (3763_CR29) 2006; 70 Y Zhang (3763_CR1) 2012; 23 A Rodriguez (3763_CR32) 2014; 344 HG Han (3763_CR33) 2018; 29 BM Wilamowski (3763_CR5) 2009; 3 MM Islam (3763_CR10) 2003; 14 HC Tseng (3763_CR11) 2009; 72 HJ Park (3763_CR8) 2013; 342 AO Hoori (3763_CR6) 2017; 29 CC Hilgetag (3763_CR31) 2014; 18 TT Xie (3763_CR25) 2012; 23 D Hunter (3763_CR30) 2012; 8 E Bullmore (3763_CR7) 2009; 10 Y Ding (3763_CR15) 2014; 125 JF Qiao (3763_CR17) 2014; 125 H Yu (3763_CR24) 2014; 25 RA Jacobs (3763_CR9) 1991; 3 A Goltsev (3763_CR13) 2009; 72 MG Cimino (3763_CR14) 2009; 72 XL Wang (3763_CR18) 2014; 128 MS Pukish (3763_CR2) 2015; 11 HG Han (3763_CR3) 2015; 26 SH Yoo (3763_CR20) 2015; 69 K Tokunaga (3763_CR12) 2009; 22 H Wang (3763_CR21) 2017; 240 GB Huang (3763_CR28) 2005; 16 |
| References_xml | – volume: 240 start-page: 137 year: 2017 end-page: 151 ident: CR21 article-title: A massively parallel neural network approach to large-scale Euclidean traveling salesman problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.041 – volume: 27 start-page: 41 year: 2014 end-page: 56 ident: CR22 article-title: Optimization of modular granular neural networks using hierarchical genetic algorithms for human recognition using the ear biometric measure publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2013.09.014 – volume: 70 start-page: 489 issue: 1–3 year: 2006 end-page: 501 ident: CR29 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 342 start-page: 1238411 issue: 6158 year: 2013 ident: CR8 article-title: Structural and functional brain networks: from connections to cognition publication-title: Science doi: 10.1126/science.1238411 – volume: 21 start-page: 4635 issue: 16 year: 2017 end-page: 4659 ident: CR23 article-title: A modular ridge randomized neural network with differential evolutionary distributor applied to the estimation of sea ice thickness publication-title: Soft Comput doi: 10.1007/s00500-016-2074-5 – volume: 344 start-page: 1492 issue: 6191 year: 2014 end-page: 1496 ident: CR32 article-title: Clustering by fast search and find of density peaks publication-title: Science doi: 10.1126/science.1242072 – volume: 72 start-page: 2536 issue: 10 year: 2009 end-page: 2548 ident: CR14 article-title: Using multilayer perceptrons as receptive fields in the design of neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.10.014 – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 ident: CR4 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 23 start-page: 277 issue: 2 year: 2012 end-page: 284 ident: CR1 article-title: Modeling and monitoring of dynamic processes publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2011.2179669 – volume: 10 start-page: 186 issue: 3 year: 2009 end-page: 198 ident: CR7 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nat Rev Neurosci doi: 10.1038/nrn2575 – volume: 26 start-page: 1312 issue: 6 year: 2015 end-page: 1322 ident: CR3 article-title: A direct self-constructing neural controller design for a class of nonlinear systems publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2015.2401395 – volume: 34 start-page: 2284 issue: 6 year: 2004 end-page: 2292 ident: CR27 article-title: An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2004.834428 – volume: 16 start-page: 57 issue: 1 year: 2005 end-page: 67 ident: CR28 article-title: A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2004.836241 – volume: 3 start-page: 56 issue: 4 year: 2009 end-page: 63 ident: CR5 article-title: Neural network architectures and learning algorithms publication-title: IEEE Ind Electron Mag doi: 10.1109/MIE.2009.934790 – volume: 72 start-page: 2093 issue: 10–12 year: 2009 end-page: 2100 ident: CR11 article-title: Modular neural networks with applications to pattern profiling problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.10.020 – volume: 22 start-page: 82 issue: 1 year: 2009 end-page: 90 ident: CR12 article-title: Modular network SOM publication-title: Neural Netw doi: 10.1016/j.neunet.2008.10.006 – volume: 8 start-page: 228 issue: 2 year: 2012 end-page: 240 ident: CR30 article-title: Selection of proper neural network sizes and architectures—a comparative study publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2012.2187914 – volume: 125 start-page: 3 year: 2014 end-page: 6 ident: CR15 article-title: A modular neural network architecture with concept publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.06.051 – volume: 29 start-page: 104 issue: 1 year: 2018 end-page: 117 ident: CR33 article-title: An adaptive-PSO-based self-organizing RBF neural network publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2616413 – volume: 14 start-page: 820 issue: 4 year: 2003 end-page: 834 ident: CR10 article-title: A constructive algorithm for training cooperative neural network ensembles publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2003.813832 – volume: 69 start-page: 111 year: 2015 end-page: 125 ident: CR20 article-title: Optimized face recognition algorithm using radial basis function neural networks and its practical applications publication-title: Neural Netw doi: 10.1016/j.neunet.2015.05.001 – volume: 29 start-page: 766 issue: 4 year: 2017 end-page: 778 ident: CR6 article-title: Multicolumn RBF network publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2017.2650865 – volume: 125 start-page: 7 year: 2014 end-page: 16 ident: CR17 article-title: An online self-adaptive modular neural network for time-varying systems publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.09.038 – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 ident: CR26 article-title: Support-vector networks publication-title: Mach Learn – volume: 3 start-page: 79 issue: 1 year: 1991 end-page: 87 ident: CR9 article-title: Adaptive mixtures of local experts publication-title: Neural Comput doi: 10.1162/neco.1991.3.1.79 – volume: 270 start-page: 143 year: 2014 end-page: 153 ident: CR19 article-title: Modular neural networks architecture optimization with a new nature inspired method using a fuzzy combination of particle swarm optimization and genetic algorithms publication-title: Inf Sci doi: 10.1016/j.ins.2014.02.091 – volume: 25 start-page: 1793 issue: 10 year: 2014 end-page: 1803 ident: CR24 article-title: An incremental design of radial basis function networks publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2295813 – volume: 72 start-page: 2477 issue: 10 year: 2009 end-page: 2482 ident: CR13 article-title: Modular neural networks with Hebbian learning rule publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.11.011 – volume: 23 start-page: 609 issue: 4 year: 2012 end-page: 619 ident: CR25 article-title: Fast and efficient second-order method for training radial basis function networks publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2012.2185059 – volume: 18 start-page: 114 issue: 3 year: 2014 end-page: 115 ident: CR31 article-title: Hierarchical modular brain connectivity is a stretch for criticality publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2013.10.016 – volume: 11 start-page: 708 issue: 3 year: 2015 end-page: 716 ident: CR2 article-title: Polynet: a polynomial-based learning machine for universal approximation publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2015.2426012 – volume: 128 start-page: 31 year: 2014 end-page: 41 ident: CR18 article-title: Parallelized extreme learning machine ensemble based on min–max modular network publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.02.053 – volume: 24 start-page: 878 issue: 6 year: 2013 end-page: 887 ident: CR16 article-title: Effective neural network ensemble approach for improving generalization performance publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2246578 – volume: 3 start-page: 56 issue: 4 year: 2009 ident: 3763_CR5 publication-title: IEEE Ind Electron Mag doi: 10.1109/MIE.2009.934790 – volume: 26 start-page: 1312 issue: 6 year: 2015 ident: 3763_CR3 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2015.2401395 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 3763_CR4 publication-title: Nature doi: 10.1038/nature14539 – volume: 34 start-page: 2284 issue: 6 year: 2004 ident: 3763_CR27 publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2004.834428 – volume: 3 start-page: 79 issue: 1 year: 1991 ident: 3763_CR9 publication-title: Neural Comput doi: 10.1162/neco.1991.3.1.79 – volume: 69 start-page: 111 year: 2015 ident: 3763_CR20 publication-title: Neural Netw doi: 10.1016/j.neunet.2015.05.001 – volume: 29 start-page: 766 issue: 4 year: 2017 ident: 3763_CR6 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2017.2650865 – volume: 8 start-page: 228 issue: 2 year: 2012 ident: 3763_CR30 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2012.2187914 – volume: 29 start-page: 104 issue: 1 year: 2018 ident: 3763_CR33 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2616413 – volume: 72 start-page: 2477 issue: 10 year: 2009 ident: 3763_CR13 publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.11.011 – volume: 128 start-page: 31 year: 2014 ident: 3763_CR18 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.02.053 – volume: 70 start-page: 489 issue: 1–3 year: 2006 ident: 3763_CR29 publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 240 start-page: 137 year: 2017 ident: 3763_CR21 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.041 – volume: 27 start-page: 41 year: 2014 ident: 3763_CR22 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2013.09.014 – volume: 25 start-page: 1793 issue: 10 year: 2014 ident: 3763_CR24 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2295813 – volume: 342 start-page: 1238411 issue: 6158 year: 2013 ident: 3763_CR8 publication-title: Science doi: 10.1126/science.1238411 – volume: 21 start-page: 4635 issue: 16 year: 2017 ident: 3763_CR23 publication-title: Soft Comput doi: 10.1007/s00500-016-2074-5 – volume: 344 start-page: 1492 issue: 6191 year: 2014 ident: 3763_CR32 publication-title: Science doi: 10.1126/science.1242072 – volume: 125 start-page: 7 year: 2014 ident: 3763_CR17 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.09.038 – volume: 72 start-page: 2093 issue: 10–12 year: 2009 ident: 3763_CR11 publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.10.020 – volume: 72 start-page: 2536 issue: 10 year: 2009 ident: 3763_CR14 publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.10.014 – volume: 270 start-page: 143 year: 2014 ident: 3763_CR19 publication-title: Inf Sci doi: 10.1016/j.ins.2014.02.091 – volume: 23 start-page: 277 issue: 2 year: 2012 ident: 3763_CR1 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2011.2179669 – volume: 24 start-page: 878 issue: 6 year: 2013 ident: 3763_CR16 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2246578 – volume: 22 start-page: 82 issue: 1 year: 2009 ident: 3763_CR12 publication-title: Neural Netw doi: 10.1016/j.neunet.2008.10.006 – volume: 10 start-page: 186 issue: 3 year: 2009 ident: 3763_CR7 publication-title: Nat Rev Neurosci doi: 10.1038/nrn2575 – volume: 14 start-page: 820 issue: 4 year: 2003 ident: 3763_CR10 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2003.813832 – volume: 23 start-page: 609 issue: 4 year: 2012 ident: 3763_CR25 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2012.2185059 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 3763_CR26 publication-title: Mach Learn – volume: 18 start-page: 114 issue: 3 year: 2014 ident: 3763_CR31 publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2013.10.016 – volume: 16 start-page: 57 issue: 1 year: 2005 ident: 3763_CR28 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2004.836241 – volume: 125 start-page: 3 year: 2014 ident: 3763_CR15 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.06.051 – volume: 11 start-page: 708 issue: 3 year: 2015 ident: 3763_CR2 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2015.2426012 |
| SSID | ssj0004685 |
| Score | 2.3297272 |
| Snippet | In this study, a modular design methodology inherited from cognitive neuroscience and neurophysiology is proposed to develop artificial neural networks, aiming... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 899 |
| SubjectTerms | Architecture Artificial Intelligence Artificial neural networks Brain Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Image Processing and Computer Vision Learning theory Modular construction Modular design Modular structures Neural networks Neurophysiology Original Article Partitions Probability and Statistics in Computer Science Radial basis function |
| SummonAdditionalLinks | – databaseName: Springer Journals New Starts & Take-Overs Collection dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAcmkKU4dhxnLIgKlgqVh7pFiXOWKkpStaVDfz22k7SAAAnm2FZ0j9x38d19CJ2nUqdhpIBAAD7hCWQk0jogKkg8EYHBFMAd2UTY68nBILqv-rindbV7fSXpvtTLZjf7B9OmvtI5BVmsow0T7aTla-g_PH9ohnQ8nCZtsSU9nNVXmd8d8TkYrRDml0tRF2u6zX-95Q7arqAl7pS2sIvWIN9DzZq2AVdevI_uOjgv5jDCr0Vmi1Bx_6qL7VxLszkvq8KxDW4ZLnKc4NSSSJDR8AXw2NqZ1SQuiacP0FP35vH6llSMCkQxKmZEZzQRQkc8DEEK5mmT_AWCUypAU8W10pmvtZSJkMqTGrIUQq1EBiwAoCplh6iRFzkcIZxqPzTwTBlEkHDmqyQySIh6RvO-J9KItpBXizZW1bhxy3oxipeDkp2oYiOq2IoqXrTQxXLLuJy18dvidq2vuHK7aewzzlloaxJb6LLWz-rxj4cd_2n1CdrybdbtarfbqDGbvMEp2lTz2XA6OXPW-A53Stpr priority: 102 providerName: Springer Nature |
| Title | A novel modular RBF neural network based on a brain-like partition method |
| URI | https://link.springer.com/article/10.1007/s00521-018-3763-z https://www.proquest.com/docview/2344371993 |
| Volume | 32 |
| WOSCitedRecordID | wos000512022900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-3058 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-3058 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals New Starts & Take-Overs Collection customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZg44CQeAwQ46UcOIEi2iZN2xMaiAku0zQemrhUbepIE6MdbHDYryfJWgZI7MKll7ZW1c-O7djxB3CShioNIokUffQoTzCjkVI-lX7iiAh1TIHckk0EnU7Y70fdcsNtXLZVVmuiXaizQpo98nOPcc4C0252MXqlhjXKVFdLCo1lqJspCYa6oes_fTsXaSk5dQZjuns4q6qajh0iqh2XTqRDa2J0-tMvzYPNX_VR63baG__94E1YLwNO0pppyBYsYd6Atda3-kEDNipuB1Ka-jbctkhefOCQvBSZ6VQlvcs2McMvtax81jpOjAfMSJGThKSGaYIOB89IRkYZDdxkxk69Aw_t6_urG1rSLlDJXDGhKnMTIVTEgwBDwRylM0RfcNcVqFzJlVSZp1QYJiKUTqgwSzFQUmTIfERXpmwXanmR4x6QVHmBjuGkDhsSzjyZRDpcch2tHp4j0shtglP99FiWM8kNNcYw_pqmbHGKNU6xwSmeNuH065XRbCDHoocPK2zi0jbH8RyYJpxV6M5v_ylsf7GwA1j1TC5uO7oPoTZ5e8cjWJEfk8H47Rjql9edbu_YKqi-9u4ePwHeJuwS |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9swFH8ChsSEBFsBrcA2H7bLkLXEcZzkgFD3UbUqq9BUpIpLljjPElqXFFqYxh_F34jtJLRMWm897JzkSY5_78vv-f0A3qWhSoNIIkUfGeUJZjRSyqfSTxwRoY4pkFuyiaDfD4fD6GwF7uu7MKatsraJ1lBnhTRn5B-Zx7kXmHazk_EVNaxRprpaU2iUsOjhn986ZZscd7_o_X3PWPvr4HOHVqwCVHqumFKVuYkQKuJBgKHwHKUTIF9w1xWoXMmVVBlTKgwTEUonVJilGCgpMvR8RFemnpa7Cs84Z47RojP_Yu4epqUA1RmT6SbiXl1FdezQUu0odeIeWpWmd0_94Cy4_asea91ce_t_-0EvYKsKqEmr1ICXsIJ5AzZbc_WRBmzX3BWkMmU70G2RvLjFEflVZKYTl3z_1CZmuKeWlZet8cR4-IwUOUlIapg06OjyJ5KxUTYDZ1Kyb-_C-VLWtwdreZHjKyCpYoGOUaUOixLuMZlEOhx0HQ1_5og0cpvg1Jscy2rmuqH-GMWP06ItLmKNi9jgIr5rwofHT8blwJFFLx_WWIgr2zOJZ0BowlGNptnjfwrbXyzsLWx0Bt9O49Nuv3cAz5k5d7Dd64ewNr2-wdewLm-nl5PrN1YpCPxYNsgeAKGsSbY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIMSF8RSDATlwAkXrI03b43hMTKBp4qXdqjZ1pInRTVvZYb-epI8NECAhzk2iyLFlu_7sD-A08mTk-gIpOmhRFmJMfSkdKpzQ4D6qmAJZRjbhdjper-d3C57TSYl2L0uSeU-DntKUpI1RLBvzxjf9N1OnwV5mIHS2DCtM4-h1uv7w_KExMuPkVCmMhvcwuyxrfnfEZ8e0iDa_FEgzv9Oq_vvGm7BRhJykmevIFixhsg3Vks6BFNa9A-0mSYZTHJDXYazBqeT-okX0vEu1OcnR4kQ7vZgMExKSSJNL0EH_BclI659-YZITUu_CU-v68fKGFkwLVNgmT6mMzZBz6TPXRY_bhlRJocOZaXKUpmBSyNiS0vNC7gnDkxhH6ErBY7QdRFNE9h5UkmGC-0AiabkqbBMqUgiZbYnQVxGSaSiNsAwe-WYNjFLMgSjGkGs2jEEwH6CciSpQogq0qIJZDc7mW0b5DI7fFtfLtwsKc5wEls2Y7WqsYg3Oy7dafP7xsIM_rT6Bte5VK7hrd24PYd3SiXkG765DJR2_4RGsimnan4yPMyV9B8ec5jM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+modular+RBF+neural+network+based+on+a+brain-like+partition+method&rft.jtitle=Neural+computing+%26+applications&rft.au=Jun-Fei%2C+Qiao&rft.au=Meng+Xi&rft.au=Wen-Jing%2C+Li&rft.au=Wilamowski%2C+Bogdan+M&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=32&rft.issue=3&rft.spage=899&rft.epage=911&rft_id=info:doi/10.1007%2Fs00521-018-3763-z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |