Parallel and cyclic hybrid subgradient extragradient methods for variational inequalities

In this paper, we propose two hybrid subgradient extragradient methods for solving common solutions of variational inequalities problems (CSVIP). The first is a parallel algorithm which can be performed simultaneously while the second is a cyclic algorithm which is computed sequentially on each subp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Afrika mathematica Jg. 28; H. 5-6; S. 677 - 692
1. Verfasser: Hieu, Dang Van
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2017
Springer Nature B.V
Schlagworte:
ISSN:1012-9405, 2190-7668
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we propose two hybrid subgradient extragradient methods for solving common solutions of variational inequalities problems (CSVIP). The first is a parallel algorithm which can be performed simultaneously while the second is a cyclic algorithm which is computed sequentially on each subproblem in the family. The novelty of this paper is that we have designed the algorithms to develop possible practical numerical methods when the number of subproblems is large. The algorithms can be considered as improvements of some previously known results for CSVIPs. Numerical experiments are also performed to illustrate the efficiency of the proposed algorithms.
AbstractList In this paper, we propose two hybrid subgradient extragradient methods for solving common solutions of variational inequalities problems (CSVIP). The first is a parallel algorithm which can be performed simultaneously while the second is a cyclic algorithm which is computed sequentially on each subproblem in the family. The novelty of this paper is that we have designed the algorithms to develop possible practical numerical methods when the number of subproblems is large. The algorithms can be considered as improvements of some previously known results for CSVIPs. Numerical experiments are also performed to illustrate the efficiency of the proposed algorithms.
Author Hieu, Dang Van
Author_xml – sequence: 1
  givenname: Dang Van
  surname: Hieu
  fullname: Hieu, Dang Van
  email: dv.hieu83@gmail.com
  organization: Department of Mathematics, Vietnam National University
BookMark eNp9kEtLAzEQgINUsNb-AG8LnleTzeZ1lOILCnrQg6cwTbJtyna3TXbF_ntTV0QEncswMN88vlM0atrGIXRO8CXBWFxFQqnAOSY8x6WgOTtC44IonAvO5QiNCSZFrkrMTtA0xjVOUXLCGR2j1ycIUNeuzqCxmdmb2ptstV8Eb7PYL5YBrHdNl7n3LsB3tXHdqrUxq9qQvUHw0Pm2gTrzjdv1UPvOu3iGjiuoo5t-5Ql6ub15nt3n88e7h9n1PDeU8C6vwCkJkoE0wJ0qlTOMSgDLwRTUKlUoJSxzWPCKGV5abASnZUkLwcHKgk7QxTB3G9pd72Kn120f0jVRkwTLQkhWpi4ydJnQxhhcpbfBbyDsNcH6IFEPEnWSqA8SNUuM-MUY332-mlz4-l-yGMiYtjRLF37c9Cf0AQU6iPY
CitedBy_id crossref_primary_10_3390_sym12111915
crossref_primary_10_1080_00036811_2021_1976755
crossref_primary_10_1080_01630563_2018_1485695
crossref_primary_10_1007_s00500_021_05596_6
crossref_primary_10_1007_s13398_020_00827_1
crossref_primary_10_3390_math8112039
crossref_primary_10_1186_s13662_021_03613_4
crossref_primary_10_1080_02331934_2023_2230995
crossref_primary_10_1007_s40574_022_00322_y
crossref_primary_10_1007_s40314_021_01530_6
crossref_primary_10_3390_math10122140
crossref_primary_10_1007_s40314_022_01969_1
crossref_primary_10_1080_00036811_2024_2302964
crossref_primary_10_3390_sym12071198
crossref_primary_10_1007_s00025_023_01936_0
Cites_doi 10.1007/BF02392210
10.1007/s11228-011-0192-x
10.1007/s10013-015-0129-z
10.1016/j.amc.2008.03.010
10.1090/S0002-9947-1970-0282272-5
10.1137/S0036144593251710
10.1088/0266-5611/24/1/015015
10.1016/S1570-579X(01)80028-8
10.1080/10556788.2010.551536
10.1007/s11075-015-0092-5
10.3934/ipi.2007.1.289
10.1080/00036811.2013.872777
10.1007/s101079900113
10.1007/s10589-016-9857-6
10.4134/JKMS.2015.52.2.373
10.1007/s10589-011-9401-7
10.1007/s10957-010-9757-3
10.1016/S1076-5670(08)70157-5
10.1137/040613779
10.3934/ipi.2007.1.507
10.1016/j.na.2005.05.059
10.1007/s12190-014-0801-6
10.1007/s12190-015-0980-9
ContentType Journal Article
Copyright African Mathematical Union and Springer-Verlag Berlin Heidelberg 2016
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: African Mathematical Union and Springer-Verlag Berlin Heidelberg 2016
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
DOI 10.1007/s13370-016-0473-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2190-7668
EndPage 692
ExternalDocumentID 10_1007_s13370_016_0473_5
GroupedDBID -EM
06D
0R~
0VY
203
2KG
30V
4.4
406
408
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BAPOH
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HF~
HMJXF
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9R
PT4
R9I
RLLFE
ROL
RSV
S27
S3B
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z81
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c316t-fae98a85a8ca6e949ec538aad6ac23d992997d5e076f5c64d0c763443276ad823
IEDL.DBID RSV
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000452891000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1012-9405
IngestDate Wed Sep 17 13:51:52 EDT 2025
Sat Nov 29 03:13:34 EST 2025
Tue Nov 18 20:26:21 EST 2025
Fri Feb 21 02:31:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5-6
Keywords Subgradient extragradient method
Parallel algorithm
Cyclic algorithm
65K15
47H10
Hybrid method
Variational inequality
68W10
47H05
65Y05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-fae98a85a8ca6e949ec538aad6ac23d992997d5e076f5c64d0c763443276ad823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1929827854
PQPubID 2043797
PageCount 16
ParticipantIDs proquest_journals_1929827854
crossref_primary_10_1007_s13370_016_0473_5
crossref_citationtrail_10_1007_s13370_016_0473_5
springer_journals_10_1007_s13370_016_0473_5
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Afrika mathematica
PublicationTitleAbbrev Afr. Mat
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Yao, Y., Liou, Y.C.: Weak and strong convergence of Krasnoselski-Mann iteration for hierarchical fixed point problems. Inverse Probl. 24, 015015. doi:10.1088/0266-5611/24/1/015015
BurgerMKaltenbacherBRegularizing Newton-Kaczmart methods for nonlinear ill-posed problemsSIAM J. Numer. Anal.200644153182221737710.1137/0406137791112.65049
AlberYaIRyazantsevaINonlinear Ill-Posed Problems of Monotone Type2006DordrechtSpinger1086.47003
HieuDVA parallel hybrid method for equilibrium problems, variational inequalities and nonexpansive mappings in Hilbert spaceJ. Korean Math. Soc.201552373388331837210.4134/JKMS.2015.52.2.3731317.65151
TakahashiWNonlinear Functional Analysis2000YokohamaYokohama Publishers0997.47002
CensorYGibaliAReichSSabachSCommon solutions to variational inequalitiesSet Val. Var. Anal.201220229247291367710.1007/s11228-011-0192-x1296.47060
HaltmeierMKowarRLeitaoAScherzerOKaczmarz methods for regularizing nonlinear ill-posed equations. I. Convergence analysis.Inverse Probl. Imaging.20071289298228227010.3934/ipi.2007.1.2891123.65051
StarkHImage Recovery Theory and Applications1987OrlandoAcademic0627.94001
CensorYGibaliAReichSStrong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert spaceOptim. Methods Softw.2011264–5827845283780010.1080/10556788.2010.5515361232.58008
Combettes, P.L.: The convex feasibility problem in image recovery. In: Hawkes, P. (Ed.), Advances in Imaging and Electron Physics, vol. 95. Academic, New York, pp. 155–270 (1996)
KorpelevichGMThe extragradient method for finding saddle points and other problemsEkonomikai Matematicheskie Metody1976127477564511210342.90044
HieuDVParallel hybrid methods for generalized equilibrium problems and asymptotically strictly pseudocontractive mappingsJ. Appl. Math. Comput.2016
YamadaIButnariuDCensorYReichSThe hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappingsInherently Parallel Algorithms in Feasibility and Optimization and Their Applications2001AmsterdamElsevier47350410.1016/S1570-579X(01)80028-8
RockafellarRTOn the maximality of sums of nonlinear monotone operatorsTrans. Am. Math. Soc.1970149758828227210.1090/S0002-9947-1970-0282272-50222.47017
HartmanPStampacchiaGOn some non-linear elliptic diferential-functional equationsActa Math.196611527131020653710.1007/BF023922100142.38102
HarkerPTPangJ-SA damped-newton method for the linear complementarity problemLect. Appl. Math.19902626528410662870699.65054
KimTHXuHKStrong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroupsNonlinear Anal.20066411401152219681410.1016/j.na.2005.05.0591090.47059
CensorYChenWCombettesPLDavidiRHermanGTOn the effectiveness of projection methods for convex feasibility problems with linear inequality constraintsComput. Optim. Appl.20111244.90155
HieuDVAnhPKMuuLDModified hybrid projection methods for finding common solutions to variational inequality problemsComput. Optim. Appl.201606723685
AnhPKHieuDVParallel and sequential hybrid methods for a finite family of asymptotically quasi ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-nonexpansive mappingsJ. Appl. Math. Comput.201548241263334060510.1007/s12190-014-0801-61325.47128
CensorYGibaliAReichSThe subgradient extragradient method for solving variational inequalities in Hilbert spaceJ. Optim. Theory Appl.2011148318335278056610.1007/s10957-010-9757-31229.58018
AnhPKHieuDVParallel hybrid methods for variational inequalities, equilibrium problems and common fixed point problemsVietnam J. Math.20151347.47038
HieuDVMuuLDAnhPKParallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappingsNumer. Algorithms201673197217353953810.1007/s11075-015-0092-506627372
BauschkeHHBorweinJMOn projection algorithms for solving convex feasibility problemsSIAM Rev.199638367426140959110.1137/S00361445932517100865.47039
SolodovMVSvaiterBFForcing strong convergence of proximal point iterations in Hilbert spaceMath. Progr.200087189202173466510.1007/s1010799001130971.90062
CezaroADHaltmeierMLeitaoAScherzerOOn steepest-descent-Kaczmarz method for regularizing systems of nonlinear ill-posed equationsAppl. Math. Comput.200820259660724356941157.65032
AnhPKBuongNHieuDVParallel methods for regularizing systems of equations involving accretive operatorsAppl. Anal.20149321362157324038110.1080/00036811.2013.8727771297.47066
HaltmeierMKowarRLeitaoAScherzerOKaczmarz methods for regularizing nonlinear ill-posed equation. II. ApplicationsInverse Probl. Imaging.20071507523230897610.3934/ipi.2007.1.5071135.65026
MV Solodov (473_CR24) 2000; 87
P Hartman (473_CR15) 1966; 115
PK Anh (473_CR4) 2015
473_CR12
DV Hieu (473_CR17) 2016
473_CR28
M Burger (473_CR6) 2006; 44
Y Censor (473_CR9) 2011; 26
PT Harker (473_CR20) 1990; 26
W Takahashi (473_CR26) 2000
I Yamada (473_CR27) 2001
TH Kim (473_CR21) 2006; 64
M Haltmeier (473_CR13) 2007; 1
Y Censor (473_CR8) 2011
Y Censor (473_CR7) 2012; 20
PK Anh (473_CR2) 2014; 93
HH Bauschke (473_CR5) 1996; 38
PK Anh (473_CR3) 2015; 48
AD Cezaro (473_CR11) 2008; 202
GM Korpelevich (473_CR22) 1976; 12
DV Hieu (473_CR18) 2016
M Haltmeier (473_CR14) 2007; 1
Y Censor (473_CR10) 2011; 148
RT Rockafellar (473_CR23) 1970; 149
YaI Alber (473_CR1) 2006
DV Hieu (473_CR16) 2015; 52
DV Hieu (473_CR19) 2016; 73
(473_CR25) 1987
References_xml – reference: AnhPKHieuDVParallel hybrid methods for variational inequalities, equilibrium problems and common fixed point problemsVietnam J. Math.20151347.47038
– reference: KimTHXuHKStrong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroupsNonlinear Anal.20066411401152219681410.1016/j.na.2005.05.0591090.47059
– reference: HieuDVAnhPKMuuLDModified hybrid projection methods for finding common solutions to variational inequality problemsComput. Optim. Appl.201606723685
– reference: HaltmeierMKowarRLeitaoAScherzerOKaczmarz methods for regularizing nonlinear ill-posed equation. II. ApplicationsInverse Probl. Imaging.20071507523230897610.3934/ipi.2007.1.5071135.65026
– reference: HieuDVParallel hybrid methods for generalized equilibrium problems and asymptotically strictly pseudocontractive mappingsJ. Appl. Math. Comput.2016
– reference: CensorYChenWCombettesPLDavidiRHermanGTOn the effectiveness of projection methods for convex feasibility problems with linear inequality constraintsComput. Optim. Appl.20111244.90155
– reference: CensorYGibaliAReichSSabachSCommon solutions to variational inequalitiesSet Val. Var. Anal.201220229247291367710.1007/s11228-011-0192-x1296.47060
– reference: TakahashiWNonlinear Functional Analysis2000YokohamaYokohama Publishers0997.47002
– reference: CensorYGibaliAReichSStrong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert spaceOptim. Methods Softw.2011264–5827845283780010.1080/10556788.2010.5515361232.58008
– reference: HieuDVA parallel hybrid method for equilibrium problems, variational inequalities and nonexpansive mappings in Hilbert spaceJ. Korean Math. Soc.201552373388331837210.4134/JKMS.2015.52.2.3731317.65151
– reference: HarkerPTPangJ-SA damped-newton method for the linear complementarity problemLect. Appl. Math.19902626528410662870699.65054
– reference: RockafellarRTOn the maximality of sums of nonlinear monotone operatorsTrans. Am. Math. Soc.1970149758828227210.1090/S0002-9947-1970-0282272-50222.47017
– reference: SolodovMVSvaiterBFForcing strong convergence of proximal point iterations in Hilbert spaceMath. Progr.200087189202173466510.1007/s1010799001130971.90062
– reference: StarkHImage Recovery Theory and Applications1987OrlandoAcademic0627.94001
– reference: Yao, Y., Liou, Y.C.: Weak and strong convergence of Krasnoselski-Mann iteration for hierarchical fixed point problems. Inverse Probl. 24, 015015. doi:10.1088/0266-5611/24/1/015015
– reference: AnhPKHieuDVParallel and sequential hybrid methods for a finite family of asymptotically quasi ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-nonexpansive mappingsJ. Appl. Math. Comput.201548241263334060510.1007/s12190-014-0801-61325.47128
– reference: KorpelevichGMThe extragradient method for finding saddle points and other problemsEkonomikai Matematicheskie Metody1976127477564511210342.90044
– reference: YamadaIButnariuDCensorYReichSThe hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappingsInherently Parallel Algorithms in Feasibility and Optimization and Their Applications2001AmsterdamElsevier47350410.1016/S1570-579X(01)80028-8
– reference: CezaroADHaltmeierMLeitaoAScherzerOOn steepest-descent-Kaczmarz method for regularizing systems of nonlinear ill-posed equationsAppl. Math. Comput.200820259660724356941157.65032
– reference: CensorYGibaliAReichSThe subgradient extragradient method for solving variational inequalities in Hilbert spaceJ. Optim. Theory Appl.2011148318335278056610.1007/s10957-010-9757-31229.58018
– reference: AlberYaIRyazantsevaINonlinear Ill-Posed Problems of Monotone Type2006DordrechtSpinger1086.47003
– reference: Combettes, P.L.: The convex feasibility problem in image recovery. In: Hawkes, P. (Ed.), Advances in Imaging and Electron Physics, vol. 95. Academic, New York, pp. 155–270 (1996)
– reference: HieuDVMuuLDAnhPKParallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappingsNumer. Algorithms201673197217353953810.1007/s11075-015-0092-506627372
– reference: AnhPKBuongNHieuDVParallel methods for regularizing systems of equations involving accretive operatorsAppl. Anal.20149321362157324038110.1080/00036811.2013.8727771297.47066
– reference: HartmanPStampacchiaGOn some non-linear elliptic diferential-functional equationsActa Math.196611527131020653710.1007/BF023922100142.38102
– reference: BauschkeHHBorweinJMOn projection algorithms for solving convex feasibility problemsSIAM Rev.199638367426140959110.1137/S00361445932517100865.47039
– reference: HaltmeierMKowarRLeitaoAScherzerOKaczmarz methods for regularizing nonlinear ill-posed equations. I. Convergence analysis.Inverse Probl. Imaging.20071289298228227010.3934/ipi.2007.1.2891123.65051
– reference: BurgerMKaltenbacherBRegularizing Newton-Kaczmart methods for nonlinear ill-posed problemsSIAM J. Numer. Anal.200644153182221737710.1137/0406137791112.65049
– volume: 115
  start-page: 271
  year: 1966
  ident: 473_CR15
  publication-title: Acta Math.
  doi: 10.1007/BF02392210
– volume: 26
  start-page: 265
  year: 1990
  ident: 473_CR20
  publication-title: Lect. Appl. Math.
– volume-title: Image Recovery Theory and Applications
  year: 1987
  ident: 473_CR25
– volume-title: Nonlinear Ill-Posed Problems of Monotone Type
  year: 2006
  ident: 473_CR1
– volume: 20
  start-page: 229
  year: 2012
  ident: 473_CR7
  publication-title: Set Val. Var. Anal.
  doi: 10.1007/s11228-011-0192-x
– year: 2015
  ident: 473_CR4
  publication-title: Vietnam J. Math.
  doi: 10.1007/s10013-015-0129-z
– volume: 202
  start-page: 596
  year: 2008
  ident: 473_CR11
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2008.03.010
– volume: 149
  start-page: 75
  year: 1970
  ident: 473_CR23
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1970-0282272-5
– volume: 38
  start-page: 367
  year: 1996
  ident: 473_CR5
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144593251710
– volume: 12
  start-page: 747
  year: 1976
  ident: 473_CR22
  publication-title: Ekonomikai Matematicheskie Metody
– ident: 473_CR28
  doi: 10.1088/0266-5611/24/1/015015
– volume-title: Nonlinear Functional Analysis
  year: 2000
  ident: 473_CR26
– start-page: 473
  volume-title: Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications
  year: 2001
  ident: 473_CR27
  doi: 10.1016/S1570-579X(01)80028-8
– volume: 26
  start-page: 827
  issue: 4–5
  year: 2011
  ident: 473_CR9
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2010.551536
– volume: 73
  start-page: 197
  year: 2016
  ident: 473_CR19
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-015-0092-5
– volume: 1
  start-page: 289
  year: 2007
  ident: 473_CR13
  publication-title: Inverse Probl. Imaging.
  doi: 10.3934/ipi.2007.1.289
– volume: 93
  start-page: 2136
  year: 2014
  ident: 473_CR2
  publication-title: Appl. Anal.
  doi: 10.1080/00036811.2013.872777
– volume: 87
  start-page: 189
  year: 2000
  ident: 473_CR24
  publication-title: Math. Progr.
  doi: 10.1007/s101079900113
– year: 2016
  ident: 473_CR17
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-016-9857-6
– volume: 52
  start-page: 373
  year: 2015
  ident: 473_CR16
  publication-title: J. Korean Math. Soc.
  doi: 10.4134/JKMS.2015.52.2.373
– year: 2011
  ident: 473_CR8
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-011-9401-7
– volume: 148
  start-page: 318
  year: 2011
  ident: 473_CR10
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-010-9757-3
– ident: 473_CR12
  doi: 10.1016/S1076-5670(08)70157-5
– volume: 44
  start-page: 153
  year: 2006
  ident: 473_CR6
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/040613779
– volume: 1
  start-page: 507
  year: 2007
  ident: 473_CR14
  publication-title: Inverse Probl. Imaging.
  doi: 10.3934/ipi.2007.1.507
– volume: 64
  start-page: 1140
  year: 2006
  ident: 473_CR21
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2005.05.059
– volume: 48
  start-page: 241
  year: 2015
  ident: 473_CR3
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-014-0801-6
– year: 2016
  ident: 473_CR18
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-015-0980-9
SSID ssj0000461653
Score 2.133698
Snippet In this paper, we propose two hybrid subgradient extragradient methods for solving common solutions of variational inequalities problems (CSVIP). The first is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 677
SubjectTerms Algorithms
Applications of Mathematics
History of Mathematical Sciences
Inequalities
Mathematics
Mathematics and Statistics
Mathematics Education
Numerical methods
Title Parallel and cyclic hybrid subgradient extragradient methods for variational inequalities
URI https://link.springer.com/article/10.1007/s13370-016-0473-5
https://www.proquest.com/docview/1929827854
Volume 28
WOSCitedRecordID wos000452891000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 2190-7668
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000461653
  issn: 1012-9405
  databaseCode: RSV
  dateStart: 20110401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPejBt1itkoMnZaHdvI8iFi-W4ot6WtIk1UJZZXdb6L93sq-qqKDHZbNhSSYz32QeH0KnVgCmkJwFTlEaUDF0gTIMDl4olCc1BqHSOdmE6PXkYKD6ZR13WmW7VyHJXFMvit0I8SQpHfCAqSABW0YrYO2k52u4vXusL1Z8B3HOisT6ThgoQCRVNPO7WT7bowXI_BIXzc1Nd_NfP7qFNkp0iS8KcdhGSy7eQes3dWvWdBc99XXi-VMmWMcWm7mZjA1-mfvCLZxOh89JngOWYVDaia6fCqLpFAPExTNwr8srRAwYtSjLBId7Dz10r-4vr4OSXyEwpMOzYKSdkloyLY3msFfKGVB_WluuTUisAuSkhGWuLfiIGU5t24A2opSEgmsrQ7KPGvFr7A4QVsyFfGgBXkrw0IZCOXB1mNF6ZENpCGmidrXKkSmbj3sOjEm0aJvsVy3yCWd-1SLWRGf1J29F543fBreqrYvKQ5hGAF4VyJxktInOq6368PqnyQ7_NPoIrYXe1Od5Zy3UyJKpO0arZpaN0-Qkl813zj7cww
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB60CuqDt1jPPPikLLSb-1FEUaxFvNCnJU1SFUqV3Sr4753s0aqooI_LZsOSTGa-yRwfwI6TiCmU4JHXjEVMdnykLceDF0sdSI1RqExONiHbbXV7q8_LOu6synavQpK5ph4Vu1EaSFKa6AEzSSM-DhMMDVZomH9xeTO8WAkdxAUvEuubcaQRkVTRzO9m-WyPRiDzS1w0NzdHc__60XmYLdEl2S_EYQHGfH8RZs6GrVmzJbg7N2ngT-kR03fEvtneoyUPb6Fwi2Qvnfs0zwEbEFTaqRk-FUTTGUGIS17RvS6vEAli1KIsEx3uZbg-Orw6OI5KfoXI0qYYRF3jtTKKG2WNwL3S3qL6M8YJY2PqNCInLR33DSm63ArmGha1EWM0lsI4FdMVqPWf-n4ViOY-Fh2H8FKhh9aR2qOrw60xXRcrS2kdGtUqJ7ZsPh44MHrJqG1yWLUkJJyFVUt4HXaHnzwXnTd-G7xRbV1SHsIsQfCqUeYUZ3XYq7bqw-ufJlv70-htmDq-OmslrZP26TpMx8Hs5zloG1AbpC9-Eybt6-AxS7dyOX0HL-Tfpw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxNBEB80FdGH1qrFtLHuQ5-UI8nt96PYBqUaAq0Sn47N7sYGwhnuLoH89529r2ixgvh43N5y7MzO_mbn4wdw5iRiCiV45DVjEZMzH2nLcePFUgdSY1QqU5JNyPFYTad6UvOc5k22exOSrGoaQpemtOiv3Ly_K3yjNBCmDNEbZpJG_CHssZBHH9z1q2_tJUvoJi54lWQ_jCON6KSJbP5plt_Pph3gvBMjLY-e0cF___Qz2K9RJ3lfqckhPPDpc3j6pW3Zmr-A7xOTBV6VJTGpI3ZrlwtLbrahoIvk69mPrMwNKwga88y0TxUBdU4Q-pINut311SJB7FqVa6Ij_hK-ji6uP3yMat6FyNKhKKK58VoZxY2yRqAMtbdoFo1xwtiYOo2ISkvH_UCKObeCuYFFK8UYjaUwTsX0CDrpz9S_AqK5j8XMIexU6LnNpPboAnFrzNzFylLahUGz4omtm5IHboxlsmunHFYtCYloYdUS3oW37SerqiPH3wb3GjEm9ebMEwS1GnVRcdaFd43Yfnl932TH_zT6DTyenI-Sz5_GlyfwJA5ooExN60GnyNb-NTyym2KRZ6elyt4Cfs_oiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+and+cyclic+hybrid+subgradient+extragradient+methods+for+variational+inequalities&rft.jtitle=Afrika+mathematica&rft.au=Hieu%2C+Dang+Van&rft.date=2017-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1012-9405&rft.eissn=2190-7668&rft.volume=28&rft.issue=5-6&rft.spage=677&rft.epage=692&rft_id=info:doi/10.1007%2Fs13370-016-0473-5&rft.externalDocID=10_1007_s13370_016_0473_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-9405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-9405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-9405&client=summon