A greedy memetic algorithm for a multiobjective dynamic bin packing problem for storing cooling objects

In this paper, a multiobjective dynamic bin packing problem for storing cooling objects is introduced along with a metaheuristic designed to work well in mixed-variable environments. The dynamic bin packing problem is based on cookie production at a bakery, where cookies arrive in batches at a cooli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of heuristics Jg. 25; H. 1; S. 1 - 45
Hauptverfasser: Spencer, Kristina Yancey, Tsvetkov, Pavel V., Jarrell, Joshua J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.02.2019
Springer Nature B.V
Schlagworte:
ISSN:1381-1231, 1572-9397
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, a multiobjective dynamic bin packing problem for storing cooling objects is introduced along with a metaheuristic designed to work well in mixed-variable environments. The dynamic bin packing problem is based on cookie production at a bakery, where cookies arrive in batches at a cooling rack with limited capacity and are packed into boxes with three competing goals. The first is to minimize the number of boxes used. The second objective is to minimize the average initial heat of each box, and the third is to minimize the maximum time until the boxes can be moved to the storefront. The metaheuristic developed here incorporated greedy heuristics into an adaptive evolutionary framework with partial decomposition into clusters of solutions for the crossover operator. The new metaheuristic was applied to a variety benchmark bin packing problems and to a small and large version of the dynamic bin packing problem. It performed as well as other metaheuristics in the benchmark problems and produced more diverse solutions in the dynamic problems. It performed better overall in the small dynamic problem, but its performance could not be proven to be better or worse in the large dynamic problem.
AbstractList In this paper, a multiobjective dynamic bin packing problem for storing cooling objects is introduced along with a metaheuristic designed to work well in mixed-variable environments. The dynamic bin packing problem is based on cookie production at a bakery, where cookies arrive in batches at a cooling rack with limited capacity and are packed into boxes with three competing goals. The first is to minimize the number of boxes used. The second objective is to minimize the average initial heat of each box, and the third is to minimize the maximum time until the boxes can be moved to the storefront. The metaheuristic developed here incorporated greedy heuristics into an adaptive evolutionary framework with partial decomposition into clusters of solutions for the crossover operator. The new metaheuristic was applied to a variety benchmark bin packing problems and to a small and large version of the dynamic bin packing problem. It performed as well as other metaheuristics in the benchmark problems and produced more diverse solutions in the dynamic problems. It performed better overall in the small dynamic problem, but its performance could not be proven to be better or worse in the large dynamic problem.
Author Jarrell, Joshua J.
Tsvetkov, Pavel V.
Spencer, Kristina Yancey
Author_xml – sequence: 1
  givenname: Kristina Yancey
  orcidid: 0000-0003-0448-0411
  surname: Spencer
  fullname: Spencer, Kristina Yancey
  email: kristina.yancey@gmail.com
  organization: Texas A&M University, 3133 TAMU
– sequence: 2
  givenname: Pavel V.
  surname: Tsvetkov
  fullname: Tsvetkov, Pavel V.
  organization: Texas A&M University, 3133 TAMU
– sequence: 3
  givenname: Joshua J.
  orcidid: 0000-0003-1041-8729
  surname: Jarrell
  fullname: Jarrell, Joshua J.
  organization: Oak Ridge National Laboratory, Idaho National Laboratory
BookMark eNp9kMtKxDAUhoMoODP6AO4Crqu5TJtmOQzeYMCNrkOSJjVj29QkI8zbm1JBEHR1TsL_5Zx8S3A6-MEAcIXRDUaI3UaMGCUFwnXBaZ2bE7DAJSP5xNlp7mmNC0woPgfLGPcIIV6XdAHaDWyDMc0R9qY3yWkou9YHl956aH2AEvaHLjmv9kYn92lgcxxkn2PKDXCU-t0NLRyDV52ZgZgyne-0991UZzJegDMru2guv-sKvN7fvWwfi93zw9N2sys0xVUq7NoQWxHJGo15WSskqaTcIrMuMSelqpUhGhOEFK8sU9TWTDLeUEUxllX-0Qpcz-_mnT4OJiax94cw5JGCoGpdMpbhnMJzSgcfYzBWjMH1MhwFRmLyKWafIvsUk08xMewXo12SWc2QgnTdvySZyThOakz42elv6At_SIx3
CitedBy_id crossref_primary_10_3233_JIFS_201581
crossref_primary_10_1109_TIM_2020_2987636
crossref_primary_10_1007_s11633_023_1468_y
crossref_primary_10_1016_j_eswa_2024_123515
crossref_primary_10_1016_j_nucengdes_2019_110479
crossref_primary_10_3390_electronics11020249
crossref_primary_10_1007_s10288_022_00522_4
crossref_primary_10_1007_s10732_024_09537_y
crossref_primary_10_1016_j_asoc_2022_109243
crossref_primary_10_1016_j_pnucene_2019_04_009
crossref_primary_10_1080_01605682_2023_2228339
Cites_doi 10.2307/3002019
10.1007/978-3-642-27549-4_58
10.1109/TEVC.2009.2033671
10.1111/j.1365-2621.1978.tb02309.x
10.1016/j.ejor.2007.06.032
10.1109/TCYB.2013.2295886
10.1016/j.ejor.2014.02.059
10.1007/978-3-319-13072-9
10.1007/BFb0056872
10.1016/S0307-904X(00)00026-3
10.1287/opre.42.2.287
10.1016/j.asoc.2013.12.006
10.1201/b16609
10.1109/TEVC.2010.2058117
10.1007/978-3-540-88051-6_2
10.1007/BF01096763
10.1016/j.ejor.2009.05.005
10.1109/TPDS.2015.2393868
10.1016/j.swevo.2011.03.001
10.1007/978-3-642-32964-7_42
10.1109/CEC.2010.5586259
10.1109/4235.996017
10.1109/MCSE.2007.55
10.1109/TEVC.2003.810758
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Journal of Heuristics is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Journal of Heuristics is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8AL
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1007/s10732-018-9382-0
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1572-9397
EndPage 45
ExternalDocumentID 10_1007_s10732_018_9382_0
GrantInformation_xml – fundername: US Department of Energy, Office of Nuclear Ene
  grantid: DE-AC05-00OR22725
GroupedDBID -52
-5D
-5G
-BR
-EM
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CCPQU
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QOK
QOS
R89
R9I
RHV
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
Z86
Z88
Z8U
Z8W
Z92
ZMTXR
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADKFA
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
HZ~
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PQGLB
Q2X
R4E
RNI
RZC
RZD
RZK
S1Z
S26
S28
SCLPG
SDD
T16
TEORI
ZWQNP
3V.
7XB
8AL
8FK
JQ2
L.-
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c316t-f4e2f62a7dc1958b0a3a39f0e451925b8be2c1200b96f7b3f87a79d3b311a6853
IEDL.DBID RSV
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000458048900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1381-1231
IngestDate Tue Nov 04 23:00:00 EST 2025
Sat Nov 29 06:01:08 EST 2025
Tue Nov 18 21:31:32 EST 2025
Fri Feb 21 02:36:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Memetic algorithms
Multiobjective combinatorial optimization
Dynamic bin packing problem
Metaheuristics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-f4e2f62a7dc1958b0a3a39f0e451925b8be2c1200b96f7b3f87a79d3b311a6853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0448-0411
0000-0003-1041-8729
PQID 2064577200
PQPubID 26068
PageCount 45
ParticipantIDs proquest_journals_2064577200
crossref_primary_10_1007_s10732_018_9382_0
crossref_citationtrail_10_1007_s10732_018_9382_0
springer_journals_10_1007_s10732_018_9382_0
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationTitle Journal of heuristics
PublicationTitleAbbrev J Heuristics
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References AnilySBramelJSimchi-LeviDWorst-case analysis of heuristics for the bin packing problem with general cost structuresOper. Res.199442228729810.1287/opre.42.2.2870805.90092
Grunert da Fonseca, V., Fonseca, C.M., Hall, A.O.: Inferential performance assessment of stochastic optimisers and the attainment function. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A. (eds.) Evolutionary Multi-Criterion Optimization: First International Conference, EMO 2001, Zurich, Switzerland, March 7–9, 2001. Proceedings, pp. 213–225. Springer, Berlin (2001)
IshibuchiHHitotsuyanagiYTsukamotoNNojimaYImplementation of multiobjective memetic algorithms for combinatorial optimization problems: a knapsack problem case studyStud. Comput. Intell.200917127491188.68120
SilvaEOliveiraJFWäscherG2DCPackGen: a problem generator for two-dimensional rectangular cutting and packing problemsEur. J. Oper. Res.2014237846856319892610.1016/j.ejor.2014.02.0591338.90355
GohCKTanKCLiuDSChiamSA competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm designEur. J. Oper. Res.2010202425410.1016/j.ejor.2009.05.0051175.90352
Ochoa, G., Walker, J., Hyde, M., Curtois, T.: Adaptive evolutionary algorithms and extensions to the hyflex hyper-heuristic framework. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) Parallel Problem Solving from Nature—PPSN XII: 12th International Conference, Taormina, Italy, September 1–5, 2012, Proceedings, Part II, Springer, Berlin, pp. 418–427 (2012)
Lee, K.D., Hubbard, S.: Data Structures and Algorithms with Python. Undergraduate Topics in Computer Science, Springer International Publishing Switzerland (2015)
AdraSFFleminPJDiversity management in evolutionary many-objective optimizationIEEE Trans. Evol. Comput.201115218319510.1109/TEVC.2010.2058117
CengelYAHeat Transfer: A Practical Approach20022New YorkMcgraw-HillISBN-10: 0072458933
LiYTangXCaiWDyanmic bin packing for on-demand cloud resource allocationIEEE Trans. Parallel Distrib. Syst.201627115717010.1109/TPDS.2015.2393868
KulackiFAKennedySCMeasurement of the thermophysical properties of common cookie coughJ. Food Sci.19784338038410.1111/j.1365-2621.1978.tb02309.x
Nicoarǎ, E.S.: Performance measures for multi-objective optimization algorithms. Buletinul Universitǎţii Petrol–Gaze din Ploieşti, Seria Matematicǎ-Informaticǎ-Fizicǎ 59(1), 19–28 (2007)
Lara, O.D., Labrador, M.A.: A multiobjective ant colony-based optimization algorithm for the bin packing problem with load balancing. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)
ButenkoSPardalosPMNumerical Methods and Optimization: An Introduction2014Boca RatonCRC Press10.1201/b166091288.65001
DahmaniNClautiauxFKrichenSTalbiEGSelf-adaptive metaheuristics for solving a multi-objective 2-dimensional vector packing problemAppl. Soft Comput.20141612413610.1016/j.asoc.2013.12.006
Dartey, C.K., Finley, J.W., Thulin, R.R.: Process for Preparing Chocolate Chip Cookies Containing Low Melting Fat and Product. U.S. Patent No. 4,722,849, Issued Date February 2 (1988)
Fonseca, C.M., Guerreiro, A.P., López-Ibáñez, M., Paquete, L.: On the computation of the empirical attainment function. In: Takahashi, R.H., Deb, K., Wanner, E.F., Greco, S. (eds.) Evolutionary Multi-Criterion Optimization: 6th International Conference, EMO 2011, Ouro Preto, Brazil, April 5–8, 2011. Proceedings, pp. 106–120. Springer, Berlin (2011)
KeLZhangQBattitiRHybridization of decomposition and local search for multiobjective optimizationIEEE Tran. Cybern.201444101808182010.1109/TCYB.2013.2295886
DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans. Evol. Comput.20026218219710.1109/4235.996017
Zitzler, E., Thiele, L.: Parallel Problem Solving from Nature (PPSN V), Springer, Berlin, Germany, Book Section Multiobjective Optimization Using Evolutionary Algorithms—A Comparative Case Study, pp. 292–301 (1998)
Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, New York, Chapter 8. Bin-packing problem, pp. 221–245 (1990)
SatterthwaiteFAn approximate distribution of estimates of variance componentsBiom. Bull.19462611011410.2307/3002019
HunterJMatplotlib: a 2D graphics environmentComput. Sci. Eng.200793909510.1109/MCSE.2007.55
Chwatal, A.M., Pirkwieser, S.: Solving the two-dimensional bin-packing problem with variable bin sizes by greedy randomized adaptive search procedures and variable neighborhood search. In: International Conference on Computer Aided Systems Theory, pp. 456–463 (2011)
Fonseca, C.M., Knowles, J.D., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. In: Evolutionary Multi-Criterion Optimization: First International Conference, EMO 2005, Guanajauto, Mexico (2005)
NitinNKarweMVWelti-ChanesJVelez-RuizJFBarbosa-CánovasGVHeat transfer coefficient for model cookies in a turbulent multiple jet impingement systemTransport Phenomena in Food Processing2002Boca RatonCRC Press357376
ZhangQLiuWTsangEVirginasBExpensive multiobjective optimization by MOEA/D with gaussian process modelIEEE Trans. Evol. Comput.201014345647310.1109/TEVC.2009.2033671
FeoTAResendeMGGreedy randomized adaptive search proceduresJ. Global Optim.19956109133132287510.1007/BF010967630822.90110
ZhouAQuBYLiHZhaoSZSuganthanPNZhangQMultiobjective evolutionary algorithms: a survey of the state of the artSwarm Evolut. Comput.201111324910.1016/j.swevo.2011.03.001
Abdi, H.: Encyclopedia of Measurements and Statistics, Thousand Oaks, CA, Chapter, The Bonferroni and Sidak Corrections for Multiple Procedures (2007)
LiuDSTanKCHuangSYGohCKHoWKOn solving multiobjective bin packing problems using evolutionary particle swarm optimizationEur. J. Oper. Res.20081902357382241297910.1016/j.ejor.2007.06.0321146.90510
CaoYJJiangLWuQHAn evolutionary programming approach to mixed-variable optimization problemsAppl. Math. Model.20002493194210.1016/S0307-904X(00)00026-31168.90636
SatheMSchenkOBurkhartHSolving Bi-objective Many-Constraint Bin Packing Problems in Automobile Sheet Metal Forming Processes2009BerlinSpringer246260
ZitzlerEThieleLLaumannsMFonsecaCMFonsecaVGdPerformance assessment of multiobjective optimizers: an analysis and reviewIEEE Trans. Evol. Comput.20037211713210.1109/TEVC.2003.810758
9382_CR7
S Anily (9382_CR3) 1994; 42
9382_CR9
J Hunter (9382_CR16) 2007; 9
9382_CR1
M Sathe (9382_CR28) 2009
E Zitzler (9382_CR34) 2003; 7
A Zhou (9382_CR32) 2011; 1
YJ Cao (9382_CR5) 2000; 24
N Nitin (9382_CR26) 2002
TA Feo (9382_CR11) 1995; 6
H Ishibuchi (9382_CR17) 2009; 171
9382_CR20
9382_CR21
9382_CR27
9382_CR24
9382_CR25
Y Li (9382_CR22) 2016; 27
F Satterthwaite (9382_CR29) 1946; 2
YA Cengel (9382_CR6) 2002
L Ke (9382_CR18) 2014; 44
S Butenko (9382_CR4) 2014
FA Kulacki (9382_CR19) 1978; 43
Q Zhang (9382_CR31) 2010; 14
N Dahmani (9382_CR8) 2014; 16
DS Liu (9382_CR23) 2008; 190
CK Goh (9382_CR14) 2010; 202
9382_CR33
9382_CR12
E Silva (9382_CR30) 2014; 237
9382_CR15
K Deb (9382_CR10) 2002; 6
9382_CR13
SF Adra (9382_CR2) 2011; 15
References_xml – reference: NitinNKarweMVWelti-ChanesJVelez-RuizJFBarbosa-CánovasGVHeat transfer coefficient for model cookies in a turbulent multiple jet impingement systemTransport Phenomena in Food Processing2002Boca RatonCRC Press357376
– reference: Zitzler, E., Thiele, L.: Parallel Problem Solving from Nature (PPSN V), Springer, Berlin, Germany, Book Section Multiobjective Optimization Using Evolutionary Algorithms—A Comparative Case Study, pp. 292–301 (1998)
– reference: Fonseca, C.M., Guerreiro, A.P., López-Ibáñez, M., Paquete, L.: On the computation of the empirical attainment function. In: Takahashi, R.H., Deb, K., Wanner, E.F., Greco, S. (eds.) Evolutionary Multi-Criterion Optimization: 6th International Conference, EMO 2011, Ouro Preto, Brazil, April 5–8, 2011. Proceedings, pp. 106–120. Springer, Berlin (2011)
– reference: ButenkoSPardalosPMNumerical Methods and Optimization: An Introduction2014Boca RatonCRC Press10.1201/b166091288.65001
– reference: Grunert da Fonseca, V., Fonseca, C.M., Hall, A.O.: Inferential performance assessment of stochastic optimisers and the attainment function. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A. (eds.) Evolutionary Multi-Criterion Optimization: First International Conference, EMO 2001, Zurich, Switzerland, March 7–9, 2001. Proceedings, pp. 213–225. Springer, Berlin (2001)
– reference: ZitzlerEThieleLLaumannsMFonsecaCMFonsecaVGdPerformance assessment of multiobjective optimizers: an analysis and reviewIEEE Trans. Evol. Comput.20037211713210.1109/TEVC.2003.810758
– reference: LiuDSTanKCHuangSYGohCKHoWKOn solving multiobjective bin packing problems using evolutionary particle swarm optimizationEur. J. Oper. Res.20081902357382241297910.1016/j.ejor.2007.06.0321146.90510
– reference: SatheMSchenkOBurkhartHSolving Bi-objective Many-Constraint Bin Packing Problems in Automobile Sheet Metal Forming Processes2009BerlinSpringer246260
– reference: HunterJMatplotlib: a 2D graphics environmentComput. Sci. Eng.200793909510.1109/MCSE.2007.55
– reference: Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, New York, Chapter 8. Bin-packing problem, pp. 221–245 (1990)
– reference: Abdi, H.: Encyclopedia of Measurements and Statistics, Thousand Oaks, CA, Chapter, The Bonferroni and Sidak Corrections for Multiple Procedures (2007)
– reference: IshibuchiHHitotsuyanagiYTsukamotoNNojimaYImplementation of multiobjective memetic algorithms for combinatorial optimization problems: a knapsack problem case studyStud. Comput. Intell.200917127491188.68120
– reference: GohCKTanKCLiuDSChiamSA competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm designEur. J. Oper. Res.2010202425410.1016/j.ejor.2009.05.0051175.90352
– reference: SatterthwaiteFAn approximate distribution of estimates of variance componentsBiom. Bull.19462611011410.2307/3002019
– reference: AnilySBramelJSimchi-LeviDWorst-case analysis of heuristics for the bin packing problem with general cost structuresOper. Res.199442228729810.1287/opre.42.2.2870805.90092
– reference: Chwatal, A.M., Pirkwieser, S.: Solving the two-dimensional bin-packing problem with variable bin sizes by greedy randomized adaptive search procedures and variable neighborhood search. In: International Conference on Computer Aided Systems Theory, pp. 456–463 (2011)
– reference: Dartey, C.K., Finley, J.W., Thulin, R.R.: Process for Preparing Chocolate Chip Cookies Containing Low Melting Fat and Product. U.S. Patent No. 4,722,849, Issued Date February 2 (1988)
– reference: Lara, O.D., Labrador, M.A.: A multiobjective ant colony-based optimization algorithm for the bin packing problem with load balancing. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)
– reference: Nicoarǎ, E.S.: Performance measures for multi-objective optimization algorithms. Buletinul Universitǎţii Petrol–Gaze din Ploieşti, Seria Matematicǎ-Informaticǎ-Fizicǎ 59(1), 19–28 (2007)
– reference: Lee, K.D., Hubbard, S.: Data Structures and Algorithms with Python. Undergraduate Topics in Computer Science, Springer International Publishing Switzerland (2015)
– reference: DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans. Evol. Comput.20026218219710.1109/4235.996017
– reference: KulackiFAKennedySCMeasurement of the thermophysical properties of common cookie coughJ. Food Sci.19784338038410.1111/j.1365-2621.1978.tb02309.x
– reference: KeLZhangQBattitiRHybridization of decomposition and local search for multiobjective optimizationIEEE Tran. Cybern.201444101808182010.1109/TCYB.2013.2295886
– reference: AdraSFFleminPJDiversity management in evolutionary many-objective optimizationIEEE Trans. Evol. Comput.201115218319510.1109/TEVC.2010.2058117
– reference: DahmaniNClautiauxFKrichenSTalbiEGSelf-adaptive metaheuristics for solving a multi-objective 2-dimensional vector packing problemAppl. Soft Comput.20141612413610.1016/j.asoc.2013.12.006
– reference: Ochoa, G., Walker, J., Hyde, M., Curtois, T.: Adaptive evolutionary algorithms and extensions to the hyflex hyper-heuristic framework. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) Parallel Problem Solving from Nature—PPSN XII: 12th International Conference, Taormina, Italy, September 1–5, 2012, Proceedings, Part II, Springer, Berlin, pp. 418–427 (2012)
– reference: CaoYJJiangLWuQHAn evolutionary programming approach to mixed-variable optimization problemsAppl. Math. Model.20002493194210.1016/S0307-904X(00)00026-31168.90636
– reference: FeoTAResendeMGGreedy randomized adaptive search proceduresJ. Global Optim.19956109133132287510.1007/BF010967630822.90110
– reference: CengelYAHeat Transfer: A Practical Approach20022New YorkMcgraw-HillISBN-10: 0072458933
– reference: ZhangQLiuWTsangEVirginasBExpensive multiobjective optimization by MOEA/D with gaussian process modelIEEE Trans. Evol. Comput.201014345647310.1109/TEVC.2009.2033671
– reference: ZhouAQuBYLiHZhaoSZSuganthanPNZhangQMultiobjective evolutionary algorithms: a survey of the state of the artSwarm Evolut. Comput.201111324910.1016/j.swevo.2011.03.001
– reference: Fonseca, C.M., Knowles, J.D., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. In: Evolutionary Multi-Criterion Optimization: First International Conference, EMO 2005, Guanajauto, Mexico (2005)
– reference: LiYTangXCaiWDyanmic bin packing for on-demand cloud resource allocationIEEE Trans. Parallel Distrib. Syst.201627115717010.1109/TPDS.2015.2393868
– reference: SilvaEOliveiraJFWäscherG2DCPackGen: a problem generator for two-dimensional rectangular cutting and packing problemsEur. J. Oper. Res.2014237846856319892610.1016/j.ejor.2014.02.0591338.90355
– ident: 9382_CR13
– volume: 2
  start-page: 110
  issue: 6
  year: 1946
  ident: 9382_CR29
  publication-title: Biom. Bull.
  doi: 10.2307/3002019
– start-page: 357
  volume-title: Transport Phenomena in Food Processing
  year: 2002
  ident: 9382_CR26
– volume-title: Heat Transfer: A Practical Approach
  year: 2002
  ident: 9382_CR6
– ident: 9382_CR7
  doi: 10.1007/978-3-642-27549-4_58
– volume: 14
  start-page: 456
  issue: 3
  year: 2010
  ident: 9382_CR31
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2033671
– volume: 43
  start-page: 380
  year: 1978
  ident: 9382_CR19
  publication-title: J. Food Sci.
  doi: 10.1111/j.1365-2621.1978.tb02309.x
– start-page: 246
  volume-title: Solving Bi-objective Many-Constraint Bin Packing Problems in Automobile Sheet Metal Forming Processes
  year: 2009
  ident: 9382_CR28
– volume: 190
  start-page: 357
  issue: 2
  year: 2008
  ident: 9382_CR23
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2007.06.032
– volume: 44
  start-page: 1808
  issue: 10
  year: 2014
  ident: 9382_CR18
  publication-title: IEEE Tran. Cybern.
  doi: 10.1109/TCYB.2013.2295886
– volume: 237
  start-page: 846
  year: 2014
  ident: 9382_CR30
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2014.02.059
– ident: 9382_CR15
– ident: 9382_CR21
  doi: 10.1007/978-3-319-13072-9
– ident: 9382_CR33
  doi: 10.1007/BFb0056872
– ident: 9382_CR24
– volume: 24
  start-page: 931
  year: 2000
  ident: 9382_CR5
  publication-title: Appl. Math. Model.
  doi: 10.1016/S0307-904X(00)00026-3
– volume: 42
  start-page: 287
  issue: 2
  year: 1994
  ident: 9382_CR3
  publication-title: Oper. Res.
  doi: 10.1287/opre.42.2.287
– volume: 16
  start-page: 124
  year: 2014
  ident: 9382_CR8
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.12.006
– volume-title: Numerical Methods and Optimization: An Introduction
  year: 2014
  ident: 9382_CR4
  doi: 10.1201/b16609
– volume: 15
  start-page: 183
  issue: 2
  year: 2011
  ident: 9382_CR2
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2058117
– volume: 171
  start-page: 27
  year: 2009
  ident: 9382_CR17
  publication-title: Stud. Comput. Intell.
  doi: 10.1007/978-3-540-88051-6_2
– volume: 6
  start-page: 109
  year: 1995
  ident: 9382_CR11
  publication-title: J. Global Optim.
  doi: 10.1007/BF01096763
– volume: 202
  start-page: 42
  year: 2010
  ident: 9382_CR14
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2009.05.005
– volume: 27
  start-page: 157
  issue: 1
  year: 2016
  ident: 9382_CR22
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2015.2393868
– ident: 9382_CR9
– ident: 9382_CR12
– volume: 1
  start-page: 32
  issue: 1
  year: 2011
  ident: 9382_CR32
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2011.03.001
– ident: 9382_CR27
  doi: 10.1007/978-3-642-32964-7_42
– ident: 9382_CR20
  doi: 10.1109/CEC.2010.5586259
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 9382_CR10
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– ident: 9382_CR25
– volume: 9
  start-page: 90
  issue: 3
  year: 2007
  ident: 9382_CR16
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 7
  start-page: 117
  issue: 2
  year: 2003
  ident: 9382_CR34
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810758
– ident: 9382_CR1
SSID ssj0009853
Score 2.2762926
Snippet In this paper, a multiobjective dynamic bin packing problem for storing cooling objects is introduced along with a metaheuristic designed to work well in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial Intelligence
Benchmarks
Boxes
Calculus of Variations and Optimal Control; Optimization
Cookies
Cooling
Greedy algorithms
Heuristic methods
Management Science
Mathematics
Mathematics and Statistics
Multiple objective analysis
Operations Research
Operations Research/Decision Theory
Packing problem
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1BywADhQKiUJAHJlAkO27jZEIFFTGgqkKAukW24xRQv2gLv59z4hBAogtrEluOnn2-O5_fAzgLqYiETHzPiDaz2SpcUlJqL1HaEsSJdpqlBp7uRK8XDgZR3yXcFq6ssrCJmaFOptrmyDFID1ptdAUpvZy9eVY1yp6uOgmNdahapjKc59Wrbq9_X9LuhhkPJcN9yUMbzYpzzfzynOC2LAFHx9HNpD93ptLd_HVCmm08N7X_DnkHtp3LSTr5HNmFNTOpQ62QcyBudddh6xs34R4MOwRDcbTBZGzG9qYjkaMh9r58HhN0dIkkWS3iVL3mJpMkubY9wVCbYCBuU_DEydVkDTI6Enymp1YnaEjylot9eLzpPlzfek6VwdOcBUsvbRk_DXwpEm2JahSVXPIopcYS1fhtFSrja4Y_raIgFYqnoZAiSrjijMkA8TiAymQ6MYdAhNBK-TQRzPBWlNBIqcBXoWT4WIbKbwAtEIm1oyy3yhmjuCRbtiDGCGJsQYxpA86_msxyvo5VHzcL4GK3dBdxiVoDLgroy9d_dna0urNj2ERfK8oLvptQWc7fzQls6I_ly2J-6ubtJ5WC87Y
  priority: 102
  providerName: ProQuest
Title A greedy memetic algorithm for a multiobjective dynamic bin packing problem for storing cooling objects
URI https://link.springer.com/article/10.1007/s10732-018-9382-0
https://www.proquest.com/docview/2064577200
Volume 25
WOSCitedRecordID wos000458048900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1572-9397
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009853
  issn: 1381-1231
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB7U-qAP3uJRSx58UhZyuJvdRxVFUEvxqMfLkmSzVbGtdKu_38ketooK-hLISchkJjPJ5BuA7ZDKSKqEe1b6zN1WIUspZbxEGwcQJ_00vxpon8lmM7y9jVrlP-6s8navniRzST322U0K50aAowlUC9FOr_kObMaZ6JftEdJumENPMjyKPBTLrHrK_G6Iz4fRSMP88iianzXH8_-a5QLMlaol2S_2wiJM2N4SzFdhG0jJxUswO4ZBiLnzD-DWbBk6-wQNcJS8pGu77n8jUc-d_uBx-NAlqN4SRXIPxL5-KgQlSYqI9gQNbILmt7t4J2WQmrxDDkKCZabvogN1SNEzW4Hr46OrwxOvjMXgGcGCoZfuWZ4GXMnEOHgaTZVQIkqpdfA03NehttwwZDkdBanUIg2lklEitGBMBUiSVZjq9Xt2DYiURmtOE8ms2IsSGmkdcB0qhsUq1HwdaEWU2JRA5S5exnM8glh2ixzjIsdukWO6DjsfXV4KlI7fGtcrSsclw2Yxd7h9aGlQrN6tKDuq_nGwjT-13oQZVLiiwuu7DlPDwavdgmnzNnzMBg2YlDd3DagdHDVbF5g7lR6m5_QQ05Z_38j3-Ts6-_HN
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hWgl6KOWlbkuLD_QCiuTHbpwcKoRoEYhl1QMgbsF2nO1WbHa7u1Dtn-pvZCaPpkUqNw5cE9uRnW8e9oy_AdiJuI61SWXgdUfQaRWKlDEuSK0jgjjdyYqjgcuu7vWiq6v42wL8ru_CUFplrRMLRZ2OHJ2R4yY9bHfQFeR8f_wzoKpRFF2tS2iUsDj181-4ZZt-PvmC__eTlEdfzw-Pg6qqQOCUCGdB1vYyC6XRqSOiFcuNMirOuCeiFdmxkfXSCfyOjcNMW5VF2ug4VVYJYcKIqkSgyn_Rxo0XydUZP2xIfqOC9VKgFQzQIog6ilpe1dOKkiBwLRQ6tfxfO9g4tw_isYWZO1p5bgv0Bl5XDjU7KCVgFRZ8vgYrdbEKVumuNXj1F_PiOvQPWH-ChnvOhn5I9ziZuenjbGbfhwzdeGZYkWk5sj9Kg8DSeW6G2MwOcjY2jgIMrCrGU3QoyFbwmRtRFaQ-K3tON-DiSSa_CYv5KPdvgWntrJU81cKrdpzy2NpQ2sgIfGwiK1vAawQkriJkp7ogN0lDJU2gSRA0CYEm4S3Y_dNlXLKRPNZ4qwZKUimmadKgpAV7NdSa1_8d7N3jg23D0vH5WTfpnvRO38MyepVxmdq-BYuzya3_AC_d3WwwnXwsJIbB9VMj8B4NzE5H
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VpUJwoKWAWFqKD3ABRfhjEzsHhCraFVWr1R4AVVyC7ThLUTe77C6g_Wv9dczkg5RK9NYD18R2ZOd5ZmyP3wN4brhOtc1lFHQsaLcKp5S1PsqdJ4I4HRfV1sCnEz0cmtPTdLQGF-1dGEqrbG1iZajzqac9clykJ_0YQ0HOXxdNWsToYPB29j0iBSk6aW3lNGqIHIfVL1y-Ld4cHeC_fiHl4PDDu_dRozAQeSWSZVT0gywSaXXuiXTFcausSgseiHRFxs64IL3Ab7o0KbRThdFWp7lySgibGFKMQPN_S_cTQ-lko_hzR_hrKgZMgR4xQu8g2hPV-tqeVpQQgeOiMMDlf_vELtC9cjZbubzB5v88WFtwrwm02X49M-7DWii3YbMVsWCNTduGu5cYGR_AeJ-N5-jQV2wSJnS_k9nzMfZm-XXCMLxnllUZmFP3rXYULF-VdoLF3FnJZtbTwQNrRHqqChUJCz7zU1JHGrO65uIhfLyRzj-C9XJahsfAtPbOSZ5rEVQ_zXnqXCKdsQIfW-NkD3iLhsw3RO2kF3KedRTTBKAMAZQRgDLeg5d_qsxqlpLrCu-2oMkag7XIOsT04FULu-71Pxt7cn1jz-A2Ai87ORoe78AdDDbTOuN9F9aX8x_hKWz4n8uzxXyvmjwMvtw0AH8Dt6ZXVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+greedy+memetic+algorithm+for+a+multiobjective+dynamic+bin+packing+problem+for+storing+cooling+objects&rft.jtitle=Journal+of+heuristics&rft.au=Spencer%2C+Kristina+Yancey&rft.au=Tsvetkov%2C+Pavel+V.&rft.au=Jarrell%2C+Joshua+J.&rft.date=2019-02-01&rft.pub=Springer+US&rft.issn=1381-1231&rft.eissn=1572-9397&rft.volume=25&rft.issue=1&rft.spage=1&rft.epage=45&rft_id=info:doi/10.1007%2Fs10732-018-9382-0&rft.externalDocID=10_1007_s10732_018_9382_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1381-1231&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1381-1231&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1381-1231&client=summon