Formulas for Computing Euler-Type Integrals and Their Application to the Problem of Constructing a Conformal Mapping of Polygons

This paper deals with Euler-type integrals and the closely related Lauricella function , which is a hypergeometric function of many complex variables . For new analytic continuation formulas are found that represent it in the form of Horn hypergeometric series exponentially converging in correspondi...

Full description

Saved in:
Bibliographic Details
Published in:Computational mathematics and mathematical physics Vol. 63; no. 11; pp. 1955 - 1988
Main Author: Bezrodnykh, S. I.
Format: Journal Article
Language:English
Published: Moscow Pleiades Publishing 01.11.2023
Springer Nature B.V
Subjects:
ISSN:0965-5425, 1555-6662
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper deals with Euler-type integrals and the closely related Lauricella function , which is a hypergeometric function of many complex variables . For new analytic continuation formulas are found that represent it in the form of Horn hypergeometric series exponentially converging in corresponding subdomains of , including near hyperplanes of the form , , . The continuation formulas and identities for found in this paper make up an effective apparatus for computing this function and Euler-type integrals expressed in terms of it in the entire complex space , including complicated cases when the variables form one or several groups of closely spaced neighbors. The results are used to compute parameters of the Schwarz–Christoffel integral in the case of crowding and to construct conformal mappings of polygons.
AbstractList This paper deals with Euler-type integrals and the closely related Lauricella function , which is a hypergeometric function of many complex variables . For new analytic continuation formulas are found that represent it in the form of Horn hypergeometric series exponentially converging in corresponding subdomains of , including near hyperplanes of the form , , . The continuation formulas and identities for found in this paper make up an effective apparatus for computing this function and Euler-type integrals expressed in terms of it in the entire complex space , including complicated cases when the variables form one or several groups of closely spaced neighbors. The results are used to compute parameters of the Schwarz–Christoffel integral in the case of crowding and to construct conformal mappings of polygons.
This paper deals with Euler-type integrals and the closely related Lauricella function , which is a hypergeometric function of many complex variables . For new analytic continuation formulas are found that represent it in the form of Horn hypergeometric series exponentially converging in corresponding subdomains of , including near hyperplanes of the form , , . The continuation formulas and identities for found in this paper make up an effective apparatus for computing this function and Euler-type integrals expressed in terms of it in the entire complex space , including complicated cases when the variables form one or several groups of closely spaced neighbors. The results are used to compute parameters of the Schwarz–Christoffel integral in the case of crowding and to construct conformal mappings of polygons.
Author Bezrodnykh, S. I.
Author_xml – sequence: 1
  givenname: S. I.
  surname: Bezrodnykh
  fullname: Bezrodnykh, S. I.
  email: sbezrodnykh@mail.ru
  organization: Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
BookMark eNp9kEFLwzAYhoNMcJv-AG8Bz9WkadL2OMamg4kD57mkabp1tElM0sNu_nTTTRAUPYXke5_nC-8EjJRWEoBbjO4xJsnDK8oZpUlMY4IxQjS-AGNMKY0YY_EIjIdxNMyvwMS5A0KY5RkZg4-ltl3fcgdrbeFcd6b3jdrBRd9KG22PRsKV8nJneesgVxXc7mVj4cyYthHcN1pBr6HfS7ixumxlB3UdNMp524uTiQ_XIO94C5-5McNbyGx0e9yF3DW4rINb3nydU_C2XGznT9H65XE1n60jQTDzUU0ITThPCUoZEXmZUVxldZkQHFNWsaxmpJKIVnkpsBRJzFNa4ZxTwquyxEySKbg7e43V7710vjjo3qqwsiAxzVFCsjQNKXxOCauds7IujG06bo8FRsVQdPGr6MCkPxjR-FM13vKm_ZeMz6QLW9RO2u8__Q19Av5Ek4c
CitedBy_id crossref_primary_10_1088_1742_6596_2964_1_012058
crossref_primary_10_1134_S0965542523120187
crossref_primary_10_1134_S0001434625030174
crossref_primary_10_1134_S0965542524701604
Cites_doi 10.1007/BF03012437
10.1134/S0965542522120041
10.1145/229473.229475
10.1070/RM1992v047n04ABEH000915
10.1080/10652469.2020.1744590
10.1070/RM9841
10.1080/10652469.2021.2017427
10.1080/10652469.2022.2056600
10.1007/978-3-642-87224-2
10.1134/S0965542522120132
10.1016/0001-8708(90)90048-R
10.1137/060677392
10.1016/j.nuclphysb.2017.05.018
10.1007/978-3-322-90163-7
10.1016/0377-0427(86)90139-1
10.1088/0264-9381/24/7/007
10.1137/0901004
10.1007/978-3-642-94749-0
10.1134/S0001434622090218
10.1070/SM2012v203n12ABEH004284
10.1134/S0965542521110154
10.1093/mnras/stz787
10.1134/S1995080219070096
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2023. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2023, Vol. 63, No. 11, pp. 1955–1988. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2023, Vol. 63, No. 11, pp. 1763–1798.
Pleiades Publishing, Ltd. 2023.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2023. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2023, Vol. 63, No. 11, pp. 1955–1988. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2023, Vol. 63, No. 11, pp. 1763–1798.
– notice: Pleiades Publishing, Ltd. 2023.
DBID AAYXX
CITATION
3V.
7SC
7TB
7U5
7WY
7WZ
7XB
87Z
88I
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
DOI 10.1134/S0965542523110052
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ABI/INFORM China
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1555-6662
EndPage 1988
ExternalDocumentID 10_1134_S0965542523110052
GroupedDBID --K
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.VR
06D
0R~
0VY
1B1
1N0
29F
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
408
40D
40E
5GY
5VS
6J9
6NX
7WY
88I
8FE
8FG
8FH
8FL
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABEFU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
H~9
I-F
IHE
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KOV
L6V
LK5
LLZTM
M0C
M0N
M2P
M41
M4Y
M7R
M7S
MA-
MK~
N2Q
NB0
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9J
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
RIG
RNS
ROL
RPZ
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
TUS
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
XPP
XU3
YLTOR
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7U5
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L.-
L.0
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c316t-f3354aa730763c9b851d8fb431256d68f63de05d9bc1ec42a75d19a53adbb16e3
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001130196500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0965-5425
IngestDate Fri Oct 10 03:41:50 EDT 2025
Sat Nov 29 05:16:11 EST 2025
Tue Nov 18 22:10:30 EST 2025
Fri Feb 21 02:40:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords analytic continuation
Schwarz–Christoffel integral
crowding effect
Lauricella and Horn functions
Euler-type hypergeometric integrals
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-f3354aa730763c9b851d8fb431256d68f63de05d9bc1ec42a75d19a53adbb16e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3259043877
PQPubID 60276
PageCount 34
ParticipantIDs proquest_journals_3259043877
crossref_primary_10_1134_S0965542523110052
crossref_citationtrail_10_1134_S0965542523110052
springer_journals_10_1134_S0965542523110052
PublicationCentury 2000
PublicationDate 20231100
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
PublicationTitle Computational mathematics and mathematical physics
PublicationTitleAbbrev Comput. Math. and Math. Phys
PublicationYear 2023
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References BanjaiL.Revisiting the crowding phenomenon in Schwarz–Christoffel mappingSIAM J. Sci. Comput.200830618636238587810.1137/060677392
K. Matsumoto, “Relative twisted homology and cohomology groups associated with Lauricella’s FD” (2019). ArXiv:1804.00366v2
VlasovV. I.SkorokhodovS. L.Conformal mapping of an L-shaped domain in analytical formComput. Math. Math. Phys.20226219712007453177710.1134/S0965542522120132
BezrodnykhS. I.VlasovV. I.The Riemann–Hilbert problem in a complicated domain for the model of magnetic reconnection in plasmaComput. Math. Math. Phys.2002422632981934042
HenriciP.Applied and Computational Complex Analysis1991New YorkWiley
GaierD.Konstructive Methoden der konformen Abbildung1964BerlinSpringer-Verlag10.1007/978-3-642-87224-2
BergéJ.MasseyR.BaghiQ.TouboulP.Exponential shapelets: Basis functions for data analysis of isolated featureMon. Not. R. Astron. Soc.201948654455910.1093/mnras/stz787
NakipovN. N.NasyrovS. R.“Parametric method for finding accessory parameters in generalized Schwarz–Christoffel integrals,” Uch. Zap. Kazan. Univ. Ser. Fiz.-matNauki2016158201220
BrychkovYu. A.SavischenkoN. V.Application of hypergeometric functions of two variables in wireless communication theoryLobachevskii J. Math.201940938953399418310.1134/S1995080219070096
BezrodnykhS. I.The Lauricella hypergeometric function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{D}^{{(N)}}$$\end{document}Russ. Math. Surv.201873941103110.1070/RM9841
Gel’fandI. M.GraevM. I.RetakhV. S.General hypergeometric systems of equations and series of hypergeometric typeRuss. Math. Surv.199247188120888210.1070/RM1992v047n04ABEH000915
BezrodnykhS. I.Analytic continuation of the Horn hypergeometric series with an arbitrary number of variablesIntegral Transforms Spec. Funct.202031788803415432310.1080/10652469.2020.1744590
V. I. Vlasov, Doctoral Dissertation in Mathematics and Physics (Computing Center, USSR Academy of Sciences, Moscow, 1990).
KratzerA.FranzW.Transzendente Funktionen1960LeipzigAkademische Verlagsgesellschaft
ExtonH.Multiple Hypergeometric Functions and Application1976New YorkWiley
VlasovV. I.Variation in a mapping function under domain deformationDokl. Akad. Nauk SSSR198427512991302746373
PrimoaA.TancredicL.Maximal cuts and differential equations for Feynman integrals: An application to the three-loop massive banana graphNucl. Phys. B2017921316356367927110.1016/j.nuclphysb.2017.05.018
BrychkovYu. A.SavischenkoN. V.On some formulas for the Horn functions 202110.1080/10652469.2021.2017427
TrefethenL. N.DriscollT. A.Schwarz–Christoffel Transformation2005CambridgeCambridge Univ. Press
ErdélyiA.Higher Transcendental Functions (Bateman Manuscript Project)1953New YorkMcGraw-Hill
KalmykovM.BytevV.KniehlB.MochS.-O.WardB.YostS.Anti-Differentiation and the Calculation of Feynman Amplitudes2021ChamSpringer
KraniotisG. V.Periapsis and gravitomagnetic precessions of stellar orbits in Kerr and Kerr–de Sitter black hole spacetimesClassical Quantum Gravitation20072417751808231035710.1088/0264-9381/24/7/007
GoluzinG.KantorovichL.KrylovV.Melent’evP.MuratovM.SteninN.Conformal Mappings of Simply and Multiply Connected Domains1937LeningradNauka
Lavrent’evM. A.ShabatB. V.Methods of the Theory of Functions of a Complex Variable1965MoscowNauka
IwasakiK.KimuraH.ShimomuraSh.YoshidaM.From Gauss to Painlevé: A Modern Theory of Special Functions1991BraunschweigFriedrich Vieweg & Sohn10.1007/978-3-322-90163-7
B. Ananthanarayan, S. Beraay, S. Friot, O. Marichev, and T. Pathak, “On the evaluation of the Appell F2 double hypergeometric function” (2021). arXiv:2111.05798v1
BezrodnykhS. I.Lauricella function and the conformal mapping of polygonsMath. Notes2022112505522453878610.1134/S0001434622090218
ErdélyiA.Higher Transcendental Functions (Bateman Manuscript Project)1955New YorkMcGraw-Hill
VlasovV. I.SkorokhodovS. L.Analytical solution for the cavitating flow over a wedge IIComput. Math. Math. Phys.20216118341854434944810.1134/S0965542521110154
SadykovT. M.TsikhA. K.Hypergeometric and Algebraic Functions of Several Variables2014MoscowNauka
ZemachC.A conformal map formula for difficult casesJ. Comput. Appl. Math.19861420721582903910.1016/0377-0427(86)90139-1
L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis (Fizmatgiz, Moscow, 1962; Wiley, New York, 1964).
TrefethenL. N.Numerical computation of the Schwarz–Christoffel transformationSIAM J. Sci. Stat. Comput.198018210257254210.1137/0901004
AkerblomN.FlohrM.Explicit formulas for the scalar modes in Seiberg–Witten theory with an application to the Argyres–Douglas pointJ. High Energy Phys.20052242138949
BezrodnykhS. I.Formulas for computing the Lauricella function in the case of crowding of variablesComput. Math. Math. Phys.20226220692090453178310.1134/S0965542522120041
KrikelesB. C.RubinR. L.On the crowding of parameters associated with Schwarz–Christoffel transformationAppl. Math. Comput.198828297308973486
BezrodnykhS. I.VlasovV. I.The Riemann–Hilbert problem in domains of complex geometry and its applicationsSpectral Evolution Probl.2006165161
GolubevV. V.Lectures on Analytic Theory of Differential Equations1950MoscowGostekhizdat
BogatyrevA. B.Conformal mapping of rectangular heptagonsSb. Math.201220317151735306006810.1070/SM2012v203n12ABEH004284
KoppenfelsW.StallmannF.Praxis der konformen Abbildung1959BerlinSpringer-Verlag10.1007/978-3-642-94749-0
DriscollT. A.A MATLAB toolbox for Schwarz–Christoffel mappingACM Trans. Math. Soft.19962216818610.1145/229473.229475
LooijengaE.Arithmetic and Geometry around Hypergeometric Functions2005BaselBirkhäuser
GelfandI. M.KapranovM. M.ZelevinskyA. V.Generalized Euler integrals and A-hypergeometric functionsAdv. Math.199084255271108098010.1016/0001-8708(90)90048-R
LauricellaG.Sulle funzioni ipergeometriche a piu variabiliRend. Circ. Math. Palermo1893711115810.1007/BF03012437
BrychkovYu. A.SavischenkoN. V.On some formulas for the Horn function202110.1080/10652469.2022.2056600
N. Akerblom (1901_CR8) 2005; 2
G. V. Kraniotis (1901_CR4) 2007; 24
S. I. Bezrodnykh (1901_CR20) 2018; 73
D. Gaier (1901_CR33) 1964
(1901_CR45) 1955
I. M. Gel’fand (1901_CR22) 1992; 47
A. Primoa (1901_CR5) 2017; 921
N. N. Nakipov (1901_CR37) 2016; 158
G. Lauricella (1901_CR18) 1893; 7
G. Goluzin (1901_CR31) 1937
W. Koppenfels (1901_CR15) 1959
S. I. Bezrodnykh (1901_CR21) 2022; 62
L. N. Trefethen (1901_CR16) 1980; 1
I. M. Gelfand (1901_CR11) 1990; 84
E. Looijenga (1901_CR9) 2005
V. I. Vlasov (1901_CR44) 1984; 275
V. V. Golubev (1901_CR13) 1950
M. A. Lavrent’ev (1901_CR14) 1965
P. Henrici (1901_CR17) 1991
1901_CR26
L. N. Trefethen (1901_CR41) 2005
T. A. Driscoll (1901_CR42) 1996; 22
K. Iwasaki (1901_CR19) 1991
1901_CR43
L. Banjai (1901_CR39) 2008; 30
S. I. Bezrodnykh (1901_CR23) 2020; 31
A. Kratzer (1901_CR1) 1960
T. M. Sadykov (1901_CR24) 2014
M. Kalmykov (1901_CR28) 2021
Yu. A. Brychkov (1901_CR27) 2021
(1901_CR3) 1953
Yu. A. Brychkov (1901_CR25) 2021
C. Zemach (1901_CR29) 1986; 14
B. C. Krikeles (1901_CR30) 1988; 28
Yu. A. Brychkov (1901_CR7) 2019; 40
S. I. Bezrodnykh (1901_CR34) 2002; 42
A. B. Bogatyrev (1901_CR36) 2012; 203
V. I. Vlasov (1901_CR40) 2022; 62
J. Bergé (1901_CR6) 2019; 486
S. I. Bezrodnykh (1901_CR35) 2006; 16
1901_CR12
V. I. Vlasov (1901_CR10) 2021; 61
1901_CR32
S. I. Bezrodnykh (1901_CR38) 2022; 112
H. Exton (1901_CR2) 1976
References_xml – reference: BezrodnykhS. I.Lauricella function and the conformal mapping of polygonsMath. Notes2022112505522453878610.1134/S0001434622090218
– reference: TrefethenL. N.Numerical computation of the Schwarz–Christoffel transformationSIAM J. Sci. Stat. Comput.198018210257254210.1137/0901004
– reference: DriscollT. A.A MATLAB toolbox for Schwarz–Christoffel mappingACM Trans. Math. Soft.19962216818610.1145/229473.229475
– reference: VlasovV. I.SkorokhodovS. L.Conformal mapping of an L-shaped domain in analytical formComput. Math. Math. Phys.20226219712007453177710.1134/S0965542522120132
– reference: ExtonH.Multiple Hypergeometric Functions and Application1976New YorkWiley
– reference: V. I. Vlasov, Doctoral Dissertation in Mathematics and Physics (Computing Center, USSR Academy of Sciences, Moscow, 1990).
– reference: TrefethenL. N.DriscollT. A.Schwarz–Christoffel Transformation2005CambridgeCambridge Univ. Press
– reference: Lavrent’evM. A.ShabatB. V.Methods of the Theory of Functions of a Complex Variable1965MoscowNauka
– reference: L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis (Fizmatgiz, Moscow, 1962; Wiley, New York, 1964).
– reference: KratzerA.FranzW.Transzendente Funktionen1960LeipzigAkademische Verlagsgesellschaft
– reference: KraniotisG. V.Periapsis and gravitomagnetic precessions of stellar orbits in Kerr and Kerr–de Sitter black hole spacetimesClassical Quantum Gravitation20072417751808231035710.1088/0264-9381/24/7/007
– reference: BezrodnykhS. I.VlasovV. I.The Riemann–Hilbert problem in a complicated domain for the model of magnetic reconnection in plasmaComput. Math. Math. Phys.2002422632981934042
– reference: AkerblomN.FlohrM.Explicit formulas for the scalar modes in Seiberg–Witten theory with an application to the Argyres–Douglas pointJ. High Energy Phys.20052242138949
– reference: BanjaiL.Revisiting the crowding phenomenon in Schwarz–Christoffel mappingSIAM J. Sci. Comput.200830618636238587810.1137/060677392
– reference: HenriciP.Applied and Computational Complex Analysis1991New YorkWiley
– reference: BrychkovYu. A.SavischenkoN. V.On some formulas for the Horn functions 202110.1080/10652469.2021.2017427
– reference: GoluzinG.KantorovichL.KrylovV.Melent’evP.MuratovM.SteninN.Conformal Mappings of Simply and Multiply Connected Domains1937LeningradNauka
– reference: BrychkovYu. A.SavischenkoN. V.Application of hypergeometric functions of two variables in wireless communication theoryLobachevskii J. Math.201940938953399418310.1134/S1995080219070096
– reference: Gel’fandI. M.GraevM. I.RetakhV. S.General hypergeometric systems of equations and series of hypergeometric typeRuss. Math. Surv.199247188120888210.1070/RM1992v047n04ABEH000915
– reference: KrikelesB. C.RubinR. L.On the crowding of parameters associated with Schwarz–Christoffel transformationAppl. Math. Comput.198828297308973486
– reference: GaierD.Konstructive Methoden der konformen Abbildung1964BerlinSpringer-Verlag10.1007/978-3-642-87224-2
– reference: KoppenfelsW.StallmannF.Praxis der konformen Abbildung1959BerlinSpringer-Verlag10.1007/978-3-642-94749-0
– reference: NakipovN. N.NasyrovS. R.“Parametric method for finding accessory parameters in generalized Schwarz–Christoffel integrals,” Uch. Zap. Kazan. Univ. Ser. Fiz.-matNauki2016158201220
– reference: BezrodnykhS. I.Analytic continuation of the Horn hypergeometric series with an arbitrary number of variablesIntegral Transforms Spec. Funct.202031788803415432310.1080/10652469.2020.1744590
– reference: ErdélyiA.Higher Transcendental Functions (Bateman Manuscript Project)1953New YorkMcGraw-Hill
– reference: K. Matsumoto, “Relative twisted homology and cohomology groups associated with Lauricella’s FD” (2019). ArXiv:1804.00366v2
– reference: BezrodnykhS. I.The Lauricella hypergeometric function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{D}^{{(N)}}$$\end{document}Russ. Math. Surv.201873941103110.1070/RM9841
– reference: IwasakiK.KimuraH.ShimomuraSh.YoshidaM.From Gauss to Painlevé: A Modern Theory of Special Functions1991BraunschweigFriedrich Vieweg & Sohn10.1007/978-3-322-90163-7
– reference: SadykovT. M.TsikhA. K.Hypergeometric and Algebraic Functions of Several Variables2014MoscowNauka
– reference: VlasovV. I.SkorokhodovS. L.Analytical solution for the cavitating flow over a wedge IIComput. Math. Math. Phys.20216118341854434944810.1134/S0965542521110154
– reference: GelfandI. M.KapranovM. M.ZelevinskyA. V.Generalized Euler integrals and A-hypergeometric functionsAdv. Math.199084255271108098010.1016/0001-8708(90)90048-R
– reference: VlasovV. I.Variation in a mapping function under domain deformationDokl. Akad. Nauk SSSR198427512991302746373
– reference: BergéJ.MasseyR.BaghiQ.TouboulP.Exponential shapelets: Basis functions for data analysis of isolated featureMon. Not. R. Astron. Soc.201948654455910.1093/mnras/stz787
– reference: BogatyrevA. B.Conformal mapping of rectangular heptagonsSb. Math.201220317151735306006810.1070/SM2012v203n12ABEH004284
– reference: ZemachC.A conformal map formula for difficult casesJ. Comput. Appl. Math.19861420721582903910.1016/0377-0427(86)90139-1
– reference: B. Ananthanarayan, S. Beraay, S. Friot, O. Marichev, and T. Pathak, “On the evaluation of the Appell F2 double hypergeometric function” (2021). arXiv:2111.05798v1
– reference: GolubevV. V.Lectures on Analytic Theory of Differential Equations1950MoscowGostekhizdat
– reference: ErdélyiA.Higher Transcendental Functions (Bateman Manuscript Project)1955New YorkMcGraw-Hill
– reference: BrychkovYu. A.SavischenkoN. V.On some formulas for the Horn function202110.1080/10652469.2022.2056600
– reference: LooijengaE.Arithmetic and Geometry around Hypergeometric Functions2005BaselBirkhäuser
– reference: BezrodnykhS. I.Formulas for computing the Lauricella function in the case of crowding of variablesComput. Math. Math. Phys.20226220692090453178310.1134/S0965542522120041
– reference: LauricellaG.Sulle funzioni ipergeometriche a piu variabiliRend. Circ. Math. Palermo1893711115810.1007/BF03012437
– reference: PrimoaA.TancredicL.Maximal cuts and differential equations for Feynman integrals: An application to the three-loop massive banana graphNucl. Phys. B2017921316356367927110.1016/j.nuclphysb.2017.05.018
– reference: BezrodnykhS. I.VlasovV. I.The Riemann–Hilbert problem in domains of complex geometry and its applicationsSpectral Evolution Probl.2006165161
– reference: KalmykovM.BytevV.KniehlB.MochS.-O.WardB.YostS.Anti-Differentiation and the Calculation of Feynman Amplitudes2021ChamSpringer
– volume-title: Anti-Differentiation and the Calculation of Feynman Amplitudes
  year: 2021
  ident: 1901_CR28
– volume-title: Methods of the Theory of Functions of a Complex Variable
  year: 1965
  ident: 1901_CR14
– volume-title: Multiple Hypergeometric Functions and Application
  year: 1976
  ident: 1901_CR2
– volume: 2
  start-page: 24
  year: 2005
  ident: 1901_CR8
  publication-title: J. High Energy Phys.
– volume: 7
  start-page: 111
  year: 1893
  ident: 1901_CR18
  publication-title: Rend. Circ. Math. Palermo
  doi: 10.1007/BF03012437
– volume: 62
  start-page: 2069
  year: 2022
  ident: 1901_CR21
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S0965542522120041
– volume: 22
  start-page: 168
  year: 1996
  ident: 1901_CR42
  publication-title: ACM Trans. Math. Soft.
  doi: 10.1145/229473.229475
– volume-title: Higher Transcendental Functions (Bateman Manuscript Project)
  year: 1953
  ident: 1901_CR3
– volume: 47
  start-page: 1
  year: 1992
  ident: 1901_CR22
  publication-title: Russ. Math. Surv.
  doi: 10.1070/RM1992v047n04ABEH000915
– volume-title: Applied and Computational Complex Analysis
  year: 1991
  ident: 1901_CR17
– volume: 31
  start-page: 788
  year: 2020
  ident: 1901_CR23
  publication-title: Integral Transforms Spec. Funct.
  doi: 10.1080/10652469.2020.1744590
– volume: 73
  start-page: 941
  year: 2018
  ident: 1901_CR20
  publication-title: Russ. Math. Surv.
  doi: 10.1070/RM9841
– volume-title: Conformal Mappings of Simply and Multiply Connected Domains
  year: 1937
  ident: 1901_CR31
– volume-title: On some formulas for the Horn functions
  year: 2021
  ident: 1901_CR25
  doi: 10.1080/10652469.2021.2017427
– volume-title: Arithmetic and Geometry around Hypergeometric Functions
  year: 2005
  ident: 1901_CR9
– volume-title: On some formulas for the Horn function
  year: 2021
  ident: 1901_CR27
  doi: 10.1080/10652469.2022.2056600
– volume-title: Konstructive Methoden der konformen Abbildung
  year: 1964
  ident: 1901_CR33
  doi: 10.1007/978-3-642-87224-2
– volume: 62
  start-page: 1971
  year: 2022
  ident: 1901_CR40
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S0965542522120132
– volume: 84
  start-page: 255
  year: 1990
  ident: 1901_CR11
  publication-title: Adv. Math.
  doi: 10.1016/0001-8708(90)90048-R
– ident: 1901_CR12
– volume: 30
  start-page: 618
  year: 2008
  ident: 1901_CR39
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/060677392
– volume-title: Higher Transcendental Functions (Bateman Manuscript Project)
  year: 1955
  ident: 1901_CR45
– volume: 158
  start-page: 201
  year: 2016
  ident: 1901_CR37
  publication-title: Nauki
– volume: 921
  start-page: 316
  year: 2017
  ident: 1901_CR5
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2017.05.018
– volume-title: From Gauss to Painlevé: A Modern Theory of Special Functions
  year: 1991
  ident: 1901_CR19
  doi: 10.1007/978-3-322-90163-7
– volume: 28
  start-page: 297
  year: 1988
  ident: 1901_CR30
  publication-title: Appl. Math. Comput.
– volume: 14
  start-page: 207
  year: 1986
  ident: 1901_CR29
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(86)90139-1
– ident: 1901_CR26
– volume: 24
  start-page: 1775
  year: 2007
  ident: 1901_CR4
  publication-title: Classical Quantum Gravitation
  doi: 10.1088/0264-9381/24/7/007
– ident: 1901_CR32
– volume: 275
  start-page: 1299
  year: 1984
  ident: 1901_CR44
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 1
  start-page: 82
  year: 1980
  ident: 1901_CR16
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0901004
– volume-title: Hypergeometric and Algebraic Functions of Several Variables
  year: 2014
  ident: 1901_CR24
– volume-title: Praxis der konformen Abbildung
  year: 1959
  ident: 1901_CR15
  doi: 10.1007/978-3-642-94749-0
– volume: 112
  start-page: 505
  year: 2022
  ident: 1901_CR38
  publication-title: Math. Notes
  doi: 10.1134/S0001434622090218
– volume: 16
  start-page: 51
  year: 2006
  ident: 1901_CR35
  publication-title: Spectral Evolution Probl.
– ident: 1901_CR43
– volume: 203
  start-page: 1715
  year: 2012
  ident: 1901_CR36
  publication-title: Sb. Math.
  doi: 10.1070/SM2012v203n12ABEH004284
– volume-title: Schwarz–Christoffel Transformation
  year: 2005
  ident: 1901_CR41
– volume: 61
  start-page: 1834
  year: 2021
  ident: 1901_CR10
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S0965542521110154
– volume-title: Transzendente Funktionen
  year: 1960
  ident: 1901_CR1
– volume: 42
  start-page: 263
  year: 2002
  ident: 1901_CR34
  publication-title: Comput. Math. Math. Phys.
– volume: 486
  start-page: 544
  year: 2019
  ident: 1901_CR6
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stz787
– volume: 40
  start-page: 938
  year: 2019
  ident: 1901_CR7
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080219070096
– volume-title: Lectures on Analytic Theory of Differential Equations
  year: 1950
  ident: 1901_CR13
SSID ssj0016983
Score 2.3181305
Snippet This paper deals with Euler-type integrals and the closely related Lauricella function , which is a hypergeometric function of many complex variables . For new...
This paper deals with Euler-type integrals and the closely related Lauricella function , which is a hypergeometric function of many complex variables . For new...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1955
SubjectTerms Complex variables
Computation
Computational Mathematics and Numerical Analysis
Conformal mapping
Convergence
General Numerical Methods
Geometry
Hypergeometric functions
Hyperplanes
Identities
Integrals
Mathematics
Mathematics and Statistics
Partial differential equations
Polygons
Variables
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6-Dl6sT6xWycGTEmyax3ZPImLRQ0tBBW9LNsmKsHTVbQVv_nRndtMWFXvxuNnZEJjJ5Eu-7HyEnCjbSbWwKePeZUyqmLMUVgVmpLFeWoPUUyU2EQ0G3cfHeBgO3MpwrXKaE6tE7QqLZ-TnAnA6slZRdPHyylA1CtnVIKGxTFYB2XC80tXvDGcsgo7rMpyxVkxBcAZWkwt5foeN2Ab4huPZ6Pd1aQ42f_Cj1bLTa_x3wJtkIwBOellHyBZZ8qNt0gjgk4apXe6Qzx6g1wlgaQowltZiDzAiej3J_RvD7Sq9rUtL5CU1I0fvkWKgl3MCnI4LCnCSDmuNGlpkFOVA6wK10JPBxwoj57RvsC7EE9oMi_zjCex2yUPv-v7qhgV5BmYF12OWCaGkMZAiIEfZGFzMXTdLAZEAjHK6m2nhfFu5OLXcW9kxkXI8NkoYl6Zce7FHVkbFyO8TyrNMRd55xY2SOrMxwjrtHOyltHTKNkl76pzEhtrlKKGRJ9UeRsjklz-b5HT2yUtduGORcWvqwyTM4TKZO7BJzqZRMH_9Z2cHizs7JOsoWV__z9giK-AFf0TW7Pv4uXw7rgL4C96o9Ts
  priority: 102
  providerName: ProQuest
Title Formulas for Computing Euler-Type Integrals and Their Application to the Problem of Constructing a Conformal Mapping of Polygons
URI https://link.springer.com/article/10.1134/S0965542523110052
https://www.proquest.com/docview/3259043877
Volume 63
WOSCitedRecordID wos001130196500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1555-6662
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0016983
  issn: 0965-5425
  databaseCode: 7WY
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1555-6662
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0016983
  issn: 0965-5425
  databaseCode: M0C
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1555-6662
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0016983
  issn: 0965-5425
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1555-6662
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0016983
  issn: 0965-5425
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1555-6662
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0016983
  issn: 0965-5425
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1555-6662
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0016983
  issn: 0965-5425
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1555-6662
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0016983
  issn: 0965-5425
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1555-6662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016983
  issn: 0965-5425
  databaseCode: RSV
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB7RlgMcWihUDS3RHjiBVmSzD8fHtkoEQomspkDhYq1311UlK0F1isSNn94Zr52IpwSXkVYejy3Peucbj3c-gBfaDQsjXcFF8CVXOhW8wKjArbIuKGep9NSQTSSz2ejyMs3afdx197d7V5JsVurIO6Jez6lPicYphohE0NfMLdjBaDcivobz-Yd16cCksfcmanNSb0uZvzXxYzDaIMyfiqJNrJns_dddPoLdFlqykzgXHsO9sNiHvRZmsvYlrvfh4XTdqrV-At8niFpvEUMzhK8skjzgBdn4tgo3nNJU9ja2lKhqZheeXVBpgZ1sCt9stWRokGWRm4YtS0Y0oLExLVqyNGywccWmlvpBXJFOtqy-XaHeU3g_GV-cveEtLQN3UpgVL6XUylpcGnBtcim6VvhRWSASQfjkzag00oeB9mnhRHBqaBPtRWq1tL4ohAnyALYXy0U4BCbKUifBBy2sVqZ0KcE54z3mUEZ57Xow6PyTu7ZnOVFnVHmTu0iV__K8e_ByfcqX2LDjb8rHndPz9t2tc4kZIdVHk6QHrzonbw7_0dizf9I-ggfEXB-3NR7DNjolPIf77uvqur7pw1by8VMfdk7Hs-wcR-8SjnI6OCM5zEgmc5SZ_txvpv8dIgj1mQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXyqtioQUf4AKyWsePbA5VVZWuumq7WolF6i04tlMhRZvSbEG98Yv4jczESVeA6K0HjnEcK7Ln8Y3Hng_gjXZJYaQruAi-5EpnghfoFbhV1gXlLKWeWrKJdDIZnp5m0xX42d-FoWOVvU1sDbWvHe2Rb0nE6ZS1StPd86-cWKMou9pTaESxOApX3zFka3bGH3B93ybJ6GC2f8g7VgHupDALXkqplbUo2ahaLsM_E35YFuhI0ft7MyyN9GFb-6xwIjiV2FR7kVktrS8KYYLEce_AXUWVxeioYDK9zlqYLJb9zIzmGpWhy6IKqbY-UiO1IZ4StBf7ux9cgts_8rGtmxut_W8T9AgedoCa7UUNeAwrYf4E1jpwzTrT1TyFHyNE55cYKzCE6SySWeAMsIPLKlxwCsfZOJbOqBpm557NKIXC9pYJfraoGcJlNo0cPKwuGdGdxgK8OJKlxzYGqNiJpboXZ9RnWldXZ9jvGXy6lXlYh9V5PQ_PgYmy1GnwQQurlSldRrDVeI-xolFeuwFs98KQu642O1GEVHkbo0mV_yU_A3h3_cl5LExyU-eNXmbyzkY1-VJgBvC-l7rl638O9uLmwV7D_cPZyXF-PJ4cvYQHCYLCeHdzA1ZxRcIm3HPfFl-ai1et8jD4fNvC-AtbGlJc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-0itgHq1Xp1ar74JOytNv9yOWx1B4W7XHQKn0Lm_0oQsiV5lrwzT-9M9nNHX6C-BgymYTMbPY3md3fD-CNdvu1ka7mIvjIlS4Fr3FW4FZZF5Sz1HrqxSaK6XR8fl7Oss5pN6x2H1qSaU8DsTS1i91LH7MGido9Jc4SjemG6ETQn827cE_ROnoq10-_LNsIpkw8nGjNyTy3NX_r4seJaYU2f2qQ9vPOZOO_n_gxPMqQkx2kHHkCd0K7CRsZfrI8uLtNWD9ZUrh2T-H7BNHsNWJrhrCWJfEHvDk7um7CFafylR0nqommY7b17IxaDuxg1RBnizlDh2yWNGvYPDKSB02EtejJ0mGPmRt2Yokn4oJsZvPm2wXaPYPPk6Ozww88yzVwJ4VZ8CilVtbiJwO_Wa7EkAs_jjUiFIRV3oyjkT7saV_WTgSn9m2hvSitltbXtTBBPoe1dt6GLWAiRl0EH7SwWpnoSoJ5xnusrYzy2o1gb4hV5TKXOUlqNFVf00hV_fK-R_B2ecllIvL4m_HOkABVHtNdJbFSpL5pUYzg3RDw1ek_Otv-J-vX8GD2flJ9Op5-fAEPSdw-7XzcgTWMT3gJ993N4mt39arP9FsjNfom
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formulas+for+Computing+Euler-Type+Integrals+and+Their+Application+to+the+Problem+of+Constructing+a+Conformal+Mapping+of+Polygons&rft.jtitle=Computational+mathematics+and+mathematical+physics&rft.au=Bezrodnykh%2C+S.+I.&rft.date=2023-11-01&rft.issn=0965-5425&rft.eissn=1555-6662&rft.volume=63&rft.issue=11&rft.spage=1955&rft.epage=1988&rft_id=info:doi/10.1134%2FS0965542523110052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S0965542523110052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-5425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-5425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-5425&client=summon