Shifted fractional Jacobi spectral algorithm for solving distributed order time-fractional reaction–diffusion equations
This paper proposes a new method for solving distributed order time-fractional reaction–diffusion equations (DO-TFRDEs). Extended versions of the shifted Jacobi–Gauss–Lobatto and shifted fractional order Jacobi–Gauss–Radau collocation methods are developed for reducing the DO-TFRDEs to systems of al...
Uloženo v:
| Vydáno v: | Computational & applied mathematics Ročník 38; číslo 2; s. 1 - 21 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.06.2019
Springer Nature B.V |
| Témata: | |
| ISSN: | 2238-3603, 1807-0302 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper proposes a new method for solving distributed order time-fractional reaction–diffusion equations (DO-TFRDEs). Extended versions of the shifted Jacobi–Gauss–Lobatto and shifted fractional order Jacobi–Gauss–Radau collocation methods are developed for reducing the DO-TFRDEs to systems of algebraic equations and computing their approximate solutions. The applicability and accuracy of the method is illustrated through numerical examples. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2238-3603 1807-0302 |
| DOI: | 10.1007/s40314-019-0845-1 |