Solving multiobjective random interval programming problems by a capable neural network framework
In this paper, the stability of a class of nonlinear control systems is analyzed. We first construct an optimal control problem by inserting a suitable performance index, which this problem is referred to as an infinite horizon problem. By a suitable change of variable, the infinite horizon problem...
Saved in:
| Published in: | Applied intelligence (Dordrecht, Netherlands) Vol. 49; no. 4; pp. 1566 - 1579 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.04.2019
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0924-669X, 1573-7497 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, the stability of a class of nonlinear control systems is analyzed. We first construct an optimal control problem by inserting a suitable performance index, which this problem is referred to as an infinite horizon problem. By a suitable change of variable, the infinite horizon problem is reduced to a finite horizon problem. We then present a feedback controller designing approach for the obtained finite horizon control problem. This approach involves a neural network scheme for solving the nonlinear Hamilton Jacobi Bellman (HJB) equation. By using the neural network method, an analytic approximate solution for value function and suboptimal feedback control law is achieved. A learning algorithm based on a dynamic optimization scheme with stability and convergence properties is also provided. Some illustrative examples are employed to demonstrate the accuracy and efficiency of the proposed plan. As a real life application in engineering, the stabilization of a micro electro mechanical system is studied. |
|---|---|
| AbstractList | In this paper, the stability of a class of nonlinear control systems is analyzed. We first construct an optimal control problem by inserting a suitable performance index, which this problem is referred to as an infinite horizon problem. By a suitable change of variable, the infinite horizon problem is reduced to a finite horizon problem. We then present a feedback controller designing approach for the obtained finite horizon control problem. This approach involves a neural network scheme for solving the nonlinear Hamilton Jacobi Bellman (HJB) equation. By using the neural network method, an analytic approximate solution for value function and suboptimal feedback control law is achieved. A learning algorithm based on a dynamic optimization scheme with stability and convergence properties is also provided. Some illustrative examples are employed to demonstrate the accuracy and efficiency of the proposed plan. As a real life application in engineering, the stabilization of a micro electro mechanical system is studied. |
| Author | Arjmandzadeh, Ziba Nazemi, Alireza Safi, Mohammadreza |
| Author_xml | – sequence: 1 givenname: Ziba surname: Arjmandzadeh fullname: Arjmandzadeh, Ziba organization: Department of Mathematics, Semnan University – sequence: 2 givenname: Alireza surname: Nazemi fullname: Nazemi, Alireza email: nazemi20042003@gmail.com organization: Faculty of Mathematical Sciences, Shahrood University of Technology – sequence: 3 givenname: Mohammadreza surname: Safi fullname: Safi, Mohammadreza organization: Department of Mathematics, Semnan University |
| BookMark | eNp9kF1LBCEUhiU2aLf6Ad0JXU_pOOrMZSx9wUIXFXQn6ugy24xu6mzsv89hgyCoK4-H5_Ec3wWYOe8MABcYXWGE-HXEqKqbAuG6wKSqCnYE5phyUvCq4TMwR02Zm6x5OwGLGDcIIUIQngP57Ptd59ZwGPvUebUxOnU7A4N0rR9g55IJO9nDbfDrIIdhQnOtejNEqPZQQi23Ml-hM2PIoDPp04d3aDNtpuoMHFvZR3P-fZ6C17vbl-VDsXq6f1zerApNMEuFZURSZggvKWbalFQrqnWpLNa0bltpJeGKt7WqGmWt1NQa1hJqZaUwro0mp-Dy8G5e72M0MYmNH4PLI0WJCa1xQznNFD9QOvgYg7FCd0nmn7sUZNcLjMSUpzjkKXKeYspTsGziX-Y2dIMM-3-d8uDEzLq1CT87_S19ARSCjUo |
| CitedBy_id | crossref_primary_10_1007_s11571_023_09998_0 crossref_primary_10_1007_s10479_021_03998_1 crossref_primary_10_1007_s12597_023_00699_0 crossref_primary_10_1080_0952813X_2022_2153271 crossref_primary_10_1080_0954898X_2022_2104463 crossref_primary_10_1007_s10489_020_02174_5 crossref_primary_10_1002_nme_7670 crossref_primary_10_1002_acs_3981 crossref_primary_10_1007_s00500_025_10550_x |
| Cites_doi | 10.1016/j.neucom.2004.11.009 10.1007/978-1-4757-2495-0 10.1214/aoms/1177698328 10.1016/j.amc.2007.12.029 10.1016/j.ins.2006.11.007 10.1007/s10107-002-0350-x 10.1016/j.neucom.2006.10.038 10.1016/j.neunet.2016.12.007 10.1287/mnsc.13.9.672 10.1007/s10898-012-9897-0 10.1023/A:1009917818868 10.1515/9783110853698 10.1016/0165-0114(87)90028-5 10.1142/S012906570600069X 10.1093/oso/9780198534778.001.0001 10.1109/TCS.1986.1085953 10.1109/72.548188 10.1016/j.apm.2014.09.018 10.1080/23302674.2016.1224951 10.1016/j.chaos.2006.05.037 10.1007/s10589-013-9605-0 10.1007/s11155-005-3616-1 10.1016/j.neunet.2004.05.006 10.1109/TNN.2004.824252 10.1145/564585.564604 10.1016/j.fss.2005.03.001 10.1007/s12597-012-0078-1 10.1016/j.cnsns.2011.08.035 10.1007/978-1-4419-8402-9 10.1016/j.neucom.2008.05.013 10.1016/j.cam.2011.08.012 10.3906/mat-1509-65 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Applied Intelligence is a copyright of Springer, (2018). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Applied Intelligence is a copyright of Springer, (2018). All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U |
| DOI | 10.1007/s10489-018-1344-6 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| EndPage | 1579 |
| ExternalDocumentID | 10_1007_s10489_018_1344_6 |
| GroupedDBID | -4Z -59 -5G -BR -EM -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 203 23M 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAK LLZTM M0C M0N M4Y M7S MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ~A9 ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI 77I AAAVM AAOBN AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG ADKFA AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFFHD AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF H13 KOW N2Q NDZJH O9- OVD PHGZM PHGZT PQGLB R4E RNI RZC RZE RZK S1Z S26 S28 SCJ SCLPG T16 TEORI ZY4 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c316t-f63a56e372516ce25cb5cc2bf1c58ddafa37b7d8b49bffac5fe6d35fa4b118ec3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000461988200020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-669X |
| IngestDate | Wed Nov 05 14:45:34 EST 2025 Sat Nov 29 05:33:18 EST 2025 Tue Nov 18 22:43:19 EST 2025 Fri Feb 21 02:26:51 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Random interval parameters Neural network models Satisficing solution Stability Fractile model Convergence |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-f63a56e372516ce25cb5cc2bf1c58ddafa37b7d8b49bffac5fe6d35fa4b118ec3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2135819575 |
| PQPubID | 326365 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2135819575 crossref_citationtrail_10_1007_s10489_018_1344_6 crossref_primary_10_1007_s10489_018_1344_6 springer_journals_10_1007_s10489_018_1344_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-01 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Boston |
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationTitleAbbrev | Appl Intell |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Arjmandzadeh Z, Safi MR A goal programming approach for solving random interval linear programming problem., Turkish Journal of Mathematics. https://doi.org/10.3906/mat-1509-65 XiaYFengGAn improved network for convex quadratic optimization with application to real-time beamformingNeurocomputing20056435937410.1016/j.neucom.2004.11.009 PadhyeNPiyushBKalyanmoyDImproving differential evolution through a unified approachJ Glob Optim2013554771799302866510.1007/s10898-012-9897-01268.90158 DempsterAPUpper and lower probabilities generated by a random closed intervalAnn Math Statist19683995796623842910.1214/aoms/11776983280251.62010 YangYCaoJA feedback neural network for solving convex constraint optimization problemsAppl Math Comput200820134035024326081152.90566 QuarteroniASaccoRSaleriFNumerical mathematics, texts in applied mathematics20072nd edn.BerlinSpringer37371136.65001 XiaYFengGWangJA recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equationNeural Netw2004171003101510.1016/j.neunet.2004.05.0061068.68130 FukushimaMEquivalent differentiable optimization problems and descent methods for asymmetric variational inequality problemsMath Programm1992531–39211011517670756.90081 LuHWCaoMFLiJHuangGHHeLAn inexact programming approach for urban electric power systems management under random-interval-parameter uncertaintyAppl Math Model20153917571768332557510.1016/j.apm.2014.09.018 KearfottRBRigorous global search: continuous problems1996DordrechtKluwer Academic Publishers10.1007/978-1-4757-2495-00876.90082 FersonSGinzburgLKreinovichVLongpréLAvilesMComputing variance for interval data is NP-hardACM SIGACT News200233210811810.1145/564585.564604 MillerRKMichelANOrdinary differential equations1982New YorkAcademic Press0552.34001 GeoffrionAMStochastic programming with aspiration or fractile criteriaManag Sci19671367267924248710.1287/mnsc.13.9.6720171.17602 SakawaMNishizakiIKatagiriHFuzzy stochastic multi-objective programming2011BerlinSpringer10.1007/978-1-4419-8402-91214.90004 XiaYA new neural network for solving linear and quadratic programming problemsIEEE Trans Neural Netw199671544154710.1109/72.548188 XueXBianWA project neural network for solving degenerate quadratic minimax problem with linear constraintsNeurocomputing2009721826183810.1016/j.neucom.2008.05.013 TankDWHopfieldJJSimple neural optimization networks: an A/D converter, signal decision circuit, and a linear programming circuitIEEE Tran Circuits Syst19863353354110.1109/TCS.1986.1085953 FersonSGinzburgLKreinovichVLongpréLAvilesMExact bounds on finite populations of interval dataReliab Comput2005113207233215153010.1007/s11155-005-3616-11076.65013 MirandaECousoIGilPRandom intervals as a model for imprecise informationFuzzy Set Syst2005154386412215698710.1016/j.fss.2005.03.0011079.60012 ArjmandzadehZSafiMRNazemiAA new neural network model for solving random interval linear programming problemsNeural Netw201789111810.1016/j.neunet.2016.12.007 BensonHYVanderbeiRJSolving problems with semidefinite and related constraints using interior-point methods for nonlinear programmingMath Programming Ser B2003952279302197648210.1007/s10107-002-0350-x1030.90138 HansenESharpness in interval computationsReliab Comput1997311729161439910.1023/A:10099178188680881.65032 Faraut J, Konyi A (1994) Analysis on symmetric cones. In: Oxford Mathematical Monographs. Oxford University Press, New York Kall P, Mayer J (2004) Stochastic linear programming, Springer, Berlin ArjmandzadehZSafiMRA generalisation of variance model for solving random interval linear programming problemsInt J Syst Sci: Oper Logist2018511624 XueXBianWA project neural network for solving degenerate convex quadratic programNeurocomputing2007702449245910.1016/j.neucom.2006.10.038 NazemiARA dynamical model for solving degenerate quadratic minimax problems with constraintsJ Comput Appl Math201123612821295285405010.1016/j.cam.2011.08.0121229.90262 YangYCaoJA delayed neural network method for solving convex optimization problemsInt J Neural Syst20061629530310.1142/S012906570600069X AmannHOrdinary differential equations: An introduction to nonlinear analysis1990BerlinWalter de Gruyter10.1515/97831108536980708.34002 KreinovichVNguyenHTWuBOn-line algorithms for computing mean and variance of interval data, and their use in intelligent systemsInform Sci200717732283238234082510.1016/j.ins.2006.11.00705174376 BarikSKBiswalMPChakravartyDTwo-stage stochastic programming problems involving interval discrete random variablesOPSEARCH201249280298296799010.1007/s12597-012-0078-11353.90094 DuboisDPradeHThe mean value of a fuzzy numberFuzzy Set Syst198724327930091905710.1016/0165-0114(87)90028-50634.94026 KalyanmoyDPadhyeNEnhancing performance of particle swarm optimization through an algorithmic link with genetic algorithmsComput Optim Appl2014573761794317959710.1007/s10589-013-9605-01304.90219 XiaYWangJA recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraintsIEEE Trans Neural Netw Circuits Syst20045144745820911481374.90309 Grant M, Boyd S, Ye Y (2008) CVX: Matlab software for disciplined convex programming BazaraaMSSheraliHDShettyCMNonlinear programming-theory and algorithms19932nd edn.New YorkWiley0774.90075 KalyanmoyDMulti-objective optimization. Search methodologies2014BostonSpringer403449 Sabouri J, Effati KS, Pakdaman M (2016) A neural network approach for solving a class of fractional optimal control problems., Neural Processing Letter. to appear NazemiARA dynamic system model for solving convex nonlinear optimization problemsCommun Nonlinear Sci Numer Simul20121716961705285546110.1016/j.cnsns.2011.08.0351250.90067 DingKHuangN-JA new class of interval projection neural networks for solving interval quadratic programIEEE Chaos Solitons and Fractals20083571872510.1016/j.chaos.2006.05.0371137.90020 XiaYWangJA general projection neural network for solving monotone variational inequality and related optimization problemsIEEE Trans Neural Netw20041531832810.1109/TNN.2004.824252 Y Yang (1344_CR28) 2008; 201 AR Nazemi (1344_CR19) 2011; 236 HY Benson (1344_CR32) 2003; 95 1344_CR12 M Fukushima (1344_CR36) 1992; 53 1344_CR31 SK Barik (1344_CR14) 2012; 49 A Quarteroni (1344_CR35) 2007 V Kreinovich (1344_CR7) 2007; 177 MS Bazaraa (1344_CR33) 1993 D Dubois (1344_CR4) 1987; 24 RK Miller (1344_CR34) 1982 1344_CR17 Y Xia (1344_CR21) 2005; 64 Y Xia (1344_CR24) 2004; 51 1344_CR38 S Ferson (1344_CR8) 2002; 33 Z Arjmandzadeh (1344_CR11) 2017; 89 HW Lu (1344_CR5) 2015; 39 E Miranda (1344_CR29) 2005; 154 D Kalyanmoy (1344_CR39) 2014 Y Xia (1344_CR22) 1996; 7 AM Geoffrion (1344_CR30) 1967; 13 M Sakawa (1344_CR1) 2011 DW Tank (1344_CR15) 1986; 33 X Xue (1344_CR25) 2007; 70 Y Xia (1344_CR20) 2004; 17 X Xue (1344_CR26) 2009; 72 Y Yang (1344_CR27) 2006; 16 Z Arjmandzadeh (1344_CR13) 2018; 5 K Ding (1344_CR16) 2008; 35 N Padhye (1344_CR41) 2013; 55 AP Dempster (1344_CR3) 1968; 39 RB Kearfott (1344_CR10) 1996 AR Nazemi (1344_CR18) 2012; 17 S Ferson (1344_CR6) 2005; 11 1344_CR2 Y Xia (1344_CR23) 2004; 15 E Hansen (1344_CR9) 1997; 3 H Amann (1344_CR37) 1990 D Kalyanmoy (1344_CR40) 2014; 57 |
| References_xml | – reference: XueXBianWA project neural network for solving degenerate convex quadratic programNeurocomputing2007702449245910.1016/j.neucom.2006.10.038 – reference: XiaYWangJA recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraintsIEEE Trans Neural Netw Circuits Syst20045144745820911481374.90309 – reference: MirandaECousoIGilPRandom intervals as a model for imprecise informationFuzzy Set Syst2005154386412215698710.1016/j.fss.2005.03.0011079.60012 – reference: GeoffrionAMStochastic programming with aspiration or fractile criteriaManag Sci19671367267924248710.1287/mnsc.13.9.6720171.17602 – reference: Faraut J, Konyi A (1994) Analysis on symmetric cones. In: Oxford Mathematical Monographs. Oxford University Press, New York – reference: NazemiARA dynamic system model for solving convex nonlinear optimization problemsCommun Nonlinear Sci Numer Simul20121716961705285546110.1016/j.cnsns.2011.08.0351250.90067 – reference: XiaYFengGAn improved network for convex quadratic optimization with application to real-time beamformingNeurocomputing20056435937410.1016/j.neucom.2004.11.009 – reference: SakawaMNishizakiIKatagiriHFuzzy stochastic multi-objective programming2011BerlinSpringer10.1007/978-1-4419-8402-91214.90004 – reference: DuboisDPradeHThe mean value of a fuzzy numberFuzzy Set Syst198724327930091905710.1016/0165-0114(87)90028-50634.94026 – reference: MillerRKMichelANOrdinary differential equations1982New YorkAcademic Press0552.34001 – reference: ArjmandzadehZSafiMRNazemiAA new neural network model for solving random interval linear programming problemsNeural Netw201789111810.1016/j.neunet.2016.12.007 – reference: Grant M, Boyd S, Ye Y (2008) CVX: Matlab software for disciplined convex programming – reference: BarikSKBiswalMPChakravartyDTwo-stage stochastic programming problems involving interval discrete random variablesOPSEARCH201249280298296799010.1007/s12597-012-0078-11353.90094 – reference: KearfottRBRigorous global search: continuous problems1996DordrechtKluwer Academic Publishers10.1007/978-1-4757-2495-00876.90082 – reference: DingKHuangN-JA new class of interval projection neural networks for solving interval quadratic programIEEE Chaos Solitons and Fractals20083571872510.1016/j.chaos.2006.05.0371137.90020 – reference: NazemiARA dynamical model for solving degenerate quadratic minimax problems with constraintsJ Comput Appl Math201123612821295285405010.1016/j.cam.2011.08.0121229.90262 – reference: XiaYA new neural network for solving linear and quadratic programming problemsIEEE Trans Neural Netw199671544154710.1109/72.548188 – reference: BensonHYVanderbeiRJSolving problems with semidefinite and related constraints using interior-point methods for nonlinear programmingMath Programming Ser B2003952279302197648210.1007/s10107-002-0350-x1030.90138 – reference: XueXBianWA project neural network for solving degenerate quadratic minimax problem with linear constraintsNeurocomputing2009721826183810.1016/j.neucom.2008.05.013 – reference: PadhyeNPiyushBKalyanmoyDImproving differential evolution through a unified approachJ Glob Optim2013554771799302866510.1007/s10898-012-9897-01268.90158 – reference: KalyanmoyDPadhyeNEnhancing performance of particle swarm optimization through an algorithmic link with genetic algorithmsComput Optim Appl2014573761794317959710.1007/s10589-013-9605-01304.90219 – reference: TankDWHopfieldJJSimple neural optimization networks: an A/D converter, signal decision circuit, and a linear programming circuitIEEE Tran Circuits Syst19863353354110.1109/TCS.1986.1085953 – reference: XiaYWangJA general projection neural network for solving monotone variational inequality and related optimization problemsIEEE Trans Neural Netw20041531832810.1109/TNN.2004.824252 – reference: FersonSGinzburgLKreinovichVLongpréLAvilesMExact bounds on finite populations of interval dataReliab Comput2005113207233215153010.1007/s11155-005-3616-11076.65013 – reference: Kall P, Mayer J (2004) Stochastic linear programming, Springer, Berlin – reference: YangYCaoJA feedback neural network for solving convex constraint optimization problemsAppl Math Comput200820134035024326081152.90566 – reference: FukushimaMEquivalent differentiable optimization problems and descent methods for asymmetric variational inequality problemsMath Programm1992531–39211011517670756.90081 – reference: XiaYFengGWangJA recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equationNeural Netw2004171003101510.1016/j.neunet.2004.05.0061068.68130 – reference: KalyanmoyDMulti-objective optimization. Search methodologies2014BostonSpringer403449 – reference: FersonSGinzburgLKreinovichVLongpréLAvilesMComputing variance for interval data is NP-hardACM SIGACT News200233210811810.1145/564585.564604 – reference: AmannHOrdinary differential equations: An introduction to nonlinear analysis1990BerlinWalter de Gruyter10.1515/97831108536980708.34002 – reference: Arjmandzadeh Z, Safi MR A goal programming approach for solving random interval linear programming problem., Turkish Journal of Mathematics. https://doi.org/10.3906/mat-1509-65 – reference: Sabouri J, Effati KS, Pakdaman M (2016) A neural network approach for solving a class of fractional optimal control problems., Neural Processing Letter. to appear – reference: HansenESharpness in interval computationsReliab Comput1997311729161439910.1023/A:10099178188680881.65032 – reference: YangYCaoJA delayed neural network method for solving convex optimization problemsInt J Neural Syst20061629530310.1142/S012906570600069X – reference: KreinovichVNguyenHTWuBOn-line algorithms for computing mean and variance of interval data, and their use in intelligent systemsInform Sci200717732283238234082510.1016/j.ins.2006.11.00705174376 – reference: LuHWCaoMFLiJHuangGHHeLAn inexact programming approach for urban electric power systems management under random-interval-parameter uncertaintyAppl Math Model20153917571768332557510.1016/j.apm.2014.09.018 – reference: BazaraaMSSheraliHDShettyCMNonlinear programming-theory and algorithms19932nd edn.New YorkWiley0774.90075 – reference: QuarteroniASaccoRSaleriFNumerical mathematics, texts in applied mathematics20072nd edn.BerlinSpringer37371136.65001 – reference: DempsterAPUpper and lower probabilities generated by a random closed intervalAnn Math Statist19683995796623842910.1214/aoms/11776983280251.62010 – reference: ArjmandzadehZSafiMRA generalisation of variance model for solving random interval linear programming problemsInt J Syst Sci: Oper Logist2018511624 – volume-title: Ordinary differential equations year: 1982 ident: 1344_CR34 – volume: 64 start-page: 359 year: 2005 ident: 1344_CR21 publication-title: Neurocomputing doi: 10.1016/j.neucom.2004.11.009 – volume-title: Rigorous global search: continuous problems year: 1996 ident: 1344_CR10 doi: 10.1007/978-1-4757-2495-0 – volume: 39 start-page: 957 year: 1968 ident: 1344_CR3 publication-title: Ann Math Statist doi: 10.1214/aoms/1177698328 – volume: 201 start-page: 340 year: 2008 ident: 1344_CR28 publication-title: Appl Math Comput doi: 10.1016/j.amc.2007.12.029 – volume: 177 start-page: 3228 year: 2007 ident: 1344_CR7 publication-title: Inform Sci doi: 10.1016/j.ins.2006.11.007 – volume: 95 start-page: 279 issue: 2 year: 2003 ident: 1344_CR32 publication-title: Math Programming Ser B doi: 10.1007/s10107-002-0350-x – ident: 1344_CR38 – volume: 51 start-page: 447 year: 2004 ident: 1344_CR24 publication-title: IEEE Trans Neural Netw Circuits Syst – volume: 70 start-page: 2449 year: 2007 ident: 1344_CR25 publication-title: Neurocomputing doi: 10.1016/j.neucom.2006.10.038 – volume: 89 start-page: 11 year: 2017 ident: 1344_CR11 publication-title: Neural Netw doi: 10.1016/j.neunet.2016.12.007 – volume: 13 start-page: 672 year: 1967 ident: 1344_CR30 publication-title: Manag Sci doi: 10.1287/mnsc.13.9.672 – ident: 1344_CR2 – ident: 1344_CR17 – start-page: 37 volume-title: Numerical mathematics, texts in applied mathematics year: 2007 ident: 1344_CR35 – volume: 55 start-page: 771 issue: 4 year: 2013 ident: 1344_CR41 publication-title: J Glob Optim doi: 10.1007/s10898-012-9897-0 – volume: 3 start-page: 17 issue: 1 year: 1997 ident: 1344_CR9 publication-title: Reliab Comput doi: 10.1023/A:1009917818868 – volume-title: Ordinary differential equations: An introduction to nonlinear analysis year: 1990 ident: 1344_CR37 doi: 10.1515/9783110853698 – volume: 24 start-page: 279 issue: 3 year: 1987 ident: 1344_CR4 publication-title: Fuzzy Set Syst doi: 10.1016/0165-0114(87)90028-5 – volume: 16 start-page: 295 year: 2006 ident: 1344_CR27 publication-title: Int J Neural Syst doi: 10.1142/S012906570600069X – ident: 1344_CR31 doi: 10.1093/oso/9780198534778.001.0001 – volume: 33 start-page: 533 year: 1986 ident: 1344_CR15 publication-title: IEEE Tran Circuits Syst doi: 10.1109/TCS.1986.1085953 – volume: 7 start-page: 1544 year: 1996 ident: 1344_CR22 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.548188 – volume: 39 start-page: 1757 year: 2015 ident: 1344_CR5 publication-title: Appl Math Model doi: 10.1016/j.apm.2014.09.018 – volume: 5 start-page: 16 issue: 1 year: 2018 ident: 1344_CR13 publication-title: Int J Syst Sci: Oper Logist doi: 10.1080/23302674.2016.1224951 – volume: 35 start-page: 718 year: 2008 ident: 1344_CR16 publication-title: IEEE Chaos Solitons and Fractals doi: 10.1016/j.chaos.2006.05.037 – volume: 57 start-page: 761 issue: 3 year: 2014 ident: 1344_CR40 publication-title: Comput Optim Appl doi: 10.1007/s10589-013-9605-0 – volume: 11 start-page: 207 issue: 3 year: 2005 ident: 1344_CR6 publication-title: Reliab Comput doi: 10.1007/s11155-005-3616-1 – volume: 17 start-page: 1003 year: 2004 ident: 1344_CR20 publication-title: Neural Netw doi: 10.1016/j.neunet.2004.05.006 – volume: 15 start-page: 318 year: 2004 ident: 1344_CR23 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2004.824252 – volume: 33 start-page: 108 issue: 2 year: 2002 ident: 1344_CR8 publication-title: ACM SIGACT News doi: 10.1145/564585.564604 – volume: 154 start-page: 386 year: 2005 ident: 1344_CR29 publication-title: Fuzzy Set Syst doi: 10.1016/j.fss.2005.03.001 – volume-title: Nonlinear programming-theory and algorithms year: 1993 ident: 1344_CR33 – start-page: 403 volume-title: Multi-objective optimization. Search methodologies year: 2014 ident: 1344_CR39 – volume: 49 start-page: 280 year: 2012 ident: 1344_CR14 publication-title: OPSEARCH doi: 10.1007/s12597-012-0078-1 – volume: 17 start-page: 1696 year: 2012 ident: 1344_CR18 publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2011.08.035 – volume-title: Fuzzy stochastic multi-objective programming year: 2011 ident: 1344_CR1 doi: 10.1007/978-1-4419-8402-9 – volume: 53 start-page: 92 issue: 1–3 year: 1992 ident: 1344_CR36 publication-title: Math Programm – volume: 72 start-page: 1826 year: 2009 ident: 1344_CR26 publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.05.013 – volume: 236 start-page: 1282 year: 2011 ident: 1344_CR19 publication-title: J Comput Appl Math doi: 10.1016/j.cam.2011.08.012 – ident: 1344_CR12 doi: 10.3906/mat-1509-65 |
| SSID | ssj0003301 |
| Score | 2.260942 |
| Snippet | In this paper, the stability of a class of nonlinear control systems is analyzed. We first construct an optimal control problem by inserting a suitable... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1566 |
| SubjectTerms | Artificial Intelligence Computer Science Control stability Control systems design Controllers Dynamic stability Feedback control Machine learning Machines Manufacturing Mechanical Engineering Multiple objective analysis Neural networks Nonlinear analysis Nonlinear control Nonlinear programming Nonlinear systems Optimal control Performance indices Processes Stability analysis |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGA86PXhxPnE6JQdPSnBt07Q5iYjiQYYwld1KHg1MtnZuU_C_90uarii4i8eSB6Vf8j1__X4InYc0FyKinLDchIQaFhGZ0pCA86t63HBmXEL_9THp99PhkD_5hNvcwyprnegUtS6VzZFfhYHt1MXBu7ievhPLGmWrq55CYx1t2C4JgYPuDZaaGGJ1x5gHMQZhjA_rqmb16xy1YKEAYqiIwvBPu9Q4m7_qo87s3Lf_-8I7aNs7nPimOiG7aC0v9lC7JnPA_m7vIzEoxza5gB3EsJRvlSbEYMt0OcEjh42EjTyga2KnejaaOZZfWGAFdhcesW2RCROLCmCOTQ3_OkAv93fPtw_E8y8QFQVsQUBwImZ5lIAPZInDYiVjpUJpAhWnWgsjokQmOpWUS2OExa0xHcVGUAlhS66iQ9QqyiI_QtjY8qaGaDtUIY05FTTWVCcKVonUpGkH9eqvnynfnNxyZIyzpq2yFVgGAsuswDLWQRfLJdOqM8eqyd1aSJm_pPOskVAHXdZibob_3Ox49WYnaAu8Kl7Be7qotZh95KdoU30uRvPZmTuh39lw7nw priority: 102 providerName: ProQuest |
| Title | Solving multiobjective random interval programming problems by a capable neural network framework |
| URI | https://link.springer.com/article/10.1007/s10489-018-1344-6 https://www.proquest.com/docview/2135819575 |
| Volume | 49 |
| WOSCitedRecordID | wos000461988200020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60evBifWJ9lBw8KYF2N5vdHLVYBLUU66N6WZLsBiptV7pV8N872UerooJeAmEnYZlJMjOZLzMAhw6LpXSZoDw2DmWGu1QFzKFo_OqGMIKb7EL_7tLvdIJ-X3SLd9xpiXYvQ5LZSf3hsRuz8J4mej0uY5QvwhJqu8DWa7ju3c2OX3TQszJ56FhQzkW_DGV-N8VnZTS3ML8ERTNd067-6y_XYLUwLclJvhbWYSEeb0C1LNtAil28CbKXDO01AsnAhIl6ys88glorSkZkkKEgcaICujWypEXdmZSoNyKJRg2LXWKTYSLhOIeSE1MCvbbgtn120zqnRaUFqt0mn1IUkfR47Ppo7dgSYZ5WntaOMk3tBVEkjXR95UeBYkIZIy1CjUeuZyRT6KDE2t2GyjgZxztAjA1kRuhXO9phnmCSeRGLfI2jZGCCoAaNkuWhLtKQ22oYw3CeQNmyMEQWhpaFIa_B0WzIc56D4zfi_VKOYbEd09Bp2jRvAk3TGhyXcpt__nGy3T9R78EKmlMix_XsQ2U6eYkPYFm_TgfppA6L_v1DHZZOzzrda-xd-BTbq0bLtn4P2673WM_W8js3IOot |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB0BRYJLaYGKLdD6ABcqi93YcewDQogWgXZZIRWqvQV_xNJWsKHsFsSf4jcyTmJWrVRuHHqMbI-S-Hlm7HmeAdhKeKE144qKwieUe8GokTyh6PzatvJK-OpA_0cv6_flYKDOZuAx3oUJtMqoEytF7Uobzsh3k07I1KXQu9i_-UVD1agQXY0lNGpYdIuHe9yyjfdOvuL8bifJ0bfzw2PaVBWglnXEhOLr6FQULEPLHsphpdak1ibGd2wqndNes8xkThqujPc6sLGEY6nX3KAzXliGcmfhDWcyC-uqm9Fnzc9YVW65jXsaKoQaxChqfVWPB3JSB_dsjGPzn3Zw6tz-FY-tzNzR0v_2g97B28ahJgf1CngPM8VoGZZisQrS6K4V0N_Lq3B4QioKZWl-1pqeoK125TUZVtxPFNQQ1q5D16bazpiYB6KJRb8CH0lIAYodRzWBnvhIb1uFi1f50A8wNypHxRoQH8K3TuJ2xSY8VVzz1HGXWRylpZeyBe0427ltkq-HGiBX-TRtdABIjgDJA0By0YKd5yE3deaRlzpvRFDkjRIa51NEtOBLhNW0-Z_CPr4s7DMsHJ-f9vLeSb-7DovoQaqayrQBc5Pb38UmzNu7yXB8-6laHQQuXxttT3MrT-c |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB7RUFVcCH0gQlPqQ3tpZZGsvd71ASFEiIhAUaQ-FPWy9WMtgZIskLRV_hq_jvHumqiV4Mahx5Xt0e76s2fG83kG4EPEc6UYl1TkLqLcCUZ1yiOKxq_pSCeFKw_0v58nw2E6HsvRGtyGuzCeVhn2xHKjtoXxZ-T7Uddn6pJoXey7mhYx6vUPr66pryDlI62hnEYFkbN8-Qfdt_nBoIdz_TGK-idfj09pXWGAGtYVC4qvpmKRswS1vC-NFRsdGxNp1zVxaq1yiiU6sanmUjunPDNLWBY7xTUa5rlhKPcZrCfoY3o64Sj-ca8FGCtLL3fQv6FCyHGIqFbX9rgnKnXRf2Mcm__WiStD95_YbKny-s3_-WdtwWZtaJOjamW8hLV89gqaoYgFqfe016C-FBN_qEJKamWhLysNQFCH22JKLkpOKAqqiWxT37WuwjMnekkUMWhv4CPxqUGx46wi1hMXaG9v4NuTfOg2NGbFLN8B4nxY16boxpiIx5IrHltuE4OjVOrStAWdMPOZqZOy-9ogk2yVTtqDJUOwZB4smWjBp_shV1VGksc6twNAsnpzmmcrdLTgc4DYqvlBYbuPC3sPLxBk2flgePYWNtCwlBXDqQ2Nxc2v_B08N78XF_ObvXKhEPj51GC7A454WQs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+multiobjective+random+interval+programming+problems+by+a+capable+neural+network+framework&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Arjmandzadeh%2C+Ziba&rft.au=Nazemi%2C+Alireza&rft.au=Safi%2C+Mohammadreza&rft.date=2019-04-01&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=49&rft.issue=4&rft.spage=1566&rft.epage=1579&rft_id=info:doi/10.1007%2Fs10489-018-1344-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10489_018_1344_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |