Formulas for Computing Euler-Type Integrals and Their Application to the Problem of Constructing a Conformal Mapping of Polygons
This paper deals with Euler-type integrals and the closely related Lauricella function , which is a hypergeometric function of many complex variables . For new analytic continuation formulas are found that represent it in the form of Horn hypergeometric series exponentially converging in correspondi...
Saved in:
| Published in: | Computational mathematics and mathematical physics Vol. 63; no. 11; pp. 1955 - 1988 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Moscow
Pleiades Publishing
01.11.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0965-5425, 1555-6662 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper deals with Euler-type integrals and the closely related Lauricella function
, which is a hypergeometric function of many complex variables
. For
new analytic continuation formulas are found that represent it in the form of Horn hypergeometric series exponentially converging in corresponding subdomains of
, including near hyperplanes of the form
,
,
. The continuation formulas and identities for
found in this paper make up an effective apparatus for computing this function and Euler-type integrals expressed in terms of it in the entire complex space
, including complicated cases when the variables form one or several groups of closely spaced neighbors. The results are used to compute parameters of the Schwarz–Christoffel integral in the case of crowding and to construct conformal mappings of polygons. |
|---|---|
| AbstractList | This paper deals with Euler-type integrals and the closely related Lauricella function
, which is a hypergeometric function of many complex variables
. For
new analytic continuation formulas are found that represent it in the form of Horn hypergeometric series exponentially converging in corresponding subdomains of
, including near hyperplanes of the form
,
,
. The continuation formulas and identities for
found in this paper make up an effective apparatus for computing this function and Euler-type integrals expressed in terms of it in the entire complex space
, including complicated cases when the variables form one or several groups of closely spaced neighbors. The results are used to compute parameters of the Schwarz–Christoffel integral in the case of crowding and to construct conformal mappings of polygons. This paper deals with Euler-type integrals and the closely related Lauricella function , which is a hypergeometric function of many complex variables . For new analytic continuation formulas are found that represent it in the form of Horn hypergeometric series exponentially converging in corresponding subdomains of , including near hyperplanes of the form , , . The continuation formulas and identities for found in this paper make up an effective apparatus for computing this function and Euler-type integrals expressed in terms of it in the entire complex space , including complicated cases when the variables form one or several groups of closely spaced neighbors. The results are used to compute parameters of the Schwarz–Christoffel integral in the case of crowding and to construct conformal mappings of polygons. |
| Author | Bezrodnykh, S. I. |
| Author_xml | – sequence: 1 givenname: S. I. surname: Bezrodnykh fullname: Bezrodnykh, S. I. email: sbezrodnykh@mail.ru organization: Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences |
| BookMark | eNp9kEFLwzAYhoNMcJv-AG8Bz9WkadL2OMamg4kD57mkabp1tElM0sNu_nTTTRAUPYXke5_nC-8EjJRWEoBbjO4xJsnDK8oZpUlMY4IxQjS-AGNMKY0YY_EIjIdxNMyvwMS5A0KY5RkZg4-ltl3fcgdrbeFcd6b3jdrBRd9KG22PRsKV8nJneesgVxXc7mVj4cyYthHcN1pBr6HfS7ixumxlB3UdNMp524uTiQ_XIO94C5-5McNbyGx0e9yF3DW4rINb3nydU_C2XGznT9H65XE1n60jQTDzUU0ITThPCUoZEXmZUVxldZkQHFNWsaxmpJKIVnkpsBRJzFNa4ZxTwquyxEySKbg7e43V7710vjjo3qqwsiAxzVFCsjQNKXxOCauds7IujG06bo8FRsVQdPGr6MCkPxjR-FM13vKm_ZeMz6QLW9RO2u8__Q19Av5Ek4c |
| CitedBy_id | crossref_primary_10_1088_1742_6596_2964_1_012058 crossref_primary_10_1134_S0965542523120187 crossref_primary_10_1134_S0001434625030174 crossref_primary_10_1134_S0965542524701604 |
| Cites_doi | 10.1007/BF03012437 10.1134/S0965542522120041 10.1145/229473.229475 10.1070/RM1992v047n04ABEH000915 10.1080/10652469.2020.1744590 10.1070/RM9841 10.1080/10652469.2021.2017427 10.1080/10652469.2022.2056600 10.1007/978-3-642-87224-2 10.1134/S0965542522120132 10.1016/0001-8708(90)90048-R 10.1137/060677392 10.1016/j.nuclphysb.2017.05.018 10.1007/978-3-322-90163-7 10.1016/0377-0427(86)90139-1 10.1088/0264-9381/24/7/007 10.1137/0901004 10.1007/978-3-642-94749-0 10.1134/S0001434622090218 10.1070/SM2012v203n12ABEH004284 10.1134/S0965542521110154 10.1093/mnras/stz787 10.1134/S1995080219070096 |
| ContentType | Journal Article |
| Copyright | Pleiades Publishing, Ltd. 2023. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2023, Vol. 63, No. 11, pp. 1955–1988. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2023, Vol. 63, No. 11, pp. 1763–1798. Pleiades Publishing, Ltd. 2023. |
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2023. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2023, Vol. 63, No. 11, pp. 1955–1988. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2023, Vol. 63, No. 11, pp. 1763–1798. – notice: Pleiades Publishing, Ltd. 2023. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7U5 7WY 7WZ 7XB 87Z 88I 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- KR7 L.- L.0 L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U |
| DOI | 10.1134/S0965542523110052 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) Civil Engineering Abstracts ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ABI/INFORM China ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| EISSN | 1555-6662 |
| EndPage | 1988 |
| ExternalDocumentID | 10_1134_S0965542523110052 |
| GroupedDBID | --K -5D -5G -BR -EM -Y2 -~C -~X .VR 06D 0R~ 0VY 1B1 1N0 29F 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 408 40D 40E 5GY 5VS 6J9 6NX 7WY 88I 8FE 8FG 8FH 8FL 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABEFU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ H~9 I-F IHE IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ K60 K6V K6~ K7- KOV L6V LK5 LLZTM M0C M0N M2P M41 M4Y M7R M7S MA- MK~ N2Q NB0 NPVJJ NQ- NQJWS NU0 O9- O93 O9J P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I RIG RNS ROL RPZ RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC TUS UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 XPP XU3 YLTOR ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR CITATION PHGZM PHGZT PQGLB 7SC 7TB 7U5 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L.- L.0 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c316t-f3354aa730763c9b851d8fb431256d68f63de05d9bc1ec42a75d19a53adbb16e3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001130196500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0965-5425 |
| IngestDate | Fri Oct 10 03:41:50 EDT 2025 Sat Nov 29 05:16:11 EST 2025 Tue Nov 18 22:10:30 EST 2025 Fri Feb 21 02:40:56 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | analytic continuation Schwarz–Christoffel integral crowding effect Lauricella and Horn functions Euler-type hypergeometric integrals |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-f3354aa730763c9b851d8fb431256d68f63de05d9bc1ec42a75d19a53adbb16e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3259043877 |
| PQPubID | 60276 |
| PageCount | 34 |
| ParticipantIDs | proquest_journals_3259043877 crossref_primary_10_1134_S0965542523110052 crossref_citationtrail_10_1134_S0965542523110052 springer_journals_10_1134_S0965542523110052 |
| PublicationCentury | 2000 |
| PublicationDate | 20231100 2023-11-00 20231101 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 20231100 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow |
| PublicationTitle | Computational mathematics and mathematical physics |
| PublicationTitleAbbrev | Comput. Math. and Math. Phys |
| PublicationYear | 2023 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | BanjaiL.Revisiting the crowding phenomenon in Schwarz–Christoffel mappingSIAM J. Sci. Comput.200830618636238587810.1137/060677392 K. Matsumoto, “Relative twisted homology and cohomology groups associated with Lauricella’s FD” (2019). ArXiv:1804.00366v2 VlasovV. I.SkorokhodovS. L.Conformal mapping of an L-shaped domain in analytical formComput. Math. Math. Phys.20226219712007453177710.1134/S0965542522120132 BezrodnykhS. I.VlasovV. I.The Riemann–Hilbert problem in a complicated domain for the model of magnetic reconnection in plasmaComput. Math. Math. Phys.2002422632981934042 HenriciP.Applied and Computational Complex Analysis1991New YorkWiley GaierD.Konstructive Methoden der konformen Abbildung1964BerlinSpringer-Verlag10.1007/978-3-642-87224-2 BergéJ.MasseyR.BaghiQ.TouboulP.Exponential shapelets: Basis functions for data analysis of isolated featureMon. Not. R. Astron. Soc.201948654455910.1093/mnras/stz787 NakipovN. N.NasyrovS. R.“Parametric method for finding accessory parameters in generalized Schwarz–Christoffel integrals,” Uch. Zap. Kazan. Univ. Ser. Fiz.-matNauki2016158201220 BrychkovYu. A.SavischenkoN. V.Application of hypergeometric functions of two variables in wireless communication theoryLobachevskii J. Math.201940938953399418310.1134/S1995080219070096 BezrodnykhS. I.The Lauricella hypergeometric function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{D}^{{(N)}}$$\end{document}Russ. Math. Surv.201873941103110.1070/RM9841 Gel’fandI. M.GraevM. I.RetakhV. S.General hypergeometric systems of equations and series of hypergeometric typeRuss. Math. Surv.199247188120888210.1070/RM1992v047n04ABEH000915 BezrodnykhS. I.Analytic continuation of the Horn hypergeometric series with an arbitrary number of variablesIntegral Transforms Spec. Funct.202031788803415432310.1080/10652469.2020.1744590 V. I. Vlasov, Doctoral Dissertation in Mathematics and Physics (Computing Center, USSR Academy of Sciences, Moscow, 1990). KratzerA.FranzW.Transzendente Funktionen1960LeipzigAkademische Verlagsgesellschaft ExtonH.Multiple Hypergeometric Functions and Application1976New YorkWiley VlasovV. I.Variation in a mapping function under domain deformationDokl. Akad. Nauk SSSR198427512991302746373 PrimoaA.TancredicL.Maximal cuts and differential equations for Feynman integrals: An application to the three-loop massive banana graphNucl. Phys. B2017921316356367927110.1016/j.nuclphysb.2017.05.018 BrychkovYu. A.SavischenkoN. V.On some formulas for the Horn functions 202110.1080/10652469.2021.2017427 TrefethenL. N.DriscollT. A.Schwarz–Christoffel Transformation2005CambridgeCambridge Univ. Press ErdélyiA.Higher Transcendental Functions (Bateman Manuscript Project)1953New YorkMcGraw-Hill KalmykovM.BytevV.KniehlB.MochS.-O.WardB.YostS.Anti-Differentiation and the Calculation of Feynman Amplitudes2021ChamSpringer KraniotisG. V.Periapsis and gravitomagnetic precessions of stellar orbits in Kerr and Kerr–de Sitter black hole spacetimesClassical Quantum Gravitation20072417751808231035710.1088/0264-9381/24/7/007 GoluzinG.KantorovichL.KrylovV.Melent’evP.MuratovM.SteninN.Conformal Mappings of Simply and Multiply Connected Domains1937LeningradNauka Lavrent’evM. A.ShabatB. V.Methods of the Theory of Functions of a Complex Variable1965MoscowNauka IwasakiK.KimuraH.ShimomuraSh.YoshidaM.From Gauss to Painlevé: A Modern Theory of Special Functions1991BraunschweigFriedrich Vieweg & Sohn10.1007/978-3-322-90163-7 B. Ananthanarayan, S. Beraay, S. Friot, O. Marichev, and T. Pathak, “On the evaluation of the Appell F2 double hypergeometric function” (2021). arXiv:2111.05798v1 BezrodnykhS. I.Lauricella function and the conformal mapping of polygonsMath. Notes2022112505522453878610.1134/S0001434622090218 ErdélyiA.Higher Transcendental Functions (Bateman Manuscript Project)1955New YorkMcGraw-Hill VlasovV. I.SkorokhodovS. L.Analytical solution for the cavitating flow over a wedge IIComput. Math. Math. Phys.20216118341854434944810.1134/S0965542521110154 SadykovT. M.TsikhA. K.Hypergeometric and Algebraic Functions of Several Variables2014MoscowNauka ZemachC.A conformal map formula for difficult casesJ. Comput. Appl. Math.19861420721582903910.1016/0377-0427(86)90139-1 L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis (Fizmatgiz, Moscow, 1962; Wiley, New York, 1964). TrefethenL. N.Numerical computation of the Schwarz–Christoffel transformationSIAM J. Sci. Stat. Comput.198018210257254210.1137/0901004 AkerblomN.FlohrM.Explicit formulas for the scalar modes in Seiberg–Witten theory with an application to the Argyres–Douglas pointJ. High Energy Phys.20052242138949 BezrodnykhS. I.Formulas for computing the Lauricella function in the case of crowding of variablesComput. Math. Math. Phys.20226220692090453178310.1134/S0965542522120041 KrikelesB. C.RubinR. L.On the crowding of parameters associated with Schwarz–Christoffel transformationAppl. Math. Comput.198828297308973486 BezrodnykhS. I.VlasovV. I.The Riemann–Hilbert problem in domains of complex geometry and its applicationsSpectral Evolution Probl.2006165161 GolubevV. V.Lectures on Analytic Theory of Differential Equations1950MoscowGostekhizdat BogatyrevA. B.Conformal mapping of rectangular heptagonsSb. Math.201220317151735306006810.1070/SM2012v203n12ABEH004284 KoppenfelsW.StallmannF.Praxis der konformen Abbildung1959BerlinSpringer-Verlag10.1007/978-3-642-94749-0 DriscollT. A.A MATLAB toolbox for Schwarz–Christoffel mappingACM Trans. Math. Soft.19962216818610.1145/229473.229475 LooijengaE.Arithmetic and Geometry around Hypergeometric Functions2005BaselBirkhäuser GelfandI. M.KapranovM. M.ZelevinskyA. V.Generalized Euler integrals and A-hypergeometric functionsAdv. Math.199084255271108098010.1016/0001-8708(90)90048-R LauricellaG.Sulle funzioni ipergeometriche a piu variabiliRend. Circ. Math. Palermo1893711115810.1007/BF03012437 BrychkovYu. A.SavischenkoN. V.On some formulas for the Horn function202110.1080/10652469.2022.2056600 N. Akerblom (1901_CR8) 2005; 2 G. V. Kraniotis (1901_CR4) 2007; 24 S. I. Bezrodnykh (1901_CR20) 2018; 73 D. Gaier (1901_CR33) 1964 (1901_CR45) 1955 I. M. Gel’fand (1901_CR22) 1992; 47 A. Primoa (1901_CR5) 2017; 921 N. N. Nakipov (1901_CR37) 2016; 158 G. Lauricella (1901_CR18) 1893; 7 G. Goluzin (1901_CR31) 1937 W. Koppenfels (1901_CR15) 1959 S. I. Bezrodnykh (1901_CR21) 2022; 62 L. N. Trefethen (1901_CR16) 1980; 1 I. M. Gelfand (1901_CR11) 1990; 84 E. Looijenga (1901_CR9) 2005 V. I. Vlasov (1901_CR44) 1984; 275 V. V. Golubev (1901_CR13) 1950 M. A. Lavrent’ev (1901_CR14) 1965 P. Henrici (1901_CR17) 1991 1901_CR26 L. N. Trefethen (1901_CR41) 2005 T. A. Driscoll (1901_CR42) 1996; 22 K. Iwasaki (1901_CR19) 1991 1901_CR43 L. Banjai (1901_CR39) 2008; 30 S. I. Bezrodnykh (1901_CR23) 2020; 31 A. Kratzer (1901_CR1) 1960 T. M. Sadykov (1901_CR24) 2014 M. Kalmykov (1901_CR28) 2021 Yu. A. Brychkov (1901_CR27) 2021 (1901_CR3) 1953 Yu. A. Brychkov (1901_CR25) 2021 C. Zemach (1901_CR29) 1986; 14 B. C. Krikeles (1901_CR30) 1988; 28 Yu. A. Brychkov (1901_CR7) 2019; 40 S. I. Bezrodnykh (1901_CR34) 2002; 42 A. B. Bogatyrev (1901_CR36) 2012; 203 V. I. Vlasov (1901_CR40) 2022; 62 J. Bergé (1901_CR6) 2019; 486 S. I. Bezrodnykh (1901_CR35) 2006; 16 1901_CR12 V. I. Vlasov (1901_CR10) 2021; 61 1901_CR32 S. I. Bezrodnykh (1901_CR38) 2022; 112 H. Exton (1901_CR2) 1976 |
| References_xml | – reference: BezrodnykhS. I.Lauricella function and the conformal mapping of polygonsMath. Notes2022112505522453878610.1134/S0001434622090218 – reference: TrefethenL. N.Numerical computation of the Schwarz–Christoffel transformationSIAM J. Sci. Stat. Comput.198018210257254210.1137/0901004 – reference: DriscollT. A.A MATLAB toolbox for Schwarz–Christoffel mappingACM Trans. Math. Soft.19962216818610.1145/229473.229475 – reference: VlasovV. I.SkorokhodovS. L.Conformal mapping of an L-shaped domain in analytical formComput. Math. Math. Phys.20226219712007453177710.1134/S0965542522120132 – reference: ExtonH.Multiple Hypergeometric Functions and Application1976New YorkWiley – reference: V. I. Vlasov, Doctoral Dissertation in Mathematics and Physics (Computing Center, USSR Academy of Sciences, Moscow, 1990). – reference: TrefethenL. N.DriscollT. A.Schwarz–Christoffel Transformation2005CambridgeCambridge Univ. Press – reference: Lavrent’evM. A.ShabatB. V.Methods of the Theory of Functions of a Complex Variable1965MoscowNauka – reference: L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis (Fizmatgiz, Moscow, 1962; Wiley, New York, 1964). – reference: KratzerA.FranzW.Transzendente Funktionen1960LeipzigAkademische Verlagsgesellschaft – reference: KraniotisG. V.Periapsis and gravitomagnetic precessions of stellar orbits in Kerr and Kerr–de Sitter black hole spacetimesClassical Quantum Gravitation20072417751808231035710.1088/0264-9381/24/7/007 – reference: BezrodnykhS. I.VlasovV. I.The Riemann–Hilbert problem in a complicated domain for the model of magnetic reconnection in plasmaComput. Math. Math. Phys.2002422632981934042 – reference: AkerblomN.FlohrM.Explicit formulas for the scalar modes in Seiberg–Witten theory with an application to the Argyres–Douglas pointJ. High Energy Phys.20052242138949 – reference: BanjaiL.Revisiting the crowding phenomenon in Schwarz–Christoffel mappingSIAM J. Sci. Comput.200830618636238587810.1137/060677392 – reference: HenriciP.Applied and Computational Complex Analysis1991New YorkWiley – reference: BrychkovYu. A.SavischenkoN. V.On some formulas for the Horn functions 202110.1080/10652469.2021.2017427 – reference: GoluzinG.KantorovichL.KrylovV.Melent’evP.MuratovM.SteninN.Conformal Mappings of Simply and Multiply Connected Domains1937LeningradNauka – reference: BrychkovYu. A.SavischenkoN. V.Application of hypergeometric functions of two variables in wireless communication theoryLobachevskii J. Math.201940938953399418310.1134/S1995080219070096 – reference: Gel’fandI. M.GraevM. I.RetakhV. S.General hypergeometric systems of equations and series of hypergeometric typeRuss. Math. Surv.199247188120888210.1070/RM1992v047n04ABEH000915 – reference: KrikelesB. C.RubinR. L.On the crowding of parameters associated with Schwarz–Christoffel transformationAppl. Math. Comput.198828297308973486 – reference: GaierD.Konstructive Methoden der konformen Abbildung1964BerlinSpringer-Verlag10.1007/978-3-642-87224-2 – reference: KoppenfelsW.StallmannF.Praxis der konformen Abbildung1959BerlinSpringer-Verlag10.1007/978-3-642-94749-0 – reference: NakipovN. N.NasyrovS. R.“Parametric method for finding accessory parameters in generalized Schwarz–Christoffel integrals,” Uch. Zap. Kazan. Univ. Ser. Fiz.-matNauki2016158201220 – reference: BezrodnykhS. I.Analytic continuation of the Horn hypergeometric series with an arbitrary number of variablesIntegral Transforms Spec. Funct.202031788803415432310.1080/10652469.2020.1744590 – reference: ErdélyiA.Higher Transcendental Functions (Bateman Manuscript Project)1953New YorkMcGraw-Hill – reference: K. Matsumoto, “Relative twisted homology and cohomology groups associated with Lauricella’s FD” (2019). ArXiv:1804.00366v2 – reference: BezrodnykhS. I.The Lauricella hypergeometric function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{D}^{{(N)}}$$\end{document}Russ. Math. Surv.201873941103110.1070/RM9841 – reference: IwasakiK.KimuraH.ShimomuraSh.YoshidaM.From Gauss to Painlevé: A Modern Theory of Special Functions1991BraunschweigFriedrich Vieweg & Sohn10.1007/978-3-322-90163-7 – reference: SadykovT. M.TsikhA. K.Hypergeometric and Algebraic Functions of Several Variables2014MoscowNauka – reference: VlasovV. I.SkorokhodovS. L.Analytical solution for the cavitating flow over a wedge IIComput. Math. Math. Phys.20216118341854434944810.1134/S0965542521110154 – reference: GelfandI. M.KapranovM. M.ZelevinskyA. V.Generalized Euler integrals and A-hypergeometric functionsAdv. Math.199084255271108098010.1016/0001-8708(90)90048-R – reference: VlasovV. I.Variation in a mapping function under domain deformationDokl. Akad. Nauk SSSR198427512991302746373 – reference: BergéJ.MasseyR.BaghiQ.TouboulP.Exponential shapelets: Basis functions for data analysis of isolated featureMon. Not. R. Astron. Soc.201948654455910.1093/mnras/stz787 – reference: BogatyrevA. B.Conformal mapping of rectangular heptagonsSb. Math.201220317151735306006810.1070/SM2012v203n12ABEH004284 – reference: ZemachC.A conformal map formula for difficult casesJ. Comput. Appl. Math.19861420721582903910.1016/0377-0427(86)90139-1 – reference: B. Ananthanarayan, S. Beraay, S. Friot, O. Marichev, and T. Pathak, “On the evaluation of the Appell F2 double hypergeometric function” (2021). arXiv:2111.05798v1 – reference: GolubevV. V.Lectures on Analytic Theory of Differential Equations1950MoscowGostekhizdat – reference: ErdélyiA.Higher Transcendental Functions (Bateman Manuscript Project)1955New YorkMcGraw-Hill – reference: BrychkovYu. A.SavischenkoN. V.On some formulas for the Horn function202110.1080/10652469.2022.2056600 – reference: LooijengaE.Arithmetic and Geometry around Hypergeometric Functions2005BaselBirkhäuser – reference: BezrodnykhS. I.Formulas for computing the Lauricella function in the case of crowding of variablesComput. Math. Math. Phys.20226220692090453178310.1134/S0965542522120041 – reference: LauricellaG.Sulle funzioni ipergeometriche a piu variabiliRend. Circ. Math. Palermo1893711115810.1007/BF03012437 – reference: PrimoaA.TancredicL.Maximal cuts and differential equations for Feynman integrals: An application to the three-loop massive banana graphNucl. Phys. B2017921316356367927110.1016/j.nuclphysb.2017.05.018 – reference: BezrodnykhS. I.VlasovV. I.The Riemann–Hilbert problem in domains of complex geometry and its applicationsSpectral Evolution Probl.2006165161 – reference: KalmykovM.BytevV.KniehlB.MochS.-O.WardB.YostS.Anti-Differentiation and the Calculation of Feynman Amplitudes2021ChamSpringer – volume-title: Anti-Differentiation and the Calculation of Feynman Amplitudes year: 2021 ident: 1901_CR28 – volume-title: Methods of the Theory of Functions of a Complex Variable year: 1965 ident: 1901_CR14 – volume-title: Multiple Hypergeometric Functions and Application year: 1976 ident: 1901_CR2 – volume: 2 start-page: 24 year: 2005 ident: 1901_CR8 publication-title: J. High Energy Phys. – volume: 7 start-page: 111 year: 1893 ident: 1901_CR18 publication-title: Rend. Circ. Math. Palermo doi: 10.1007/BF03012437 – volume: 62 start-page: 2069 year: 2022 ident: 1901_CR21 publication-title: Comput. Math. Math. Phys. doi: 10.1134/S0965542522120041 – volume: 22 start-page: 168 year: 1996 ident: 1901_CR42 publication-title: ACM Trans. Math. Soft. doi: 10.1145/229473.229475 – volume-title: Higher Transcendental Functions (Bateman Manuscript Project) year: 1953 ident: 1901_CR3 – volume: 47 start-page: 1 year: 1992 ident: 1901_CR22 publication-title: Russ. Math. Surv. doi: 10.1070/RM1992v047n04ABEH000915 – volume-title: Applied and Computational Complex Analysis year: 1991 ident: 1901_CR17 – volume: 31 start-page: 788 year: 2020 ident: 1901_CR23 publication-title: Integral Transforms Spec. Funct. doi: 10.1080/10652469.2020.1744590 – volume: 73 start-page: 941 year: 2018 ident: 1901_CR20 publication-title: Russ. Math. Surv. doi: 10.1070/RM9841 – volume-title: Conformal Mappings of Simply and Multiply Connected Domains year: 1937 ident: 1901_CR31 – volume-title: On some formulas for the Horn functions year: 2021 ident: 1901_CR25 doi: 10.1080/10652469.2021.2017427 – volume-title: Arithmetic and Geometry around Hypergeometric Functions year: 2005 ident: 1901_CR9 – volume-title: On some formulas for the Horn function year: 2021 ident: 1901_CR27 doi: 10.1080/10652469.2022.2056600 – volume-title: Konstructive Methoden der konformen Abbildung year: 1964 ident: 1901_CR33 doi: 10.1007/978-3-642-87224-2 – volume: 62 start-page: 1971 year: 2022 ident: 1901_CR40 publication-title: Comput. Math. Math. Phys. doi: 10.1134/S0965542522120132 – volume: 84 start-page: 255 year: 1990 ident: 1901_CR11 publication-title: Adv. Math. doi: 10.1016/0001-8708(90)90048-R – ident: 1901_CR12 – volume: 30 start-page: 618 year: 2008 ident: 1901_CR39 publication-title: SIAM J. Sci. Comput. doi: 10.1137/060677392 – volume-title: Higher Transcendental Functions (Bateman Manuscript Project) year: 1955 ident: 1901_CR45 – volume: 158 start-page: 201 year: 2016 ident: 1901_CR37 publication-title: Nauki – volume: 921 start-page: 316 year: 2017 ident: 1901_CR5 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2017.05.018 – volume-title: From Gauss to Painlevé: A Modern Theory of Special Functions year: 1991 ident: 1901_CR19 doi: 10.1007/978-3-322-90163-7 – volume: 28 start-page: 297 year: 1988 ident: 1901_CR30 publication-title: Appl. Math. Comput. – volume: 14 start-page: 207 year: 1986 ident: 1901_CR29 publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(86)90139-1 – ident: 1901_CR26 – volume: 24 start-page: 1775 year: 2007 ident: 1901_CR4 publication-title: Classical Quantum Gravitation doi: 10.1088/0264-9381/24/7/007 – ident: 1901_CR32 – volume: 275 start-page: 1299 year: 1984 ident: 1901_CR44 publication-title: Dokl. Akad. Nauk SSSR – volume: 1 start-page: 82 year: 1980 ident: 1901_CR16 publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0901004 – volume-title: Hypergeometric and Algebraic Functions of Several Variables year: 2014 ident: 1901_CR24 – volume-title: Praxis der konformen Abbildung year: 1959 ident: 1901_CR15 doi: 10.1007/978-3-642-94749-0 – volume: 112 start-page: 505 year: 2022 ident: 1901_CR38 publication-title: Math. Notes doi: 10.1134/S0001434622090218 – volume: 16 start-page: 51 year: 2006 ident: 1901_CR35 publication-title: Spectral Evolution Probl. – ident: 1901_CR43 – volume: 203 start-page: 1715 year: 2012 ident: 1901_CR36 publication-title: Sb. Math. doi: 10.1070/SM2012v203n12ABEH004284 – volume-title: Schwarz–Christoffel Transformation year: 2005 ident: 1901_CR41 – volume: 61 start-page: 1834 year: 2021 ident: 1901_CR10 publication-title: Comput. Math. Math. Phys. doi: 10.1134/S0965542521110154 – volume-title: Transzendente Funktionen year: 1960 ident: 1901_CR1 – volume: 42 start-page: 263 year: 2002 ident: 1901_CR34 publication-title: Comput. Math. Math. Phys. – volume: 486 start-page: 544 year: 2019 ident: 1901_CR6 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stz787 – volume: 40 start-page: 938 year: 2019 ident: 1901_CR7 publication-title: Lobachevskii J. Math. doi: 10.1134/S1995080219070096 – volume-title: Lectures on Analytic Theory of Differential Equations year: 1950 ident: 1901_CR13 |
| SSID | ssj0016983 |
| Score | 2.3181305 |
| Snippet | This paper deals with Euler-type integrals and the closely related Lauricella function
, which is a hypergeometric function of many complex variables
. For
new... This paper deals with Euler-type integrals and the closely related Lauricella function , which is a hypergeometric function of many complex variables . For new... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1955 |
| SubjectTerms | Complex variables Computation Computational Mathematics and Numerical Analysis Conformal mapping Convergence General Numerical Methods Geometry Hypergeometric functions Hyperplanes Identities Integrals Mathematics Mathematics and Statistics Partial differential equations Polygons Variables |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6-Dl6sT6xWycGTEmyax3ZPImLRQ0tBBW9LNsmKsHTVbQVv_nRndtMWFXvxuNnZEJjJ5Eu-7HyEnCjbSbWwKePeZUyqmLMUVgVmpLFeWoPUUyU2EQ0G3cfHeBgO3MpwrXKaE6tE7QqLZ-TnAnA6slZRdPHyylA1CtnVIKGxTFYB2XC80tXvDGcsgo7rMpyxVkxBcAZWkwt5foeN2Ab4huPZ6Pd1aQ42f_Cj1bLTa_x3wJtkIwBOellHyBZZ8qNt0gjgk4apXe6Qzx6g1wlgaQowltZiDzAiej3J_RvD7Sq9rUtL5CU1I0fvkWKgl3MCnI4LCnCSDmuNGlpkFOVA6wK10JPBxwoj57RvsC7EE9oMi_zjCex2yUPv-v7qhgV5BmYF12OWCaGkMZAiIEfZGFzMXTdLAZEAjHK6m2nhfFu5OLXcW9kxkXI8NkoYl6Zce7FHVkbFyO8TyrNMRd55xY2SOrMxwjrtHOyltHTKNkl76pzEhtrlKKGRJ9UeRsjklz-b5HT2yUtduGORcWvqwyTM4TKZO7BJzqZRMH_9Z2cHizs7JOsoWV__z9giK-AFf0TW7Pv4uXw7rgL4C96o9Ts priority: 102 providerName: ProQuest |
| Title | Formulas for Computing Euler-Type Integrals and Their Application to the Problem of Constructing a Conformal Mapping of Polygons |
| URI | https://link.springer.com/article/10.1134/S0965542523110052 https://www.proquest.com/docview/3259043877 |
| Volume | 63 |
| WOSCitedRecordID | wos001130196500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1555-6662 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0016983 issn: 0965-5425 databaseCode: 7WY dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1555-6662 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0016983 issn: 0965-5425 databaseCode: M0C dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1555-6662 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0016983 issn: 0965-5425 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 1555-6662 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0016983 issn: 0965-5425 databaseCode: K7- dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1555-6662 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0016983 issn: 0965-5425 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1555-6662 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0016983 issn: 0965-5425 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1555-6662 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0016983 issn: 0965-5425 databaseCode: M2P dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1555-6662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016983 issn: 0965-5425 databaseCode: RSV dateStart: 20060101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB7RlgMcWihUDS3RHjiBVmSzD8fHtkoEQomspkDhYq1311UlK0F1isSNn94Zr52IpwSXkVYejy3Peucbj3c-gBfaDQsjXcFF8CVXOhW8wKjArbIuKGep9NSQTSSz2ejyMs3afdx197d7V5JsVurIO6Jez6lPicYphohE0NfMLdjBaDcivobz-Yd16cCksfcmanNSb0uZvzXxYzDaIMyfiqJNrJns_dddPoLdFlqykzgXHsO9sNiHvRZmsvYlrvfh4XTdqrV-At8niFpvEUMzhK8skjzgBdn4tgo3nNJU9ja2lKhqZheeXVBpgZ1sCt9stWRokGWRm4YtS0Y0oLExLVqyNGywccWmlvpBXJFOtqy-XaHeU3g_GV-cveEtLQN3UpgVL6XUylpcGnBtcim6VvhRWSASQfjkzag00oeB9mnhRHBqaBPtRWq1tL4ohAnyALYXy0U4BCbKUifBBy2sVqZ0KcE54z3mUEZ57Xow6PyTu7ZnOVFnVHmTu0iV__K8e_ByfcqX2LDjb8rHndPz9t2tc4kZIdVHk6QHrzonbw7_0dizf9I-ggfEXB-3NR7DNjolPIf77uvqur7pw1by8VMfdk7Hs-wcR-8SjnI6OCM5zEgmc5SZ_txvpv8dIgj1mQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXyqtioQUf4AKyWsePbA5VVZWuumq7WolF6i04tlMhRZvSbEG98Yv4jczESVeA6K0HjnEcK7Ln8Y3Hng_gjXZJYaQruAi-5EpnghfoFbhV1gXlLKWeWrKJdDIZnp5m0xX42d-FoWOVvU1sDbWvHe2Rb0nE6ZS1StPd86-cWKMou9pTaESxOApX3zFka3bGH3B93ybJ6GC2f8g7VgHupDALXkqplbUo2ahaLsM_E35YFuhI0ft7MyyN9GFb-6xwIjiV2FR7kVktrS8KYYLEce_AXUWVxeioYDK9zlqYLJb9zIzmGpWhy6IKqbY-UiO1IZ4StBf7ux9cgts_8rGtmxut_W8T9AgedoCa7UUNeAwrYf4E1jpwzTrT1TyFHyNE55cYKzCE6SySWeAMsIPLKlxwCsfZOJbOqBpm557NKIXC9pYJfraoGcJlNo0cPKwuGdGdxgK8OJKlxzYGqNiJpboXZ9RnWldXZ9jvGXy6lXlYh9V5PQ_PgYmy1GnwQQurlSldRrDVeI-xolFeuwFs98KQu642O1GEVHkbo0mV_yU_A3h3_cl5LExyU-eNXmbyzkY1-VJgBvC-l7rl638O9uLmwV7D_cPZyXF-PJ4cvYQHCYLCeHdzA1ZxRcIm3HPfFl-ai1et8jD4fNvC-AtbGlJc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-0itgHq1Xp1ar74JOytNv9yOWx1B4W7XHQKn0Lm_0oQsiV5lrwzT-9M9nNHX6C-BgymYTMbPY3md3fD-CNdvu1ka7mIvjIlS4Fr3FW4FZZF5Sz1HrqxSaK6XR8fl7Oss5pN6x2H1qSaU8DsTS1i91LH7MGido9Jc4SjemG6ETQn827cE_ROnoq10-_LNsIpkw8nGjNyTy3NX_r4seJaYU2f2qQ9vPOZOO_n_gxPMqQkx2kHHkCd0K7CRsZfrI8uLtNWD9ZUrh2T-H7BNHsNWJrhrCWJfEHvDk7um7CFafylR0nqommY7b17IxaDuxg1RBnizlDh2yWNGvYPDKSB02EtejJ0mGPmRt2Yokn4oJsZvPm2wXaPYPPk6Ozww88yzVwJ4VZ8CilVtbiJwO_Wa7EkAs_jjUiFIRV3oyjkT7saV_WTgSn9m2hvSitltbXtTBBPoe1dt6GLWAiRl0EH7SwWpnoSoJ5xnusrYzy2o1gb4hV5TKXOUlqNFVf00hV_fK-R_B2ecllIvL4m_HOkABVHtNdJbFSpL5pUYzg3RDw1ek_Otv-J-vX8GD2flJ9Op5-fAEPSdw-7XzcgTWMT3gJ993N4mt39arP9FsjNfom |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formulas+for+Computing+Euler-Type+Integrals+and+Their+Application+to+the+Problem+of+Constructing+a+Conformal+Mapping+of+Polygons&rft.jtitle=Computational+mathematics+and+mathematical+physics&rft.au=Bezrodnykh%2C+S.+I.&rft.date=2023-11-01&rft.issn=0965-5425&rft.eissn=1555-6662&rft.volume=63&rft.issue=11&rft.spage=1955&rft.epage=1988&rft_id=info:doi/10.1134%2FS0965542523110052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S0965542523110052 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-5425&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-5425&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-5425&client=summon |