Solving multiobjective random interval programming problems by a capable neural network framework

In this paper, the stability of a class of nonlinear control systems is analyzed. We first construct an optimal control problem by inserting a suitable performance index, which this problem is referred to as an infinite horizon problem. By a suitable change of variable, the infinite horizon problem...

Full description

Saved in:
Bibliographic Details
Published in:Applied intelligence (Dordrecht, Netherlands) Vol. 49; no. 4; pp. 1566 - 1579
Main Authors: Arjmandzadeh, Ziba, Nazemi, Alireza, Safi, Mohammadreza
Format: Journal Article
Language:English
Published: New York Springer US 01.04.2019
Springer Nature B.V
Subjects:
ISSN:0924-669X, 1573-7497
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, the stability of a class of nonlinear control systems is analyzed. We first construct an optimal control problem by inserting a suitable performance index, which this problem is referred to as an infinite horizon problem. By a suitable change of variable, the infinite horizon problem is reduced to a finite horizon problem. We then present a feedback controller designing approach for the obtained finite horizon control problem. This approach involves a neural network scheme for solving the nonlinear Hamilton Jacobi Bellman (HJB) equation. By using the neural network method, an analytic approximate solution for value function and suboptimal feedback control law is achieved. A learning algorithm based on a dynamic optimization scheme with stability and convergence properties is also provided. Some illustrative examples are employed to demonstrate the accuracy and efficiency of the proposed plan. As a real life application in engineering, the stabilization of a micro electro mechanical system is studied.
AbstractList In this paper, the stability of a class of nonlinear control systems is analyzed. We first construct an optimal control problem by inserting a suitable performance index, which this problem is referred to as an infinite horizon problem. By a suitable change of variable, the infinite horizon problem is reduced to a finite horizon problem. We then present a feedback controller designing approach for the obtained finite horizon control problem. This approach involves a neural network scheme for solving the nonlinear Hamilton Jacobi Bellman (HJB) equation. By using the neural network method, an analytic approximate solution for value function and suboptimal feedback control law is achieved. A learning algorithm based on a dynamic optimization scheme with stability and convergence properties is also provided. Some illustrative examples are employed to demonstrate the accuracy and efficiency of the proposed plan. As a real life application in engineering, the stabilization of a micro electro mechanical system is studied.
Author Arjmandzadeh, Ziba
Nazemi, Alireza
Safi, Mohammadreza
Author_xml – sequence: 1
  givenname: Ziba
  surname: Arjmandzadeh
  fullname: Arjmandzadeh, Ziba
  organization: Department of Mathematics, Semnan University
– sequence: 2
  givenname: Alireza
  surname: Nazemi
  fullname: Nazemi, Alireza
  email: nazemi20042003@gmail.com
  organization: Faculty of Mathematical Sciences, Shahrood University of Technology
– sequence: 3
  givenname: Mohammadreza
  surname: Safi
  fullname: Safi, Mohammadreza
  organization: Department of Mathematics, Semnan University
BookMark eNp9kF1LBCEUhiU2aLf6Ad0JXU_pOOrMZSx9wUIXFXQn6ugy24xu6mzsv89hgyCoK4-H5_Ec3wWYOe8MABcYXWGE-HXEqKqbAuG6wKSqCnYE5phyUvCq4TMwR02Zm6x5OwGLGDcIIUIQngP57Ptd59ZwGPvUebUxOnU7A4N0rR9g55IJO9nDbfDrIIdhQnOtejNEqPZQQi23Ml-hM2PIoDPp04d3aDNtpuoMHFvZR3P-fZ6C17vbl-VDsXq6f1zerApNMEuFZURSZggvKWbalFQrqnWpLNa0bltpJeGKt7WqGmWt1NQa1hJqZaUwro0mp-Dy8G5e72M0MYmNH4PLI0WJCa1xQznNFD9QOvgYg7FCd0nmn7sUZNcLjMSUpzjkKXKeYspTsGziX-Y2dIMM-3-d8uDEzLq1CT87_S19ARSCjUo
CitedBy_id crossref_primary_10_1007_s11571_023_09998_0
crossref_primary_10_1007_s10479_021_03998_1
crossref_primary_10_1007_s12597_023_00699_0
crossref_primary_10_1080_0952813X_2022_2153271
crossref_primary_10_1080_0954898X_2022_2104463
crossref_primary_10_1007_s10489_020_02174_5
crossref_primary_10_1002_nme_7670
crossref_primary_10_1002_acs_3981
crossref_primary_10_1007_s00500_025_10550_x
Cites_doi 10.1016/j.neucom.2004.11.009
10.1007/978-1-4757-2495-0
10.1214/aoms/1177698328
10.1016/j.amc.2007.12.029
10.1016/j.ins.2006.11.007
10.1007/s10107-002-0350-x
10.1016/j.neucom.2006.10.038
10.1016/j.neunet.2016.12.007
10.1287/mnsc.13.9.672
10.1007/s10898-012-9897-0
10.1023/A:1009917818868
10.1515/9783110853698
10.1016/0165-0114(87)90028-5
10.1142/S012906570600069X
10.1093/oso/9780198534778.001.0001
10.1109/TCS.1986.1085953
10.1109/72.548188
10.1016/j.apm.2014.09.018
10.1080/23302674.2016.1224951
10.1016/j.chaos.2006.05.037
10.1007/s10589-013-9605-0
10.1007/s11155-005-3616-1
10.1016/j.neunet.2004.05.006
10.1109/TNN.2004.824252
10.1145/564585.564604
10.1016/j.fss.2005.03.001
10.1007/s12597-012-0078-1
10.1016/j.cnsns.2011.08.035
10.1007/978-1-4419-8402-9
10.1016/j.neucom.2008.05.013
10.1016/j.cam.2011.08.012
10.3906/mat-1509-65
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Applied Intelligence is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Applied Intelligence is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-018-1344-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 1579
ExternalDocumentID 10_1007_s10489_018_1344_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
203
23M
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
77I
AAAVM
AAOBN
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADKFA
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PQGLB
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCJ
SCLPG
T16
TEORI
ZY4
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c316t-f63a56e372516ce25cb5cc2bf1c58ddafa37b7d8b49bffac5fe6d35fa4b118ec3
IEDL.DBID RSV
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000461988200020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Wed Nov 05 14:45:34 EST 2025
Sat Nov 29 05:33:18 EST 2025
Tue Nov 18 22:43:19 EST 2025
Fri Feb 21 02:26:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Random interval parameters
Neural network models
Satisficing solution
Stability
Fractile model
Convergence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-f63a56e372516ce25cb5cc2bf1c58ddafa37b7d8b49bffac5fe6d35fa4b118ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2135819575
PQPubID 326365
PageCount 14
ParticipantIDs proquest_journals_2135819575
crossref_citationtrail_10_1007_s10489_018_1344_6
crossref_primary_10_1007_s10489_018_1344_6
springer_journals_10_1007_s10489_018_1344_6
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Arjmandzadeh Z, Safi MR A goal programming approach for solving random interval linear programming problem., Turkish Journal of Mathematics. https://doi.org/10.3906/mat-1509-65
XiaYFengGAn improved network for convex quadratic optimization with application to real-time beamformingNeurocomputing20056435937410.1016/j.neucom.2004.11.009
PadhyeNPiyushBKalyanmoyDImproving differential evolution through a unified approachJ Glob Optim2013554771799302866510.1007/s10898-012-9897-01268.90158
DempsterAPUpper and lower probabilities generated by a random closed intervalAnn Math Statist19683995796623842910.1214/aoms/11776983280251.62010
YangYCaoJA feedback neural network for solving convex constraint optimization problemsAppl Math Comput200820134035024326081152.90566
QuarteroniASaccoRSaleriFNumerical mathematics, texts in applied mathematics20072nd edn.BerlinSpringer37371136.65001
XiaYFengGWangJA recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equationNeural Netw2004171003101510.1016/j.neunet.2004.05.0061068.68130
FukushimaMEquivalent differentiable optimization problems and descent methods for asymmetric variational inequality problemsMath Programm1992531–39211011517670756.90081
LuHWCaoMFLiJHuangGHHeLAn inexact programming approach for urban electric power systems management under random-interval-parameter uncertaintyAppl Math Model20153917571768332557510.1016/j.apm.2014.09.018
KearfottRBRigorous global search: continuous problems1996DordrechtKluwer Academic Publishers10.1007/978-1-4757-2495-00876.90082
FersonSGinzburgLKreinovichVLongpréLAvilesMComputing variance for interval data is NP-hardACM SIGACT News200233210811810.1145/564585.564604
MillerRKMichelANOrdinary differential equations1982New YorkAcademic Press0552.34001
GeoffrionAMStochastic programming with aspiration or fractile criteriaManag Sci19671367267924248710.1287/mnsc.13.9.6720171.17602
SakawaMNishizakiIKatagiriHFuzzy stochastic multi-objective programming2011BerlinSpringer10.1007/978-1-4419-8402-91214.90004
XiaYA new neural network for solving linear and quadratic programming problemsIEEE Trans Neural Netw199671544154710.1109/72.548188
XueXBianWA project neural network for solving degenerate quadratic minimax problem with linear constraintsNeurocomputing2009721826183810.1016/j.neucom.2008.05.013
TankDWHopfieldJJSimple neural optimization networks: an A/D converter, signal decision circuit, and a linear programming circuitIEEE Tran Circuits Syst19863353354110.1109/TCS.1986.1085953
FersonSGinzburgLKreinovichVLongpréLAvilesMExact bounds on finite populations of interval dataReliab Comput2005113207233215153010.1007/s11155-005-3616-11076.65013
MirandaECousoIGilPRandom intervals as a model for imprecise informationFuzzy Set Syst2005154386412215698710.1016/j.fss.2005.03.0011079.60012
ArjmandzadehZSafiMRNazemiAA new neural network model for solving random interval linear programming problemsNeural Netw201789111810.1016/j.neunet.2016.12.007
BensonHYVanderbeiRJSolving problems with semidefinite and related constraints using interior-point methods for nonlinear programmingMath Programming Ser B2003952279302197648210.1007/s10107-002-0350-x1030.90138
HansenESharpness in interval computationsReliab Comput1997311729161439910.1023/A:10099178188680881.65032
Faraut J, Konyi A (1994) Analysis on symmetric cones. In: Oxford Mathematical Monographs. Oxford University Press, New York
Kall P, Mayer J (2004) Stochastic linear programming, Springer, Berlin
ArjmandzadehZSafiMRA generalisation of variance model for solving random interval linear programming problemsInt J Syst Sci: Oper Logist2018511624
XueXBianWA project neural network for solving degenerate convex quadratic programNeurocomputing2007702449245910.1016/j.neucom.2006.10.038
NazemiARA dynamical model for solving degenerate quadratic minimax problems with constraintsJ Comput Appl Math201123612821295285405010.1016/j.cam.2011.08.0121229.90262
YangYCaoJA delayed neural network method for solving convex optimization problemsInt J Neural Syst20061629530310.1142/S012906570600069X
AmannHOrdinary differential equations: An introduction to nonlinear analysis1990BerlinWalter de Gruyter10.1515/97831108536980708.34002
KreinovichVNguyenHTWuBOn-line algorithms for computing mean and variance of interval data, and their use in intelligent systemsInform Sci200717732283238234082510.1016/j.ins.2006.11.00705174376
BarikSKBiswalMPChakravartyDTwo-stage stochastic programming problems involving interval discrete random variablesOPSEARCH201249280298296799010.1007/s12597-012-0078-11353.90094
DuboisDPradeHThe mean value of a fuzzy numberFuzzy Set Syst198724327930091905710.1016/0165-0114(87)90028-50634.94026
KalyanmoyDPadhyeNEnhancing performance of particle swarm optimization through an algorithmic link with genetic algorithmsComput Optim Appl2014573761794317959710.1007/s10589-013-9605-01304.90219
XiaYWangJA recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraintsIEEE Trans Neural Netw Circuits Syst20045144745820911481374.90309
Grant M, Boyd S, Ye Y (2008) CVX: Matlab software for disciplined convex programming
BazaraaMSSheraliHDShettyCMNonlinear programming-theory and algorithms19932nd edn.New YorkWiley0774.90075
KalyanmoyDMulti-objective optimization. Search methodologies2014BostonSpringer403449
Sabouri J, Effati KS, Pakdaman M (2016) A neural network approach for solving a class of fractional optimal control problems., Neural Processing Letter. to appear
NazemiARA dynamic system model for solving convex nonlinear optimization problemsCommun Nonlinear Sci Numer Simul20121716961705285546110.1016/j.cnsns.2011.08.0351250.90067
DingKHuangN-JA new class of interval projection neural networks for solving interval quadratic programIEEE Chaos Solitons and Fractals20083571872510.1016/j.chaos.2006.05.0371137.90020
XiaYWangJA general projection neural network for solving monotone variational inequality and related optimization problemsIEEE Trans Neural Netw20041531832810.1109/TNN.2004.824252
Y Yang (1344_CR28) 2008; 201
AR Nazemi (1344_CR19) 2011; 236
HY Benson (1344_CR32) 2003; 95
1344_CR12
M Fukushima (1344_CR36) 1992; 53
1344_CR31
SK Barik (1344_CR14) 2012; 49
A Quarteroni (1344_CR35) 2007
V Kreinovich (1344_CR7) 2007; 177
MS Bazaraa (1344_CR33) 1993
D Dubois (1344_CR4) 1987; 24
RK Miller (1344_CR34) 1982
1344_CR17
Y Xia (1344_CR21) 2005; 64
Y Xia (1344_CR24) 2004; 51
1344_CR38
S Ferson (1344_CR8) 2002; 33
Z Arjmandzadeh (1344_CR11) 2017; 89
HW Lu (1344_CR5) 2015; 39
E Miranda (1344_CR29) 2005; 154
D Kalyanmoy (1344_CR39) 2014
Y Xia (1344_CR22) 1996; 7
AM Geoffrion (1344_CR30) 1967; 13
M Sakawa (1344_CR1) 2011
DW Tank (1344_CR15) 1986; 33
X Xue (1344_CR25) 2007; 70
Y Xia (1344_CR20) 2004; 17
X Xue (1344_CR26) 2009; 72
Y Yang (1344_CR27) 2006; 16
Z Arjmandzadeh (1344_CR13) 2018; 5
K Ding (1344_CR16) 2008; 35
N Padhye (1344_CR41) 2013; 55
AP Dempster (1344_CR3) 1968; 39
RB Kearfott (1344_CR10) 1996
AR Nazemi (1344_CR18) 2012; 17
S Ferson (1344_CR6) 2005; 11
1344_CR2
Y Xia (1344_CR23) 2004; 15
E Hansen (1344_CR9) 1997; 3
H Amann (1344_CR37) 1990
D Kalyanmoy (1344_CR40) 2014; 57
References_xml – reference: XueXBianWA project neural network for solving degenerate convex quadratic programNeurocomputing2007702449245910.1016/j.neucom.2006.10.038
– reference: XiaYWangJA recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraintsIEEE Trans Neural Netw Circuits Syst20045144745820911481374.90309
– reference: MirandaECousoIGilPRandom intervals as a model for imprecise informationFuzzy Set Syst2005154386412215698710.1016/j.fss.2005.03.0011079.60012
– reference: GeoffrionAMStochastic programming with aspiration or fractile criteriaManag Sci19671367267924248710.1287/mnsc.13.9.6720171.17602
– reference: Faraut J, Konyi A (1994) Analysis on symmetric cones. In: Oxford Mathematical Monographs. Oxford University Press, New York
– reference: NazemiARA dynamic system model for solving convex nonlinear optimization problemsCommun Nonlinear Sci Numer Simul20121716961705285546110.1016/j.cnsns.2011.08.0351250.90067
– reference: XiaYFengGAn improved network for convex quadratic optimization with application to real-time beamformingNeurocomputing20056435937410.1016/j.neucom.2004.11.009
– reference: SakawaMNishizakiIKatagiriHFuzzy stochastic multi-objective programming2011BerlinSpringer10.1007/978-1-4419-8402-91214.90004
– reference: DuboisDPradeHThe mean value of a fuzzy numberFuzzy Set Syst198724327930091905710.1016/0165-0114(87)90028-50634.94026
– reference: MillerRKMichelANOrdinary differential equations1982New YorkAcademic Press0552.34001
– reference: ArjmandzadehZSafiMRNazemiAA new neural network model for solving random interval linear programming problemsNeural Netw201789111810.1016/j.neunet.2016.12.007
– reference: Grant M, Boyd S, Ye Y (2008) CVX: Matlab software for disciplined convex programming
– reference: BarikSKBiswalMPChakravartyDTwo-stage stochastic programming problems involving interval discrete random variablesOPSEARCH201249280298296799010.1007/s12597-012-0078-11353.90094
– reference: KearfottRBRigorous global search: continuous problems1996DordrechtKluwer Academic Publishers10.1007/978-1-4757-2495-00876.90082
– reference: DingKHuangN-JA new class of interval projection neural networks for solving interval quadratic programIEEE Chaos Solitons and Fractals20083571872510.1016/j.chaos.2006.05.0371137.90020
– reference: NazemiARA dynamical model for solving degenerate quadratic minimax problems with constraintsJ Comput Appl Math201123612821295285405010.1016/j.cam.2011.08.0121229.90262
– reference: XiaYA new neural network for solving linear and quadratic programming problemsIEEE Trans Neural Netw199671544154710.1109/72.548188
– reference: BensonHYVanderbeiRJSolving problems with semidefinite and related constraints using interior-point methods for nonlinear programmingMath Programming Ser B2003952279302197648210.1007/s10107-002-0350-x1030.90138
– reference: XueXBianWA project neural network for solving degenerate quadratic minimax problem with linear constraintsNeurocomputing2009721826183810.1016/j.neucom.2008.05.013
– reference: PadhyeNPiyushBKalyanmoyDImproving differential evolution through a unified approachJ Glob Optim2013554771799302866510.1007/s10898-012-9897-01268.90158
– reference: KalyanmoyDPadhyeNEnhancing performance of particle swarm optimization through an algorithmic link with genetic algorithmsComput Optim Appl2014573761794317959710.1007/s10589-013-9605-01304.90219
– reference: TankDWHopfieldJJSimple neural optimization networks: an A/D converter, signal decision circuit, and a linear programming circuitIEEE Tran Circuits Syst19863353354110.1109/TCS.1986.1085953
– reference: XiaYWangJA general projection neural network for solving monotone variational inequality and related optimization problemsIEEE Trans Neural Netw20041531832810.1109/TNN.2004.824252
– reference: FersonSGinzburgLKreinovichVLongpréLAvilesMExact bounds on finite populations of interval dataReliab Comput2005113207233215153010.1007/s11155-005-3616-11076.65013
– reference: Kall P, Mayer J (2004) Stochastic linear programming, Springer, Berlin
– reference: YangYCaoJA feedback neural network for solving convex constraint optimization problemsAppl Math Comput200820134035024326081152.90566
– reference: FukushimaMEquivalent differentiable optimization problems and descent methods for asymmetric variational inequality problemsMath Programm1992531–39211011517670756.90081
– reference: XiaYFengGWangJA recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equationNeural Netw2004171003101510.1016/j.neunet.2004.05.0061068.68130
– reference: KalyanmoyDMulti-objective optimization. Search methodologies2014BostonSpringer403449
– reference: FersonSGinzburgLKreinovichVLongpréLAvilesMComputing variance for interval data is NP-hardACM SIGACT News200233210811810.1145/564585.564604
– reference: AmannHOrdinary differential equations: An introduction to nonlinear analysis1990BerlinWalter de Gruyter10.1515/97831108536980708.34002
– reference: Arjmandzadeh Z, Safi MR A goal programming approach for solving random interval linear programming problem., Turkish Journal of Mathematics. https://doi.org/10.3906/mat-1509-65
– reference: Sabouri J, Effati KS, Pakdaman M (2016) A neural network approach for solving a class of fractional optimal control problems., Neural Processing Letter. to appear
– reference: HansenESharpness in interval computationsReliab Comput1997311729161439910.1023/A:10099178188680881.65032
– reference: YangYCaoJA delayed neural network method for solving convex optimization problemsInt J Neural Syst20061629530310.1142/S012906570600069X
– reference: KreinovichVNguyenHTWuBOn-line algorithms for computing mean and variance of interval data, and their use in intelligent systemsInform Sci200717732283238234082510.1016/j.ins.2006.11.00705174376
– reference: LuHWCaoMFLiJHuangGHHeLAn inexact programming approach for urban electric power systems management under random-interval-parameter uncertaintyAppl Math Model20153917571768332557510.1016/j.apm.2014.09.018
– reference: BazaraaMSSheraliHDShettyCMNonlinear programming-theory and algorithms19932nd edn.New YorkWiley0774.90075
– reference: QuarteroniASaccoRSaleriFNumerical mathematics, texts in applied mathematics20072nd edn.BerlinSpringer37371136.65001
– reference: DempsterAPUpper and lower probabilities generated by a random closed intervalAnn Math Statist19683995796623842910.1214/aoms/11776983280251.62010
– reference: ArjmandzadehZSafiMRA generalisation of variance model for solving random interval linear programming problemsInt J Syst Sci: Oper Logist2018511624
– volume-title: Ordinary differential equations
  year: 1982
  ident: 1344_CR34
– volume: 64
  start-page: 359
  year: 2005
  ident: 1344_CR21
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2004.11.009
– volume-title: Rigorous global search: continuous problems
  year: 1996
  ident: 1344_CR10
  doi: 10.1007/978-1-4757-2495-0
– volume: 39
  start-page: 957
  year: 1968
  ident: 1344_CR3
  publication-title: Ann Math Statist
  doi: 10.1214/aoms/1177698328
– volume: 201
  start-page: 340
  year: 2008
  ident: 1344_CR28
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2007.12.029
– volume: 177
  start-page: 3228
  year: 2007
  ident: 1344_CR7
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2006.11.007
– volume: 95
  start-page: 279
  issue: 2
  year: 2003
  ident: 1344_CR32
  publication-title: Math Programming Ser B
  doi: 10.1007/s10107-002-0350-x
– ident: 1344_CR38
– volume: 51
  start-page: 447
  year: 2004
  ident: 1344_CR24
  publication-title: IEEE Trans Neural Netw Circuits Syst
– volume: 70
  start-page: 2449
  year: 2007
  ident: 1344_CR25
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.10.038
– volume: 89
  start-page: 11
  year: 2017
  ident: 1344_CR11
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2016.12.007
– volume: 13
  start-page: 672
  year: 1967
  ident: 1344_CR30
  publication-title: Manag Sci
  doi: 10.1287/mnsc.13.9.672
– ident: 1344_CR2
– ident: 1344_CR17
– start-page: 37
  volume-title: Numerical mathematics, texts in applied mathematics
  year: 2007
  ident: 1344_CR35
– volume: 55
  start-page: 771
  issue: 4
  year: 2013
  ident: 1344_CR41
  publication-title: J Glob Optim
  doi: 10.1007/s10898-012-9897-0
– volume: 3
  start-page: 17
  issue: 1
  year: 1997
  ident: 1344_CR9
  publication-title: Reliab Comput
  doi: 10.1023/A:1009917818868
– volume-title: Ordinary differential equations: An introduction to nonlinear analysis
  year: 1990
  ident: 1344_CR37
  doi: 10.1515/9783110853698
– volume: 24
  start-page: 279
  issue: 3
  year: 1987
  ident: 1344_CR4
  publication-title: Fuzzy Set Syst
  doi: 10.1016/0165-0114(87)90028-5
– volume: 16
  start-page: 295
  year: 2006
  ident: 1344_CR27
  publication-title: Int J Neural Syst
  doi: 10.1142/S012906570600069X
– ident: 1344_CR31
  doi: 10.1093/oso/9780198534778.001.0001
– volume: 33
  start-page: 533
  year: 1986
  ident: 1344_CR15
  publication-title: IEEE Tran Circuits Syst
  doi: 10.1109/TCS.1986.1085953
– volume: 7
  start-page: 1544
  year: 1996
  ident: 1344_CR22
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.548188
– volume: 39
  start-page: 1757
  year: 2015
  ident: 1344_CR5
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2014.09.018
– volume: 5
  start-page: 16
  issue: 1
  year: 2018
  ident: 1344_CR13
  publication-title: Int J Syst Sci: Oper Logist
  doi: 10.1080/23302674.2016.1224951
– volume: 35
  start-page: 718
  year: 2008
  ident: 1344_CR16
  publication-title: IEEE Chaos Solitons and Fractals
  doi: 10.1016/j.chaos.2006.05.037
– volume: 57
  start-page: 761
  issue: 3
  year: 2014
  ident: 1344_CR40
  publication-title: Comput Optim Appl
  doi: 10.1007/s10589-013-9605-0
– volume: 11
  start-page: 207
  issue: 3
  year: 2005
  ident: 1344_CR6
  publication-title: Reliab Comput
  doi: 10.1007/s11155-005-3616-1
– volume: 17
  start-page: 1003
  year: 2004
  ident: 1344_CR20
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2004.05.006
– volume: 15
  start-page: 318
  year: 2004
  ident: 1344_CR23
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2004.824252
– volume: 33
  start-page: 108
  issue: 2
  year: 2002
  ident: 1344_CR8
  publication-title: ACM SIGACT News
  doi: 10.1145/564585.564604
– volume: 154
  start-page: 386
  year: 2005
  ident: 1344_CR29
  publication-title: Fuzzy Set Syst
  doi: 10.1016/j.fss.2005.03.001
– volume-title: Nonlinear programming-theory and algorithms
  year: 1993
  ident: 1344_CR33
– start-page: 403
  volume-title: Multi-objective optimization. Search methodologies
  year: 2014
  ident: 1344_CR39
– volume: 49
  start-page: 280
  year: 2012
  ident: 1344_CR14
  publication-title: OPSEARCH
  doi: 10.1007/s12597-012-0078-1
– volume: 17
  start-page: 1696
  year: 2012
  ident: 1344_CR18
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2011.08.035
– volume-title: Fuzzy stochastic multi-objective programming
  year: 2011
  ident: 1344_CR1
  doi: 10.1007/978-1-4419-8402-9
– volume: 53
  start-page: 92
  issue: 1–3
  year: 1992
  ident: 1344_CR36
  publication-title: Math Programm
– volume: 72
  start-page: 1826
  year: 2009
  ident: 1344_CR26
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.05.013
– volume: 236
  start-page: 1282
  year: 2011
  ident: 1344_CR19
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2011.08.012
– ident: 1344_CR12
  doi: 10.3906/mat-1509-65
SSID ssj0003301
Score 2.260942
Snippet In this paper, the stability of a class of nonlinear control systems is analyzed. We first construct an optimal control problem by inserting a suitable...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1566
SubjectTerms Artificial Intelligence
Computer Science
Control stability
Control systems design
Controllers
Dynamic stability
Feedback control
Machine learning
Machines
Manufacturing
Mechanical Engineering
Multiple objective analysis
Neural networks
Nonlinear analysis
Nonlinear control
Nonlinear programming
Nonlinear systems
Optimal control
Performance indices
Processes
Stability analysis
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGA86PXhxPnE6JQdPSnBt07Q5iYjiQYYwld1KHg1MtnZuU_C_90uarii4i8eSB6Vf8j1__X4InYc0FyKinLDchIQaFhGZ0pCA86t63HBmXEL_9THp99PhkD_5hNvcwyprnegUtS6VzZFfhYHt1MXBu7ievhPLGmWrq55CYx1t2C4JgYPuDZaaGGJ1x5gHMQZhjA_rqmb16xy1YKEAYqiIwvBPu9Q4m7_qo87s3Lf_-8I7aNs7nPimOiG7aC0v9lC7JnPA_m7vIzEoxza5gB3EsJRvlSbEYMt0OcEjh42EjTyga2KnejaaOZZfWGAFdhcesW2RCROLCmCOTQ3_OkAv93fPtw_E8y8QFQVsQUBwImZ5lIAPZInDYiVjpUJpAhWnWgsjokQmOpWUS2OExa0xHcVGUAlhS66iQ9QqyiI_QtjY8qaGaDtUIY05FTTWVCcKVonUpGkH9eqvnynfnNxyZIyzpq2yFVgGAsuswDLWQRfLJdOqM8eqyd1aSJm_pPOskVAHXdZibob_3Ox49WYnaAu8Kl7Be7qotZh95KdoU30uRvPZmTuh39lw7nw
  priority: 102
  providerName: ProQuest
Title Solving multiobjective random interval programming problems by a capable neural network framework
URI https://link.springer.com/article/10.1007/s10489-018-1344-6
https://www.proquest.com/docview/2135819575
Volume 49
WOSCitedRecordID wos000461988200020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60evBifWJ9lBw8KYF2N5vdHLVYBLUU66N6WZLsBiptV7pV8N872UerooJeAmEnYZlJMjOZLzMAhw6LpXSZoDw2DmWGu1QFzKFo_OqGMIKb7EL_7tLvdIJ-X3SLd9xpiXYvQ5LZSf3hsRuz8J4mej0uY5QvwhJqu8DWa7ju3c2OX3TQszJ56FhQzkW_DGV-N8VnZTS3ML8ERTNd067-6y_XYLUwLclJvhbWYSEeb0C1LNtAil28CbKXDO01AsnAhIl6ys88glorSkZkkKEgcaICujWypEXdmZSoNyKJRg2LXWKTYSLhOIeSE1MCvbbgtn120zqnRaUFqt0mn1IUkfR47Ppo7dgSYZ5WntaOMk3tBVEkjXR95UeBYkIZIy1CjUeuZyRT6KDE2t2GyjgZxztAjA1kRuhXO9phnmCSeRGLfI2jZGCCoAaNkuWhLtKQ22oYw3CeQNmyMEQWhpaFIa_B0WzIc56D4zfi_VKOYbEd09Bp2jRvAk3TGhyXcpt__nGy3T9R78EKmlMix_XsQ2U6eYkPYFm_TgfppA6L_v1DHZZOzzrda-xd-BTbq0bLtn4P2673WM_W8js3IOot
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB0BRYJLaYGKLdD6ABcqi93YcewDQogWgXZZIRWqvQV_xNJWsKHsFsSf4jcyTmJWrVRuHHqMbI-S-Hlm7HmeAdhKeKE144qKwieUe8GokTyh6PzatvJK-OpA_0cv6_flYKDOZuAx3oUJtMqoEytF7Uobzsh3k07I1KXQu9i_-UVD1agQXY0lNGpYdIuHe9yyjfdOvuL8bifJ0bfzw2PaVBWglnXEhOLr6FQULEPLHsphpdak1ibGd2wqndNes8xkThqujPc6sLGEY6nX3KAzXliGcmfhDWcyC-uqm9Fnzc9YVW65jXsaKoQaxChqfVWPB3JSB_dsjGPzn3Zw6tz-FY-tzNzR0v_2g97B28ahJgf1CngPM8VoGZZisQrS6K4V0N_Lq3B4QioKZWl-1pqeoK125TUZVtxPFNQQ1q5D16bazpiYB6KJRb8CH0lIAYodRzWBnvhIb1uFi1f50A8wNypHxRoQH8K3TuJ2xSY8VVzz1HGXWRylpZeyBe0427ltkq-HGiBX-TRtdABIjgDJA0By0YKd5yE3deaRlzpvRFDkjRIa51NEtOBLhNW0-Z_CPr4s7DMsHJ-f9vLeSb-7DovoQaqayrQBc5Pb38UmzNu7yXB8-6laHQQuXxttT3MrT-c
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB7RUFVcCH0gQlPqQ3tpZZGsvd71ASFEiIhAUaQ-FPWy9WMtgZIskLRV_hq_jvHumqiV4Mahx5Xt0e76s2fG83kG4EPEc6UYl1TkLqLcCUZ1yiOKxq_pSCeFKw_0v58nw2E6HsvRGtyGuzCeVhn2xHKjtoXxZ-T7Uddn6pJoXey7mhYx6vUPr66pryDlI62hnEYFkbN8-Qfdt_nBoIdz_TGK-idfj09pXWGAGtYVC4qvpmKRswS1vC-NFRsdGxNp1zVxaq1yiiU6sanmUjunPDNLWBY7xTUa5rlhKPcZrCfoY3o64Sj-ca8FGCtLL3fQv6FCyHGIqFbX9rgnKnXRf2Mcm__WiStD95_YbKny-s3_-WdtwWZtaJOjamW8hLV89gqaoYgFqfe016C-FBN_qEJKamWhLysNQFCH22JKLkpOKAqqiWxT37WuwjMnekkUMWhv4CPxqUGx46wi1hMXaG9v4NuTfOg2NGbFLN8B4nxY16boxpiIx5IrHltuE4OjVOrStAWdMPOZqZOy-9ogk2yVTtqDJUOwZB4smWjBp_shV1VGksc6twNAsnpzmmcrdLTgc4DYqvlBYbuPC3sPLxBk2flgePYWNtCwlBXDqQ2Nxc2v_B08N78XF_ObvXKhEPj51GC7A454WQs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+multiobjective+random+interval+programming+problems+by+a+capable+neural+network+framework&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Arjmandzadeh%2C+Ziba&rft.au=Nazemi%2C+Alireza&rft.au=Safi%2C+Mohammadreza&rft.date=2019-04-01&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=49&rft.issue=4&rft.spage=1566&rft.epage=1579&rft_id=info:doi/10.1007%2Fs10489-018-1344-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10489_018_1344_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon