Dynamic multi-objective differential evolution algorithm based on the information of evolution progress

The multi-objective differential evolution (MODE) algorithm is an effective method to solve multi-objective optimization problems. However, in the absence of any information of evolution progress, the optimization strategy of the MODE algorithm still appears as an open problem. In this paper, a dyna...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Science China. Technological sciences Ročník 64; číslo 8; s. 1676 - 1689
Hlavní autori: Hou, Ying, Wu, YiLin, Liu, Zheng, Han, HongGui, Wang, Pu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Beijing Science China Press 01.08.2021
Springer Nature B.V
Predmet:
ISSN:1674-7321, 1869-1900
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The multi-objective differential evolution (MODE) algorithm is an effective method to solve multi-objective optimization problems. However, in the absence of any information of evolution progress, the optimization strategy of the MODE algorithm still appears as an open problem. In this paper, a dynamic multi-objective differential evolution algorithm, based on the information of evolution progress (DMODE-IEP), is developed to improve the optimization performance. The main contributions of DMODE-IEP are as follows. First, the information of evolution progress, using the fitness values, is proposed to describe the evolution progress of MODE. Second, the dynamic adjustment mechanisms of evolution parameter values, mutation strategies and selection parameter value based on the information of evolution progress, are designed to balance the global exploration ability and the local exploitation ability. Third, the convergence of DMODE-IEP is proved using the probability theory. Finally, the testing results on the standard multi-objective optimization problem and the wastewater treatment process verify that the optimization effect of DMODE-IEP algorithm is superior to the other compared state-of-the-art multi-objective optimization algorithms, including the quality of the solutions, and the optimization speed of the algorithm.
AbstractList The multi-objective differential evolution (MODE) algorithm is an effective method to solve multi-objective optimization problems. However, in the absence of any information of evolution progress, the optimization strategy of the MODE algorithm still appears as an open problem. In this paper, a dynamic multi-objective differential evolution algorithm, based on the information of evolution progress (DMODE-IEP), is developed to improve the optimization performance. The main contributions of DMODE-IEP are as follows. First, the information of evolution progress, using the fitness values, is proposed to describe the evolution progress of MODE. Second, the dynamic adjustment mechanisms of evolution parameter values, mutation strategies and selection parameter value based on the information of evolution progress, are designed to balance the global exploration ability and the local exploitation ability. Third, the convergence of DMODE-IEP is proved using the probability theory. Finally, the testing results on the standard multi-objective optimization problem and the wastewater treatment process verify that the optimization effect of DMODE-IEP algorithm is superior to the other compared state-of-the-art multi-objective optimization algorithms, including the quality of the solutions, and the optimization speed of the algorithm.
Author Wu, YiLin
Wang, Pu
Han, HongGui
Liu, Zheng
Hou, Ying
Author_xml – sequence: 1
  givenname: Ying
  surname: Hou
  fullname: Hou, Ying
  email: houying@bjut.edu.cn
  organization: Faculty of Information Technology, Beijing University of Technology, Engineering Research Center of Digital Community, Ministry of Education
– sequence: 2
  givenname: YiLin
  surname: Wu
  fullname: Wu, YiLin
  organization: Faculty of Information Technology, Beijing University of Technology, Engineering Research Center of Digital Community, Ministry of Education
– sequence: 3
  givenname: Zheng
  surname: Liu
  fullname: Liu, Zheng
  organization: Faculty of Information Technology, Beijing University of Technology
– sequence: 4
  givenname: HongGui
  surname: Han
  fullname: Han, HongGui
  organization: Faculty of Information Technology, Beijing University of Technology, Engineering Research Center of Digital Community, Ministry of Education
– sequence: 5
  givenname: Pu
  surname: Wang
  fullname: Wang, Pu
  organization: Faculty of Information Technology, Beijing University of Technology, Engineering Research Center of Digital Community, Ministry of Education
BookMark eNp9kE1LAzEQhoNUsNb-AG8LnqP52G2yR6mfIHjRc8hmJ23K7qYm2UL_vduuoAg6lxmG5513eM_RpPMdIHRJyTUlRNxESnNOMWEEUyFLXJ6gKZWLEtOSkMkwL0SOBWf0DM1j3JChuCwJzadodbfvdOtM1vZNcthXGzDJ7SCrnbUQoEtONxnsfNMn57tMNysfXFq3WaUj1NmwSmvIXGd9aPUR8fYHvw1-FSDGC3RqdRNh_tVn6P3h_m35hF9eH5-Xty_YcLpI2OaWM6BCSyZ0JQkXUlS5saUAXfMCZF3zKodCSiOoLWwOxNZVZbml2hgo-QxdjXcH448eYlIb34dusFSsWDCWl1KygRIjZYKPMYBVxqXj9ylo1yhK1CFYNQarhmDVIVh1uE9_KbfBtTrs_9WwURMHtltB-P7pb9EniDCPtg
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3585375
crossref_primary_10_3390_pr11030755
crossref_primary_10_1016_j_conengprac_2023_105650
crossref_primary_10_3390_app122311970
crossref_primary_10_1007_s11431_021_2018_x
crossref_primary_10_1016_j_jclepro_2024_144415
crossref_primary_10_1109_TCYB_2024_3454346
crossref_primary_10_1007_s11431_022_2403_8
crossref_primary_10_3390_math12172790
crossref_primary_10_1007_s11431_021_2050_x
crossref_primary_10_3390_math12213367
crossref_primary_10_1109_TEVC_2023_3237336
crossref_primary_10_1155_2022_1318044
crossref_primary_10_1109_TCYB_2022_3189684
crossref_primary_10_1007_s11431_021_1960_7
crossref_primary_10_1016_j_compchemeng_2022_107814
Cites_doi 10.1016/j.ins.2019.08.040
10.1109/TEVC.2013.2285016
10.1016/j.swevo.2011.02.002
10.1109/TEVC.2019.2896967
10.1016/j.asoc.2017.05.062
10.1162/evco.2010.18.1.18105
10.1016/j.neucom.2017.08.059
10.1007/s00500-016-2418-1
10.1109/TEVC.2014.2308305
10.1109/TCYB.2018.2849343
10.1016/j.swevo.2018.10.006
10.1016/j.swevo.2018.06.010
10.1007/s11432-018-9720-6
10.1109/TEVC.2010.2059031
10.1162/evco.1994.2.3.221
10.1007/s40747-017-0039-7
10.1016/j.cor.2009.02.006
10.1016/j.chemolab.2014.05.007
10.1109/TEVC.2014.2332878
10.1007/s00521-016-2426-1
10.1016/j.swevo.2020.100666
10.1007/s10845-017-1294-6
10.1007/s00500-020-04732-y
10.1016/j.ins.2016.07.009
10.1007/s00521-017-3212-4
10.1109/4235.996017
ContentType Journal Article
Copyright Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s11431-020-1789-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1869-1900
EndPage 1689
ExternalDocumentID 10_1007_s11431_020_1789_9
GroupedDBID -5B
-5G
-BR
-EM
-SC
-S~
-Y2
-~C
.VR
06D
0R~
0VY
1N0
29~
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
8TC
8UJ
92E
92I
92Q
93N
95-
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFLOW
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BDATZ
BSONS
CAG
CAJEC
CCEZO
CEKLB
CHBEP
CJPJV
COF
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
MA-
N2Q
NB0
NPVJJ
NQJWS
O9J
P9P
PF0
PT4
Q--
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TCJ
TGP
TR2
TSG
TUC
U1G
U2A
U5M
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c316t-f4f32e17a827ab803787b4cf97ead35e8dd3b4e588c71f5f4e0fdbbf3f1acce93
IEDL.DBID RSV
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000665778800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1674-7321
IngestDate Thu Sep 25 00:56:08 EDT 2025
Tue Nov 18 21:19:07 EST 2025
Sat Nov 29 05:32:40 EST 2025
Fri Feb 21 02:47:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords information of evolution progress
optimization effect
convergence
multi-objective differential evolution algorithm
optimization speed
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-f4f32e17a827ab803787b4cf97ead35e8dd3b4e588c71f5f4e0fdbbf3f1acce93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2562249882
PQPubID 2043625
PageCount 14
ParticipantIDs proquest_journals_2562249882
crossref_citationtrail_10_1007_s11431_020_1789_9
crossref_primary_10_1007_s11431_020_1789_9
springer_journals_10_1007_s11431_020_1789_9
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Science China. Technological sciences
PublicationTitleAbbrev Sci. China Technol. Sci
PublicationYear 2021
Publisher Science China Press
Springer Nature B.V
Publisher_xml – name: Science China Press
– name: Springer Nature B.V
References Tang, Wang, Dong (CR18) 2019; 49
Qiao, Hou, Zhang (CR17) 2017; 275
Derrac, García, Molina (CR2) 2011; 1
Zhou, Wang, Peng (CR6) 2019; 62
Opara, Arabas (CR8) 2019; 44
Deb, Pratap, Agarwal (CR16) 2002; 6
Qiao, Hou, Han (CR3) 2019; 31
Zhang, Gong, Gao (CR10) 2020; 507
Wang, Ren, Li (CR21) 2018; 22
Martin, Rosete, Alcala-Fdez (CR27) 2014; 18
Zheng, Zhang (CR20) 2017; 59
Ho-Huu, Nguyen-Thoi, Truong-Khac (CR11) 2018; 29
Bandyopadhyay, Mukherjee (CR25) 2015; 19
Das, Suganthan (CR1) 2011; 15
Cheng, Yen, Zhang (CR13) 2016; 367–368
Mohamed (CR15) 2018; 29
Srinivas, Deb (CR23) 1994; 2
Thomas (CR24) 1996
Mohamed, Mohamed, Hassanien (CR9) 2018
Chen, Du, Qian (CR26) 2014; 136
Elhossini, Areibi, Dony (CR28) 2014; 18
Santana-Quintero, Hernández-Díaz, Molina (CR12) 2010; 37
Ma, Wang (CR4) 2019; 23
Zhang, Tian, Cheng (CR19) 2015; 19
Fan, Wei, Li (CR22) 2020; 24
Jamali, Mallipeddi, Salehpour (CR14) 2020; 54
Mohamed, Hadi, Jambi (CR7) 2019; 50
Cheng, Li, Tian (CR5) 2017; 3
S Das (1789_CR1) 2011; 15
J Derrac (1789_CR2) 2011; 1
L Tang (1789_CR18) 2019; 49
K R Opara (1789_CR8) 2019; 44
X Chen (1789_CR26) 2014; 136
J F Qiao (1789_CR3) 2019; 31
A Elhossini (1789_CR28) 2014; 18
J Cheng (1789_CR13) 2016; 367–368
S Bandyopadhyay (1789_CR25) 2015; 19
A W Mohamed (1789_CR7) 2019; 50
Y Zhang (1789_CR10) 2020; 507
K Deb (1789_CR16) 2002; 6
B Thomas (1789_CR24) 1996
A Jamali (1789_CR14) 2020; 54
J F Qiao (1789_CR17) 2017; 275
A W Mohamed (1789_CR15) 2018; 29
S Y Zheng (1789_CR20) 2017; 59
X Y Zhang (1789_CR19) 2015; 19
H Wang (1789_CR21) 2018; 22
V Ho-Huu (1789_CR11) 2018; 29
L V Santana-Quintero (1789_CR12) 2010; 37
Z Ma (1789_CR4) 2019; 23
R Cheng (1789_CR5) 2017; 3
N Srinivas (1789_CR23) 1994; 2
D Martin (1789_CR27) 2014; 18
X Zhou (1789_CR6) 2019; 62
A K Mohamed (1789_CR9) 2018
R Fan (1789_CR22) 2020; 24
References_xml – volume: 507
  start-page: 67
  year: 2020
  end-page: 85
  ident: CR10
  article-title: Binary differential evolution with self-learning for multi-objective feature selection
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.08.040
– volume: 18
  start-page: 54
  year: 2014
  end-page: 69
  ident: CR27
  article-title: A new multiobjective evolutionary algorithm for mining a reduced set of interesting positive and negative quantitative association rules
  publication-title: IEEE Trans Evol Computat
  doi: 10.1109/TEVC.2013.2285016
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: CR2
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evolary Computat
  doi: 10.1016/j.swevo.2011.02.002
– volume: 23
  start-page: 972
  year: 2019
  end-page: 986
  ident: CR4
  article-title: Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons
  publication-title: IEEE Trans Evol Computat
  doi: 10.1109/TEVC.2019.2896967
– volume: 59
  start-page: 276
  year: 2017
  end-page: 287
  ident: CR20
  article-title: A jumping genes inspired multi-objective differential evolution algorithm for microwave components optimization problems
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.05.062
– volume: 18
  start-page: 127
  year: 2014
  end-page: 156
  ident: CR28
  article-title: Strength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization
  publication-title: Evolary Computat
  doi: 10.1162/evco.2010.18.1.18105
– volume: 275
  start-page: 383
  year: 2017
  end-page: 393
  ident: CR17
  article-title: Adaptive fuzzy neural network control of wastewater treatment process with multiobjective operation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.059
– volume: 22
  start-page: 1313
  year: 2018
  end-page: 1333
  ident: CR21
  article-title: APDDE: Self-adaptive parameter dynamics differential evolution algorithm
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2418-1
– volume: 19
  start-page: 201
  year: 2015
  end-page: 213
  ident: CR19
  article-title: An efficient approach to non-dominated sorting for evolutionary multiobjective optimization
  publication-title: IEEE Trans Evol Computat
  doi: 10.1109/TEVC.2014.2308305
– volume: 49
  start-page: 3571
  year: 2019
  end-page: 3585
  ident: CR18
  article-title: Adaptive multiobjective differential evolution with reference axis vicinity mechanism
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2018.2849343
– volume: 50
  start-page: 100455
  year: 2019
  ident: CR7
  article-title: Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization
  publication-title: Swarm Evolary Computat
  doi: 10.1016/j.swevo.2018.10.006
– volume: 44
  start-page: 546
  year: 2019
  end-page: 558
  ident: CR8
  article-title: Differential evolution: A survey of theoretical analyses
  publication-title: Swarm Evolary Computat
  doi: 10.1016/j.swevo.2018.06.010
– start-page: 126
  year: 1996
  end-page: 129
  ident: CR24
  publication-title: Evolutionary Algorithms in Theory and Practice
– volume: 62
  start-page: 192104
  year: 2019
  ident: CR6
  article-title: Solving multi-scenario cardinality constrained optimization problems via multi-objective evolutionary algorithms
  publication-title: Sci China Inf Sci
  doi: 10.1007/s11432-018-9720-6
– volume: 15
  start-page: 4
  year: 2011
  end-page: 31
  ident: CR1
  article-title: Differential evolution: A survey of the state-of-the-art
  publication-title: IEEE Trans Evol Computat
  doi: 10.1109/TEVC.2010.2059031
– year: 2018
  ident: CR9
  article-title: Real-parameter unconstrained optimization based on enhanced AGDE algorithm
  publication-title: Machine Learning Paradigms: Theory and Application
– volume: 2
  start-page: 221
  year: 1994
  end-page: 248
  ident: CR23
  article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evolary Computat
  doi: 10.1162/evco.1994.2.3.221
– volume: 3
  start-page: 67
  year: 2017
  end-page: 81
  ident: CR5
  article-title: A benchmark test suite for evolutionary many-objective optimization
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-017-0039-7
– volume: 37
  start-page: 470
  year: 2010
  end-page: 480
  ident: CR12
  article-title: DEMORS: A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems
  publication-title: Comput Operat Res
  doi: 10.1016/j.cor.2009.02.006
– volume: 136
  start-page: 85
  year: 2014
  end-page: 96
  ident: CR26
  article-title: Multi-objective differential evolution with ranking-based mutation operator and its application in chemical process optimization
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2014.05.007
– volume: 19
  start-page: 400
  year: 2015
  end-page: 413
  ident: CR25
  article-title: An algorithm for many-objective optimization with reduced objective computations: A study in differential evolution
  publication-title: IEEE Trans Evol Computat
  doi: 10.1109/TEVC.2014.2332878
– volume: 29
  start-page: 167
  year: 2018
  end-page: 185
  ident: CR11
  article-title: An improved differential evolution based on roulette wheel selection for shape and size optimization of truss structures with frequency constraints
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-016-2426-1
– volume: 54
  start-page: 100666
  year: 2020
  ident: CR14
  article-title: Multi-objective differential evolution algorithm with fuzzy inference-based adaptive mutation factor for Pareto optimum design of suspension system
  publication-title: Swarm Evolary Computat
  doi: 10.1016/j.swevo.2020.100666
– volume: 29
  start-page: 659
  year: 2018
  end-page: 692
  ident: CR15
  article-title: A novel differential evolution algorithm for solving constrained engineering optimization problems
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-017-1294-6
– volume: 24
  start-page: 13179
  year: 2020
  end-page: 13195
  ident: CR22
  article-title: Self-adaptive weight vector adjustment strategy for decomposition-based multi-objective differential evolution algorithm
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-04732-y
– volume: 367–368
  start-page: 890
  year: 2016
  end-page: 908
  ident: CR13
  article-title: A grid-based adaptive multi-objective differential evolution algorithm
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.07.009
– volume: 31
  start-page: 2537
  year: 2019
  end-page: 2550
  ident: CR3
  article-title: Optimal control for wastewater treatment process based on an adaptive multi-objective differential evolution algorithm
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-017-3212-4
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: CR16
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Computat
  doi: 10.1109/4235.996017
– volume: 275
  start-page: 383
  year: 2017
  ident: 1789_CR17
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.059
– volume: 22
  start-page: 1313
  year: 2018
  ident: 1789_CR21
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2418-1
– volume: 62
  start-page: 192104
  year: 2019
  ident: 1789_CR6
  publication-title: Sci China Inf Sci
  doi: 10.1007/s11432-018-9720-6
– volume: 59
  start-page: 276
  year: 2017
  ident: 1789_CR20
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.05.062
– volume: 49
  start-page: 3571
  year: 2019
  ident: 1789_CR18
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2018.2849343
– volume: 19
  start-page: 400
  year: 2015
  ident: 1789_CR25
  publication-title: IEEE Trans Evol Computat
  doi: 10.1109/TEVC.2014.2332878
– volume: 54
  start-page: 100666
  year: 2020
  ident: 1789_CR14
  publication-title: Swarm Evolary Computat
  doi: 10.1016/j.swevo.2020.100666
– volume: 19
  start-page: 201
  year: 2015
  ident: 1789_CR19
  publication-title: IEEE Trans Evol Computat
  doi: 10.1109/TEVC.2014.2308305
– volume-title: Machine Learning Paradigms: Theory and Application
  year: 2018
  ident: 1789_CR9
– volume: 6
  start-page: 182
  year: 2002
  ident: 1789_CR16
  publication-title: IEEE Trans Evol Computat
  doi: 10.1109/4235.996017
– volume: 29
  start-page: 167
  year: 2018
  ident: 1789_CR11
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-016-2426-1
– volume: 24
  start-page: 13179
  year: 2020
  ident: 1789_CR22
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-04732-y
– volume: 367–368
  start-page: 890
  year: 2016
  ident: 1789_CR13
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.07.009
– volume: 29
  start-page: 659
  year: 2018
  ident: 1789_CR15
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-017-1294-6
– volume: 15
  start-page: 4
  year: 2011
  ident: 1789_CR1
  publication-title: IEEE Trans Evol Computat
  doi: 10.1109/TEVC.2010.2059031
– volume: 3
  start-page: 67
  year: 2017
  ident: 1789_CR5
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-017-0039-7
– volume: 18
  start-page: 54
  year: 2014
  ident: 1789_CR27
  publication-title: IEEE Trans Evol Computat
  doi: 10.1109/TEVC.2013.2285016
– volume: 2
  start-page: 221
  year: 1994
  ident: 1789_CR23
  publication-title: Evolary Computat
  doi: 10.1162/evco.1994.2.3.221
– start-page: 126
  volume-title: Evolutionary Algorithms in Theory and Practice
  year: 1996
  ident: 1789_CR24
– volume: 50
  start-page: 100455
  year: 2019
  ident: 1789_CR7
  publication-title: Swarm Evolary Computat
  doi: 10.1016/j.swevo.2018.10.006
– volume: 44
  start-page: 546
  year: 2019
  ident: 1789_CR8
  publication-title: Swarm Evolary Computat
  doi: 10.1016/j.swevo.2018.06.010
– volume: 23
  start-page: 972
  year: 2019
  ident: 1789_CR4
  publication-title: IEEE Trans Evol Computat
  doi: 10.1109/TEVC.2019.2896967
– volume: 31
  start-page: 2537
  year: 2019
  ident: 1789_CR3
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-017-3212-4
– volume: 136
  start-page: 85
  year: 2014
  ident: 1789_CR26
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2014.05.007
– volume: 1
  start-page: 3
  year: 2011
  ident: 1789_CR2
  publication-title: Swarm Evolary Computat
  doi: 10.1016/j.swevo.2011.02.002
– volume: 37
  start-page: 470
  year: 2010
  ident: 1789_CR12
  publication-title: Comput Operat Res
  doi: 10.1016/j.cor.2009.02.006
– volume: 507
  start-page: 67
  year: 2020
  ident: 1789_CR10
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.08.040
– volume: 18
  start-page: 127
  year: 2014
  ident: 1789_CR28
  publication-title: Evolary Computat
  doi: 10.1162/evco.2010.18.1.18105
SSID ssj0000389014
Score 2.3648186
Snippet The multi-objective differential evolution (MODE) algorithm is an effective method to solve multi-objective optimization problems. However, in the absence of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1676
SubjectTerms Algorithms
Engineering
Evolutionary algorithms
Evolutionary computation
Multiple objective analysis
Mutation
Optimization
Parameters
Probability theory
Wastewater treatment
Title Dynamic multi-objective differential evolution algorithm based on the information of evolution progress
URI https://link.springer.com/article/10.1007/s11431-020-1789-9
https://www.proquest.com/docview/2562249882
Volume 64
WOSCitedRecordID wos000665778800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1869-1900
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000389014
  issn: 1674-7321
  databaseCode: RSV
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PejBb3E6JQdPSqBp2qY5ijo8yBC_2K00TTKVucpW9_f7krbrFBX0mr6G8r7T9_J7CB0brZidZUKiFDQ40DokacgUkZH2TGB8RaVD17_mvV7c74ub6h73pO52r0uSzlM3l90gtMPRF447lMeCiEW0BNEutvMabu8eZz9WLGKc5zC9bYM94cyndTXzu10-x6MmyfxSF3Xhprv-rw_dQGtVdonPSnXYRAt6tIVW5zAHt9HgopxBj10rIcnlS-nycD0qBUx-iPW0UkmcDgf5-Ll4esU24CkMS5Az4gpw1ZHkZo7eNXyB-9xBD93L-_MrUk1bIBmjUUFAMszXlKexz1MZewxMWQaZERyUjYU6VorJQIdxnHFqQhOAMJWUhhmaZpkWbBe1RvlI7yHsiwDWlOGKq4BHnqRAKHyVCRkYrWkbeTXPk6yCIrcTMYZJA6JseZgADxPLw0S00cnslbcSh-M34k4tyKQyyUkCuR2kKwJOFG10WguuefzjZvt_oj5AK77tenEtgh3UKsbv-hAtZ9PieTI-cpr6AVGY5fM
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68QH3wFtczDz4pgaZJN82jeKC4LuKFb6VpEg_WXdld_f1Osq2rooK-ptNQ5k5n8g3AtrOG-1kmtJ6jBgtrE5on3FBdt5ETLjZMB3T9hmw209tbdV7e4-5V3e5VSTJ46uFlNwztePTF4w6TqaJqFMYFBiwPmH9xefP-Y8UjxkUB09s32FPJY1ZVM7_b5XM8GiaZX-qiIdwczf7rQ-dgpswuyd5AHeZhxLYXYPoD5uAi3B0MZtCT0EpIO_px4PJINSoFTb5F7GupkiRv3XW6D_37J-IDniG4hDkjKQFXA0nHfaAPDV_oPpfg-ujwav-YltMWaMFZvU9RMjy2TOZpLHOdRhxNWYvCKYnKxhObGsO1sEmaFpK5xAkUptHaccfyorCKL8NYu9O2K0BiJXDNOGmkEbIeaYaEKjaF0sJZy2oQVTzPihKK3E_EaGVDEGXPwwx5mHkeZqoGO--vPA9wOH4jXq8EmZUm2cswt8N0ReGJoga7leCGj3_cbPVP1FsweXx11sgaJ83TNZiKfQdMaBdch7F-98VuwETx2n_odTeD1r4BIXLo1w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXrwLa7PHDwpwaZJN81R1EVRFsEH3krTJKuy7spu9fc76cNVUUG8ptNQZiaZmebLNwC7zhrue5nQZooeLKyNaBpxQ3XTBk640DBdsOtfyHY7vrtTl1Wf02GNdq-PJMs7DZ6lqZcfPBt3MLr4hmEey2AsfZiMFVXjMCk8jt6X61e37z9ZPHtcUPB7e7A9lTxk9cnmd7N8jk2jhPPLGWkRelrz__7oBZirsk5yWLrJIozZ3hLMfuAiXIbOcdmbnhQQQ9rXj-VWSOoWKrgVdIl9rVyVpN1Of_CQ3z8RHwgNwSHMJUlFxFqI9N0H-QIIhtvqCty0Tq6PTmnVhYFmnDVzihbjoWUyjUOZ6jjguMS1yJyS6IQ8srExXAsbxXEmmYucQCMbrR13LM0yq_gqTPT6PbsGJFQCx4yTRhohm4FmKKhCkyktnLWsAUGt_ySrKMp9p4xuMiJX9jpMUIeJ12GiGrD3_spzyc_xm_BmbdSkWqrDBHM-TGMUVhoN2K-NOHr842Trf5LegenL41ZycdY-34CZ0ANjChThJkzkgxe7BVPZa_4wHGwXDvwGDHrxuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+multi-objective+differential+evolution+algorithm+based+on+the+information+of+evolution+progress&rft.jtitle=Science+China.+Technological+sciences&rft.au=Hou+Ying&rft.au=Wu%2C+YiLin&rft.au=Liu%2C+Zheng&rft.au=Han+HongGui&rft.date=2021-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1674-7321&rft.eissn=1869-1900&rft.volume=64&rft.issue=8&rft.spage=1676&rft.epage=1689&rft_id=info:doi/10.1007%2Fs11431-020-1789-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-7321&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-7321&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-7321&client=summon