A novel modular RBF neural network based on a brain-like partition method

In this study, a modular design methodology inherited from cognitive neuroscience and neurophysiology is proposed to develop artificial neural networks, aiming to realize the powerful capability of brain—divide and conquer—when tackling complex problems. First, a density-based brain-like partition m...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications Vol. 32; no. 3; pp. 899 - 911
Main Authors: Qiao, Jun-Fei, Meng, Xi, Li, Wen-Jing, Wilamowski, Bogdan M.
Format: Journal Article
Language:English
Published: London Springer London 01.02.2020
Springer Nature B.V
Subjects:
ISSN:0941-0643, 1433-3058
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this study, a modular design methodology inherited from cognitive neuroscience and neurophysiology is proposed to develop artificial neural networks, aiming to realize the powerful capability of brain—divide and conquer—when tackling complex problems. First, a density-based brain-like partition method is developed to construct the modular architecture, with a highly connected center in each sub-network as the human brain. The whole task is also divided into different sub-tasks at this stage. Then, a compact radial basis function (RBF) network with fast learning speed and desirable generalization performance is applied as the sub-network to solve the corresponding task. On the one hand, the modular structure helps to improve the ability of neural networks on complex problems by implementing divide and conquer. On the other hand, sub-networks with considerable ability could guarantee the parsimonious and generalization of the entire neural network. Finally, the novel modular RBF (NM-RBF) network is evaluated through multiple benchmark numerical experiments, and results demonstrate that the NM-RBF network is capable of constructing a relative compact architecture during a short learning process with achievable satisfactory generalization performance, showing its effectiveness and outperformance.
AbstractList In this study, a modular design methodology inherited from cognitive neuroscience and neurophysiology is proposed to develop artificial neural networks, aiming to realize the powerful capability of brain—divide and conquer—when tackling complex problems. First, a density-based brain-like partition method is developed to construct the modular architecture, with a highly connected center in each sub-network as the human brain. The whole task is also divided into different sub-tasks at this stage. Then, a compact radial basis function (RBF) network with fast learning speed and desirable generalization performance is applied as the sub-network to solve the corresponding task. On the one hand, the modular structure helps to improve the ability of neural networks on complex problems by implementing divide and conquer. On the other hand, sub-networks with considerable ability could guarantee the parsimonious and generalization of the entire neural network. Finally, the novel modular RBF (NM-RBF) network is evaluated through multiple benchmark numerical experiments, and results demonstrate that the NM-RBF network is capable of constructing a relative compact architecture during a short learning process with achievable satisfactory generalization performance, showing its effectiveness and outperformance.
Author Wilamowski, Bogdan M.
Meng, Xi
Li, Wen-Jing
Qiao, Jun-Fei
Author_xml – sequence: 1
  givenname: Jun-Fei
  surname: Qiao
  fullname: Qiao, Jun-Fei
  organization: Faculty of Information Technology, Beijing University of Technology, Beijing Key Laboratory of Computational Intelligence and Intelligence System
– sequence: 2
  givenname: Xi
  surname: Meng
  fullname: Meng, Xi
  email: mengxi@bjut.edu.cn
  organization: Faculty of Information Technology, Beijing University of Technology, Beijing Key Laboratory of Computational Intelligence and Intelligence System
– sequence: 3
  givenname: Wen-Jing
  surname: Li
  fullname: Li, Wen-Jing
  organization: Faculty of Information Technology, Beijing University of Technology, Beijing Key Laboratory of Computational Intelligence and Intelligence System
– sequence: 4
  givenname: Bogdan M.
  surname: Wilamowski
  fullname: Wilamowski, Bogdan M.
  organization: Department of Electrical and Computer Engineering, Auburn University
BookMark eNp9kEFLAzEQhYMo2FZ_gLeA59Vkk02yx1qsFgqC6DlksxPddrupyVaxv96UFQRBTw9m5ps388bouPMdIHRByRUlRF5HQoqcZoSqjEnBsv0RGlHOWMZIoY7RiJQ8dQVnp2gc44oQwoUqRmgxxZ1_hxZvfL1rTcCPN3PcwS6YNkn_4cMaVyZCjX2HDa6CabqsbdaAtyb0Td-k8gb6V1-foRNn2gjn3zpBz_Pbp9l9tny4W8ymy8wyKvrM1dQI4UouJSjBiKNEFoJTKsBRy511de6cUkYoS5SDugLprKiBFQDUVmyCLoe92-DfdhB7vfK70CVLnTPOmaRlydIUHaZs8DEGcHobmo0Jn5oSfUhMD4nplJg-JKb3iZG_GNv05vBin95u_yXzgYzJpXuB8HPT39AX21CCog
CitedBy_id crossref_primary_10_3390_a16100455
crossref_primary_10_1007_s00521_022_06962_7
crossref_primary_10_1016_j_psep_2024_11_063
crossref_primary_10_3233_JIFS_232396
crossref_primary_10_1080_21642583_2024_2328542
crossref_primary_10_1007_s00521_021_06582_7
crossref_primary_10_1016_j_mtcomm_2024_109950
crossref_primary_10_1007_s00500_023_08638_3
crossref_primary_10_1016_j_engappai_2023_107315
Cites_doi 10.1016/j.neucom.2017.02.041
10.1016/j.engappai.2013.09.014
10.1016/j.neucom.2005.12.126
10.1126/science.1238411
10.1007/s00500-016-2074-5
10.1126/science.1242072
10.1016/j.neucom.2008.10.014
10.1038/nature14539
10.1109/TNNLS.2011.2179669
10.1038/nrn2575
10.1109/TNNLS.2015.2401395
10.1109/TSMCB.2004.834428
10.1109/TNN.2004.836241
10.1109/MIE.2009.934790
10.1016/j.neucom.2008.10.020
10.1016/j.neunet.2008.10.006
10.1109/TII.2012.2187914
10.1016/j.neucom.2012.06.051
10.1109/TNNLS.2016.2616413
10.1109/TNN.2003.813832
10.1016/j.neunet.2015.05.001
10.1109/TNNLS.2017.2650865
10.1016/j.neucom.2012.09.038
10.1162/neco.1991.3.1.79
10.1016/j.ins.2014.02.091
10.1109/TNNLS.2013.2295813
10.1016/j.neucom.2008.11.011
10.1109/TNNLS.2012.2185059
10.1016/j.tics.2013.10.016
10.1109/TII.2015.2426012
10.1016/j.neucom.2013.02.053
10.1109/TNNLS.2013.2246578
ContentType Journal Article
Copyright The Natural Computing Applications Forum 2018
Neural Computing and Applications is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: The Natural Computing Applications Forum 2018
– notice: Neural Computing and Applications is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-018-3763-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Architecture
EISSN 1433-3058
EndPage 911
ExternalDocumentID 10_1007_s00521_018_3763_z
GrantInformation_xml – fundername: “Rixin Scientist” Foundation of Beijing University of Technology
  grantid: 2017-RX (1)-04
– fundername: Beijing Science and Technology Project
  grantid: Z1511000001315010
– fundername: National Natural Science Foundation of China
  grantid: 61533002; 61603009
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-fd1a66f9477e8630f107564116ef1c4fcfd2ff88a68c08fedbe7fc6de35ee1cb3
IEDL.DBID P5Z
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000512022900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Wed Nov 05 01:38:07 EST 2025
Tue Nov 18 22:32:06 EST 2025
Sat Nov 29 02:59:10 EST 2025
Fri Feb 21 02:35:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Radial basis function (RBF) network
Brain-like partition
Second-order algorithm
Modular neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-fd1a66f9477e8630f107564116ef1c4fcfd2ff88a68c08fedbe7fc6de35ee1cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2344371993
PQPubID 2043988
PageCount 13
ParticipantIDs proquest_journals_2344371993
crossref_primary_10_1007_s00521_018_3763_z
crossref_citationtrail_10_1007_s00521_018_3763_z
springer_journals_10_1007_s00521_018_3763_z
PublicationCentury 2000
PublicationDate 20200200
2020-2-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 2
  year: 2020
  text: 20200200
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Islam, Yao, Murase (CR10) 2003; 14
Goltsev, Gritsenko (CR13) 2009; 72
Sanchez, Melin (CR22) 2014; 27
Huang, Saratchandran, Sundararajan (CR28) 2005; 16
Han, Lu, Hou, Qiao (CR33) 2018; 29
Cimino, Pedrycz, Lazzerini, Marcelloni (CR14) 2009; 72
LeCun, Bengio, Hinton (CR4) 2015; 521
Valdez, Melin, Castillo (CR19) 2014; 270
Mozaffari, Scott, Chenouri (CR23) 2017; 21
Cortes, Vapnik (CR26) 1995; 20
Xie, Yu, Hewlett, Rozycki, Wilamowski (CR25) 2012; 23
Han, Zhou, Qiao, Feng (CR3) 2015; 26
Zhang, Chai, Li, Yang (CR1) 2012; 23
Bullmore, Sporns (CR7) 2009; 10
Hilgetag, Hutt (CR31) 2014; 18
Huang, Saratchandran, Sundararajan (CR27) 2004; 34
Rodriguez, Laio (CR32) 2014; 344
Huang, Zhu, Siew (CR29) 2006; 70
Ding, Feng, Wang, Fu (CR15) 2014; 125
Pukish, Rozycki, Wilamowski (CR2) 2015; 11
Tokunaga, Furukawa (CR12) 2009; 22
Yu, Reiner, Xie, Bartczak, Wilamowski (CR24) 2014; 25
Yoo, Oh, Pedrycz (CR20) 2015; 69
Wang, Zhang, Creput (CR21) 2017; 240
Hunter, Yu, Pukish, Kolbusz, Wilamowski (CR30) 2012; 8
Wilamowski (CR5) 2009; 3
Jacobs, Jordan, Nowlan, Hinton (CR9) 1991; 3
Qiao, Zhang, Bo (CR17) 2014; 125
Hoori, Motai (CR6) 2017; 29
Yang, Zeng, Zhong, Wu (CR16) 2013; 24
Wang, Chen, Zhao, Lu (CR18) 2014; 128
Park, Friston (CR8) 2013; 342
Tseng, Almogahed (CR11) 2009; 72
GB Huang (3763_CR27) 2004; 34
A Mozaffari (3763_CR23) 2017; 21
J Yang (3763_CR16) 2013; 24
C Cortes (3763_CR26) 1995; 20
F Valdez (3763_CR19) 2014; 270
D Sanchez (3763_CR22) 2014; 27
Y LeCun (3763_CR4) 2015; 521
GB Huang (3763_CR29) 2006; 70
Y Zhang (3763_CR1) 2012; 23
A Rodriguez (3763_CR32) 2014; 344
HG Han (3763_CR33) 2018; 29
BM Wilamowski (3763_CR5) 2009; 3
MM Islam (3763_CR10) 2003; 14
HC Tseng (3763_CR11) 2009; 72
HJ Park (3763_CR8) 2013; 342
AO Hoori (3763_CR6) 2017; 29
CC Hilgetag (3763_CR31) 2014; 18
TT Xie (3763_CR25) 2012; 23
D Hunter (3763_CR30) 2012; 8
E Bullmore (3763_CR7) 2009; 10
Y Ding (3763_CR15) 2014; 125
JF Qiao (3763_CR17) 2014; 125
H Yu (3763_CR24) 2014; 25
RA Jacobs (3763_CR9) 1991; 3
A Goltsev (3763_CR13) 2009; 72
MG Cimino (3763_CR14) 2009; 72
XL Wang (3763_CR18) 2014; 128
MS Pukish (3763_CR2) 2015; 11
HG Han (3763_CR3) 2015; 26
SH Yoo (3763_CR20) 2015; 69
K Tokunaga (3763_CR12) 2009; 22
H Wang (3763_CR21) 2017; 240
GB Huang (3763_CR28) 2005; 16
References_xml – volume: 240
  start-page: 137
  year: 2017
  end-page: 151
  ident: CR21
  article-title: A massively parallel neural network approach to large-scale Euclidean traveling salesman problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.041
– volume: 27
  start-page: 41
  year: 2014
  end-page: 56
  ident: CR22
  article-title: Optimization of modular granular neural networks using hierarchical genetic algorithms for human recognition using the ear biometric measure
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2013.09.014
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  end-page: 501
  ident: CR29
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 342
  start-page: 1238411
  issue: 6158
  year: 2013
  ident: CR8
  article-title: Structural and functional brain networks: from connections to cognition
  publication-title: Science
  doi: 10.1126/science.1238411
– volume: 21
  start-page: 4635
  issue: 16
  year: 2017
  end-page: 4659
  ident: CR23
  article-title: A modular ridge randomized neural network with differential evolutionary distributor applied to the estimation of sea ice thickness
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2074-5
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  end-page: 1496
  ident: CR32
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 72
  start-page: 2536
  issue: 10
  year: 2009
  end-page: 2548
  ident: CR14
  article-title: Using multilayer perceptrons as receptive fields in the design of neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.10.014
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: CR4
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 23
  start-page: 277
  issue: 2
  year: 2012
  end-page: 284
  ident: CR1
  article-title: Modeling and monitoring of dynamic processes
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2011.2179669
– volume: 10
  start-page: 186
  issue: 3
  year: 2009
  end-page: 198
  ident: CR7
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2575
– volume: 26
  start-page: 1312
  issue: 6
  year: 2015
  end-page: 1322
  ident: CR3
  article-title: A direct self-constructing neural controller design for a class of nonlinear systems
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2401395
– volume: 34
  start-page: 2284
  issue: 6
  year: 2004
  end-page: 2292
  ident: CR27
  article-title: An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2004.834428
– volume: 16
  start-page: 57
  issue: 1
  year: 2005
  end-page: 67
  ident: CR28
  article-title: A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2004.836241
– volume: 3
  start-page: 56
  issue: 4
  year: 2009
  end-page: 63
  ident: CR5
  article-title: Neural network architectures and learning algorithms
  publication-title: IEEE Ind Electron Mag
  doi: 10.1109/MIE.2009.934790
– volume: 72
  start-page: 2093
  issue: 10–12
  year: 2009
  end-page: 2100
  ident: CR11
  article-title: Modular neural networks with applications to pattern profiling problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.10.020
– volume: 22
  start-page: 82
  issue: 1
  year: 2009
  end-page: 90
  ident: CR12
  article-title: Modular network SOM
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2008.10.006
– volume: 8
  start-page: 228
  issue: 2
  year: 2012
  end-page: 240
  ident: CR30
  article-title: Selection of proper neural network sizes and architectures—a comparative study
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2012.2187914
– volume: 125
  start-page: 3
  year: 2014
  end-page: 6
  ident: CR15
  article-title: A modular neural network architecture with concept
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.06.051
– volume: 29
  start-page: 104
  issue: 1
  year: 2018
  end-page: 117
  ident: CR33
  article-title: An adaptive-PSO-based self-organizing RBF neural network
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2616413
– volume: 14
  start-page: 820
  issue: 4
  year: 2003
  end-page: 834
  ident: CR10
  article-title: A constructive algorithm for training cooperative neural network ensembles
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2003.813832
– volume: 69
  start-page: 111
  year: 2015
  end-page: 125
  ident: CR20
  article-title: Optimized face recognition algorithm using radial basis function neural networks and its practical applications
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2015.05.001
– volume: 29
  start-page: 766
  issue: 4
  year: 2017
  end-page: 778
  ident: CR6
  article-title: Multicolumn RBF network
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2650865
– volume: 125
  start-page: 7
  year: 2014
  end-page: 16
  ident: CR17
  article-title: An online self-adaptive modular neural network for time-varying systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.09.038
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  ident: CR26
  article-title: Support-vector networks
  publication-title: Mach Learn
– volume: 3
  start-page: 79
  issue: 1
  year: 1991
  end-page: 87
  ident: CR9
  article-title: Adaptive mixtures of local experts
  publication-title: Neural Comput
  doi: 10.1162/neco.1991.3.1.79
– volume: 270
  start-page: 143
  year: 2014
  end-page: 153
  ident: CR19
  article-title: Modular neural networks architecture optimization with a new nature inspired method using a fuzzy combination of particle swarm optimization and genetic algorithms
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.02.091
– volume: 25
  start-page: 1793
  issue: 10
  year: 2014
  end-page: 1803
  ident: CR24
  article-title: An incremental design of radial basis function networks
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2295813
– volume: 72
  start-page: 2477
  issue: 10
  year: 2009
  end-page: 2482
  ident: CR13
  article-title: Modular neural networks with Hebbian learning rule
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.11.011
– volume: 23
  start-page: 609
  issue: 4
  year: 2012
  end-page: 619
  ident: CR25
  article-title: Fast and efficient second-order method for training radial basis function networks
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2012.2185059
– volume: 18
  start-page: 114
  issue: 3
  year: 2014
  end-page: 115
  ident: CR31
  article-title: Hierarchical modular brain connectivity is a stretch for criticality
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2013.10.016
– volume: 11
  start-page: 708
  issue: 3
  year: 2015
  end-page: 716
  ident: CR2
  article-title: Polynet: a polynomial-based learning machine for universal approximation
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2015.2426012
– volume: 128
  start-page: 31
  year: 2014
  end-page: 41
  ident: CR18
  article-title: Parallelized extreme learning machine ensemble based on min–max modular network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.02.053
– volume: 24
  start-page: 878
  issue: 6
  year: 2013
  end-page: 887
  ident: CR16
  article-title: Effective neural network ensemble approach for improving generalization performance
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2246578
– volume: 3
  start-page: 56
  issue: 4
  year: 2009
  ident: 3763_CR5
  publication-title: IEEE Ind Electron Mag
  doi: 10.1109/MIE.2009.934790
– volume: 26
  start-page: 1312
  issue: 6
  year: 2015
  ident: 3763_CR3
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2401395
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 3763_CR4
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 34
  start-page: 2284
  issue: 6
  year: 2004
  ident: 3763_CR27
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2004.834428
– volume: 3
  start-page: 79
  issue: 1
  year: 1991
  ident: 3763_CR9
  publication-title: Neural Comput
  doi: 10.1162/neco.1991.3.1.79
– volume: 69
  start-page: 111
  year: 2015
  ident: 3763_CR20
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2015.05.001
– volume: 29
  start-page: 766
  issue: 4
  year: 2017
  ident: 3763_CR6
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2650865
– volume: 8
  start-page: 228
  issue: 2
  year: 2012
  ident: 3763_CR30
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2012.2187914
– volume: 29
  start-page: 104
  issue: 1
  year: 2018
  ident: 3763_CR33
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2616413
– volume: 72
  start-page: 2477
  issue: 10
  year: 2009
  ident: 3763_CR13
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.11.011
– volume: 128
  start-page: 31
  year: 2014
  ident: 3763_CR18
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.02.053
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 3763_CR29
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 240
  start-page: 137
  year: 2017
  ident: 3763_CR21
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.041
– volume: 27
  start-page: 41
  year: 2014
  ident: 3763_CR22
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2013.09.014
– volume: 25
  start-page: 1793
  issue: 10
  year: 2014
  ident: 3763_CR24
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2295813
– volume: 342
  start-page: 1238411
  issue: 6158
  year: 2013
  ident: 3763_CR8
  publication-title: Science
  doi: 10.1126/science.1238411
– volume: 21
  start-page: 4635
  issue: 16
  year: 2017
  ident: 3763_CR23
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2074-5
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  ident: 3763_CR32
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 125
  start-page: 7
  year: 2014
  ident: 3763_CR17
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.09.038
– volume: 72
  start-page: 2093
  issue: 10–12
  year: 2009
  ident: 3763_CR11
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.10.020
– volume: 72
  start-page: 2536
  issue: 10
  year: 2009
  ident: 3763_CR14
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.10.014
– volume: 270
  start-page: 143
  year: 2014
  ident: 3763_CR19
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.02.091
– volume: 23
  start-page: 277
  issue: 2
  year: 2012
  ident: 3763_CR1
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2011.2179669
– volume: 24
  start-page: 878
  issue: 6
  year: 2013
  ident: 3763_CR16
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2246578
– volume: 22
  start-page: 82
  issue: 1
  year: 2009
  ident: 3763_CR12
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2008.10.006
– volume: 10
  start-page: 186
  issue: 3
  year: 2009
  ident: 3763_CR7
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2575
– volume: 14
  start-page: 820
  issue: 4
  year: 2003
  ident: 3763_CR10
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2003.813832
– volume: 23
  start-page: 609
  issue: 4
  year: 2012
  ident: 3763_CR25
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2012.2185059
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 3763_CR26
  publication-title: Mach Learn
– volume: 18
  start-page: 114
  issue: 3
  year: 2014
  ident: 3763_CR31
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2013.10.016
– volume: 16
  start-page: 57
  issue: 1
  year: 2005
  ident: 3763_CR28
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2004.836241
– volume: 125
  start-page: 3
  year: 2014
  ident: 3763_CR15
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.06.051
– volume: 11
  start-page: 708
  issue: 3
  year: 2015
  ident: 3763_CR2
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2015.2426012
SSID ssj0004685
Score 2.3297272
Snippet In this study, a modular design methodology inherited from cognitive neuroscience and neurophysiology is proposed to develop artificial neural networks, aiming...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 899
SubjectTerms Architecture
Artificial Intelligence
Artificial neural networks
Brain
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Image Processing and Computer Vision
Learning theory
Modular construction
Modular design
Modular structures
Neural networks
Neurophysiology
Original Article
Partitions
Probability and Statistics in Computer Science
Radial basis function
SummonAdditionalLinks – databaseName: Springer Journals New Starts & Take-Overs Collection
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAcmkKU4dhxnLIgKlgqVh7pFiXOWKkpStaVDfz22k7SAAAnm2FZ0j9x38d19CJ2nUqdhpIBAAD7hCWQk0jogKkg8EYHBFMAd2UTY68nBILqv-rindbV7fSXpvtTLZjf7B9OmvtI5BVmsow0T7aTla-g_PH9ohnQ8nCZtsSU9nNVXmd8d8TkYrRDml0tRF2u6zX-95Q7arqAl7pS2sIvWIN9DzZq2AVdevI_uOjgv5jDCr0Vmi1Bx_6qL7VxLszkvq8KxDW4ZLnKc4NSSSJDR8AXw2NqZ1SQuiacP0FP35vH6llSMCkQxKmZEZzQRQkc8DEEK5mmT_AWCUypAU8W10pmvtZSJkMqTGrIUQq1EBiwAoCplh6iRFzkcIZxqPzTwTBlEkHDmqyQySIh6RvO-J9KItpBXizZW1bhxy3oxipeDkp2oYiOq2IoqXrTQxXLLuJy18dvidq2vuHK7aewzzlloaxJb6LLWz-rxj4cd_2n1CdrybdbtarfbqDGbvMEp2lTz2XA6OXPW-A53Stpr
  priority: 102
  providerName: Springer Nature
Title A novel modular RBF neural network based on a brain-like partition method
URI https://link.springer.com/article/10.1007/s00521-018-3763-z
https://www.proquest.com/docview/2344371993
Volume 32
WOSCitedRecordID wos000512022900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZg44CQeAwQ46UcOIEi2iZN2xMaiAku0zQemrhUbepIE6MdbHDYryfJWgZI7MKll7ZW1c-O7djxB3CShioNIokUffQoTzCjkVI-lX7iiAh1TIHckk0EnU7Y70fdcsNtXLZVVmuiXaizQpo98nOPcc4C0252MXqlhjXKVFdLCo1lqJspCYa6oes_fTsXaSk5dQZjuns4q6qajh0iqh2XTqRDa2J0-tMvzYPNX_VR63baG__94E1YLwNO0pppyBYsYd6Atda3-kEDNipuB1Ka-jbctkhefOCQvBSZ6VQlvcs2McMvtax81jpOjAfMSJGThKSGaYIOB89IRkYZDdxkxk69Aw_t6_urG1rSLlDJXDGhKnMTIVTEgwBDwRylM0RfcNcVqFzJlVSZp1QYJiKUTqgwSzFQUmTIfERXpmwXanmR4x6QVHmBjuGkDhsSzjyZRDpcch2tHp4j0shtglP99FiWM8kNNcYw_pqmbHGKNU6xwSmeNuH065XRbCDHoocPK2zi0jbH8RyYJpxV6M5v_ylsf7GwA1j1TC5uO7oPoTZ5e8cjWJEfk8H47Rjql9edbu_YKqi-9u4ePwHeJuwS
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9swFH8ChsSEBFsBrcA2H7bLkLXEcZzkgFD3UbUqq9BUpIpLljjPElqXFFqYxh_F34jtJLRMWm897JzkSY5_78vv-f0A3qWhSoNIIkUfGeUJZjRSyqfSTxwRoY4pkFuyiaDfD4fD6GwF7uu7MKatsraJ1lBnhTRn5B-Zx7kXmHazk_EVNaxRprpaU2iUsOjhn986ZZscd7_o_X3PWPvr4HOHVqwCVHqumFKVuYkQKuJBgKHwHKUTIF9w1xWoXMmVVBlTKgwTEUonVJilGCgpMvR8RFemnpa7Cs84Z47RojP_Yu4epqUA1RmT6SbiXl1FdezQUu0odeIeWpWmd0_94Cy4_asea91ce_t_-0EvYKsKqEmr1ICXsIJ5AzZbc_WRBmzX3BWkMmU70G2RvLjFEflVZKYTl3z_1CZmuKeWlZet8cR4-IwUOUlIapg06OjyJ5KxUTYDZ1Kyb-_C-VLWtwdreZHjKyCpYoGOUaUOixLuMZlEOhx0HQ1_5og0cpvg1Jscy2rmuqH-GMWP06ItLmKNi9jgIr5rwofHT8blwJFFLx_WWIgr2zOJZ0BowlGNptnjfwrbXyzsLWx0Bt9O49Nuv3cAz5k5d7Dd64ewNr2-wdewLm-nl5PrN1YpCPxYNsgeAKGsSbY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIMSF8RSDATlwAkXrI03b43hMTKBp4qXdqjZ1pInRTVvZYb-epI8NECAhzk2iyLFlu_7sD-A08mTk-gIpOmhRFmJMfSkdKpzQ4D6qmAJZRjbhdjper-d3C57TSYl2L0uSeU-DntKUpI1RLBvzxjf9N1OnwV5mIHS2DCtM4-h1uv7w_KExMuPkVCmMhvcwuyxrfnfEZ8e0iDa_FEgzv9Oq_vvGm7BRhJykmevIFixhsg3Vks6BFNa9A-0mSYZTHJDXYazBqeT-okX0vEu1OcnR4kQ7vZgMExKSSJNL0EH_BclI659-YZITUu_CU-v68fKGFkwLVNgmT6mMzZBz6TPXRY_bhlRJocOZaXKUpmBSyNiS0vNC7gnDkxhH6ErBY7QdRFNE9h5UkmGC-0AiabkqbBMqUgiZbYnQVxGSaSiNsAwe-WYNjFLMgSjGkGs2jEEwH6CciSpQogq0qIJZDc7mW0b5DI7fFtfLtwsKc5wEls2Y7WqsYg3Oy7dafP7xsIM_rT6Bte5VK7hrd24PYd3SiXkG765DJR2_4RGsimnan4yPMyV9B8ec5jM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+modular+RBF+neural+network+based+on+a+brain-like+partition+method&rft.jtitle=Neural+computing+%26+applications&rft.au=Jun-Fei%2C+Qiao&rft.au=Meng+Xi&rft.au=Wen-Jing%2C+Li&rft.au=Wilamowski%2C+Bogdan+M&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=32&rft.issue=3&rft.spage=899&rft.epage=911&rft_id=info:doi/10.1007%2Fs00521-018-3763-z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon