Mining temporal attack patterns from cyberthreat intelligence reports

Cyberthreat intelligence (CTI) reports on past cyberattacks describe the sequence of actions of attackers in terms of time. The sequence contains temporal relations among attack actions, such as a malware is first downloaded and then executed . Information related to temporal relations enables cyber...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Knowledge and information systems Ročník 67; číslo 10; s. 8941 - 8981
Hlavní autori: Rahman, Md Rayhanur, Wroblewski, Brandon, Matthews, Quinn, Morgan, Brantley, Menzies, Timothy, Williams, Laurie
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer London 01.10.2025
Springer Nature B.V
Predmet:
ISSN:0219-1377, 0219-3116
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Cyberthreat intelligence (CTI) reports on past cyberattacks describe the sequence of actions of attackers in terms of time. The sequence contains temporal relations among attack actions, such as a malware is first downloaded and then executed . Information related to temporal relations enables cybersecurity practitioners to investigate past cyberattack incidents and analyze attackers’ behavior. However, cybersecurity practitioners must extract such information automatically, in a structured manner, through a common vocabulary to reduce human effort and enable sharing, and collaboration. The goal of this paper is to aid security practitioners in proactive defense against attacks by automatic information extraction of temporal relations among attack actions from cyberthreat intelligence reports . We propose ChronoCTI , an automated pipeline for extracting temporal relations among attack actions from CTI reports. The attack actions are represented as MITRE ATT&CK techniques, and the relations are represented as a knowledge graph. To construct ChronoCTI , we build a ground truth dataset of temporal relations and apply large language models, natural language processing, and machine learning techniques. ChronoCTI demonstrates higher precision but lower recall performance on a real-world dataset of 94 CTI reports. We apply ChronoCTI on a set of 713 CTI reports, where we identify 9 categories of temporal attack patterns consisting of 124 temporal attack patterns. We identify that the most prevalent pattern category is to trick victim users into executing malicious code to initiate the attack, followed by bypassing the anti-malware system in the victim software systems. Based on the observed patterns, we advocate for training users about cybersecurity best practices, introducing appropriate warning messages for end-users, introducing immutable operating systems, and enforcing multi-user authentications. Moreover, we advocate that practitioners leverage the automated mining capability of ChronoCTI and design countermeasures against recurring attack patterns.
AbstractList Cyberthreat intelligence (CTI) reports on past cyberattacks describe the sequence of actions of attackers in terms of time. The sequence contains temporal relations among attack actions, such as a malware is first downloaded and then executed . Information related to temporal relations enables cybersecurity practitioners to investigate past cyberattack incidents and analyze attackers’ behavior. However, cybersecurity practitioners must extract such information automatically, in a structured manner, through a common vocabulary to reduce human effort and enable sharing, and collaboration. The goal of this paper is to aid security practitioners in proactive defense against attacks by automatic information extraction of temporal relations among attack actions from cyberthreat intelligence reports . We propose ChronoCTI , an automated pipeline for extracting temporal relations among attack actions from CTI reports. The attack actions are represented as MITRE ATT&CK techniques, and the relations are represented as a knowledge graph. To construct ChronoCTI , we build a ground truth dataset of temporal relations and apply large language models, natural language processing, and machine learning techniques. ChronoCTI demonstrates higher precision but lower recall performance on a real-world dataset of 94 CTI reports. We apply ChronoCTI on a set of 713 CTI reports, where we identify 9 categories of temporal attack patterns consisting of 124 temporal attack patterns. We identify that the most prevalent pattern category is to trick victim users into executing malicious code to initiate the attack, followed by bypassing the anti-malware system in the victim software systems. Based on the observed patterns, we advocate for training users about cybersecurity best practices, introducing appropriate warning messages for end-users, introducing immutable operating systems, and enforcing multi-user authentications. Moreover, we advocate that practitioners leverage the automated mining capability of ChronoCTI and design countermeasures against recurring attack patterns.
Cyberthreat intelligence (CTI) reports on past cyberattacks describe the sequence of actions of attackers in terms of time. The sequence contains temporal relations among attack actions, such as a malware is first downloaded and then executed . Information related to temporal relations enables cybersecurity practitioners to investigate past cyberattack incidents and analyze attackers’ behavior. However, cybersecurity practitioners must extract such information automatically, in a structured manner, through a common vocabulary to reduce human effort and enable sharing, and collaboration. The goal of this paper is to aid security practitioners in proactive defense against attacks by automatic information extraction of temporal relations among attack actions from cyberthreat intelligence reports . We propose ChronoCTI , an automated pipeline for extracting temporal relations among attack actions from CTI reports. The attack actions are represented as MITRE ATT&CK techniques, and the relations are represented as a knowledge graph. To construct ChronoCTI , we build a ground truth dataset of temporal relations and apply large language models, natural language processing, and machine learning techniques. ChronoCTI demonstrates higher precision but lower recall performance on a real-world dataset of 94 CTI reports. We apply ChronoCTI on a set of 713 CTI reports, where we identify 9 categories of temporal attack patterns consisting of 124 temporal attack patterns. We identify that the most prevalent pattern category is to trick victim users into executing malicious code to initiate the attack, followed by bypassing the anti-malware system in the victim software systems. Based on the observed patterns, we advocate for training users about cybersecurity best practices, introducing appropriate warning messages for end-users, introducing immutable operating systems, and enforcing multi-user authentications. Moreover, we advocate that practitioners leverage the automated mining capability of ChronoCTI and design countermeasures against recurring attack patterns.
Author Rahman, Md Rayhanur
Williams, Laurie
Matthews, Quinn
Wroblewski, Brandon
Morgan, Brantley
Menzies, Timothy
Author_xml – sequence: 1
  givenname: Md Rayhanur
  surname: Rahman
  fullname: Rahman, Md Rayhanur
  organization: The University of Alabama
– sequence: 2
  givenname: Brandon
  surname: Wroblewski
  fullname: Wroblewski, Brandon
  organization: North Carolina State University
– sequence: 3
  givenname: Quinn
  surname: Matthews
  fullname: Matthews, Quinn
  organization: North Carolina State University
– sequence: 4
  givenname: Brantley
  surname: Morgan
  fullname: Morgan, Brantley
  organization: North Carolina State University
– sequence: 5
  givenname: Timothy
  surname: Menzies
  fullname: Menzies, Timothy
  organization: North Carolina State University
– sequence: 6
  givenname: Laurie
  surname: Williams
  fullname: Williams, Laurie
  email: lawilli3@ncsu.edu
  organization: North Carolina State University
BookMark eNp9kLFOwzAQhi1UJNrCCzBFYg747NiOR1QVilTEArPluJeSkjrBdoe-PSmpxMZw-m_4vzvpm5GJ7zwScgv0HihVDxEogMgpO02hIZcXZEoZ6JwDyMl5B67UFZnFuKMUlASYkuVr4xu_zRLu-y7YNrMpWfeV9UNi8DGrQ7fP3LHCkD4D2pQ1PmHbNlv0DrOAA5XiNbmsbRvx5pxz8vG0fF-s8vXb88vicZ07DjLlNacbSpHJmtJKFFoD05qj4Fw50NKVVhRlUZabwgoQWLGNQqiRVULpWjDN5-RuvNuH7vuAMZlddwh-eGk4k1CIkgk1tNjYcqGLMWBt-tDsbTgaoOaky4y6zKDL_OoycoD4CMWh7LcY_k7_Q_0AO_ZugA
Cites_doi 10.1109/CNS48642.2020.9162207
10.1016/j.cose.2023.103524
10.1016/j.jbi.2011.08.006
10.1145/3319535.3363217
10.1016/j.cose.2023.103369
10.1186/s42400-022-00110-3
10.1007/978-3-319-93417-4_38
10.1177/0049124113500475
10.1109/TNSM.2021.3056999
10.1016/j.cose.2024.104220
10.1145/3571726
10.1109/SP.2019.00026
10.1609/aaai.v35i8.16826
10.1016/B978-0-12-800056-4.00006-6
10.1109/ICDM59182.2024.00049
10.1109/TKDE.2022.3175719
10.1109/ACCESS.2023.3315121
10.1016/j.cose.2023.103518
10.1007/978-3-319-57315-1
10.3115/1072017.1072023
10.1145/3462475
10.1109/BigData55660.2022.10021134
10.1186/s42400-021-00106-5
10.1109/ISSRE55969.2022.00027
10.1109/ICDMW51313.2020.00075
10.1162/tacl_a_00182
10.1016/j.cose.2024.104125
10.1109/EuroSP51992.2021.00046
10.1145/3134600.3134646
10.1007/978-3-319-47241-6
10.1109/EuroSP.2018.00039
10.1109/ICDE51399.2021.00024
10.1007/978-3-031-17140-6_29
10.1016/j.cose.2023.103579
10.11613/BM.2012.031
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10115-025-02491-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 0219-3116
EndPage 8981
ExternalDocumentID 10_1007_s10115_025_02491_6
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29L
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6KP
6NX
7WY
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAS
LLZTM
M0C
M4Y
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAYXX
AFFHD
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c316t-f30d00e26f00b549912993e5337c196c8a548488d4a515eb2d7e1fe2b579f5293
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001533639800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0219-1377
IngestDate Sat Nov 08 15:51:44 EST 2025
Sat Nov 29 07:08:49 EST 2025
Thu Oct 16 01:19:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Tactics
Techniques
Temporal relation
attack graph
Procedures
MITRE ATT& CK
CTI reports
TimeML
Cyberthreat intelligence
Knowledge graph
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-f30d00e26f00b549912993e5337c196c8a548488d4a515eb2d7e1fe2b579f5293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s10115-025-02491-6
PQID 3261458257
PQPubID 43394
PageCount 41
ParticipantIDs proquest_journals_3261458257
crossref_primary_10_1007_s10115_025_02491_6
springer_journals_10_1007_s10115_025_02491_6
PublicationCentury 2000
PublicationDate 20251000
2025-10-00
20251001
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 20251000
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationSubtitle An International Journal
PublicationTitle Knowledge and information systems
PublicationTitleAbbrev Knowl Inf Syst
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References 2491_CR78
2491_CR33
2491_CR77
2491_CR36
2491_CR35
A Berady (2491_CR47) 2021; 18
2491_CR79
2491_CR74
2491_CR73
2491_CR32
2491_CR31
2491_CR75
2491_CR37
Y Wang (2491_CR72) 2022; 16
2491_CR39
2491_CR70
MR Rahman (2491_CR3) 2023; 55
2491_CR5
2491_CR4
2491_CR44
2491_CR7
K Ahmed (2491_CR34) 2024; 136
2491_CR6
2491_CR46
2491_CR9
2491_CR41
J Zheng (2491_CR71) 2011; 44
2491_CR8
2491_CR40
SÖ Arik (2491_CR68) 2021; 35
2491_CR84
2491_CR43
2491_CR42
2491_CR49
J Pustejovsky (2491_CR16) 2003; 3
JL Campbell (2491_CR76) 2013; 42
K Mai (2491_CR38) 2025; 148
2491_CR81
2491_CR80
2491_CR83
T Chen (2491_CR45) 2024; 136
2491_CR82
YB Gumiel (2491_CR25) 2021; 54
W Ge (2491_CR28) 2023; 132
2491_CR12
2491_CR56
2491_CR11
2491_CR55
2491_CR14
2491_CR58
2491_CR57
2491_CR52
RJ Howarth (2491_CR62) 2017
2491_CR51
2491_CR10
2491_CR54
2491_CR53
2491_CR19
B Strom (2491_CR13) 2020
2491_CR15
2491_CR59
2491_CR18
2491_CR17
J Liu (2491_CR27) 2022; 5
2491_CR50
2491_CR1
2491_CR2
2491_CR23
2491_CR67
2491_CR22
2491_CR66
Y-T Huang (2491_CR48) 2021; 19
2491_CR69
2491_CR24
2491_CR63
2491_CR65
2491_CR20
2491_CR64
2491_CR26
2491_CR29
Y You (2491_CR30) 2022; 5
N Chambers (2491_CR21) 2014; 2
2491_CR61
2491_CR60
References_xml – ident: 2491_CR55
– ident: 2491_CR80
– ident: 2491_CR32
– ident: 2491_CR43
  doi: 10.1109/CNS48642.2020.9162207
– ident: 2491_CR40
  doi: 10.1016/j.cose.2023.103524
– volume: 44
  start-page: 1113
  issue: 6
  year: 2011
  ident: 2491_CR71
  publication-title: Journal of biomedical informatics
  doi: 10.1016/j.jbi.2011.08.006
– ident: 2491_CR50
  doi: 10.1145/3319535.3363217
– ident: 2491_CR65
– ident: 2491_CR84
– volume: 132
  year: 2023
  ident: 2491_CR28
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2023.103369
– ident: 2491_CR7
– ident: 2491_CR23
– volume: 5
  start-page: 8
  issue: 1
  year: 2022
  ident: 2491_CR27
  publication-title: Cybersecurity
  doi: 10.1186/s42400-022-00110-3
– ident: 2491_CR69
  doi: 10.1007/978-3-319-93417-4_38
– ident: 2491_CR52
– ident: 2491_CR58
– ident: 2491_CR75
– ident: 2491_CR31
– ident: 2491_CR79
– ident: 2491_CR56
– ident: 2491_CR10
– ident: 2491_CR83
– ident: 2491_CR66
– volume: 42
  start-page: 294
  issue: 3
  year: 2013
  ident: 2491_CR76
  publication-title: Sociological Methods & Research
  doi: 10.1177/0049124113500475
– ident: 2491_CR17
– volume: 18
  start-page: 1321
  issue: 2
  year: 2021
  ident: 2491_CR47
  publication-title: IEEE Transactions on Network and Service Management
  doi: 10.1109/TNSM.2021.3056999
– ident: 2491_CR39
  doi: 10.1016/j.cose.2024.104220
– ident: 2491_CR20
– volume: 55
  start-page: 1
  issue: 12
  year: 2023
  ident: 2491_CR3
  publication-title: ACM Computing Surveys
  doi: 10.1145/3571726
– ident: 2491_CR6
– ident: 2491_CR49
  doi: 10.1109/SP.2019.00026
– ident: 2491_CR59
– volume: 35
  start-page: 6679
  year: 2021
  ident: 2491_CR68
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v35i8.16826
– ident: 2491_CR53
– ident: 2491_CR1
– volume: 3
  start-page: 28
  year: 2003
  ident: 2491_CR16
  publication-title: New directions in question answering
– ident: 2491_CR67
  doi: 10.1016/B978-0-12-800056-4.00006-6
– ident: 2491_CR11
– ident: 2491_CR24
– ident: 2491_CR51
  doi: 10.1109/ICDM59182.2024.00049
– ident: 2491_CR63
– ident: 2491_CR2
  doi: 10.1109/TKDE.2022.3175719
– ident: 2491_CR42
  doi: 10.1109/ACCESS.2023.3315121
– ident: 2491_CR82
– ident: 2491_CR18
– volume: 136
  year: 2024
  ident: 2491_CR45
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2023.103518
– ident: 2491_CR9
– volume: 16
  start-page: 1
  issue: 6
  year: 2022
  ident: 2491_CR72
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
– ident: 2491_CR44
– volume-title: Dictionary of mathematical geosciences
  year: 2017
  ident: 2491_CR62
  doi: 10.1007/978-3-319-57315-1
– ident: 2491_CR14
– ident: 2491_CR73
– ident: 2491_CR70
  doi: 10.3115/1072017.1072023
– ident: 2491_CR5
– volume: 54
  start-page: 1
  issue: 7
  year: 2021
  ident: 2491_CR25
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3462475
– ident: 2491_CR36
  doi: 10.1109/BigData55660.2022.10021134
– ident: 2491_CR77
– volume-title: Mitre att &ck: Design and philosophy
  year: 2020
  ident: 2491_CR13
– volume: 5
  start-page: 3
  issue: 1
  year: 2022
  ident: 2491_CR30
  publication-title: Cybersecurity
  doi: 10.1186/s42400-021-00106-5
– ident: 2491_CR29
  doi: 10.1109/ISSRE55969.2022.00027
– volume: 19
  start-page: 776
  issue: 2
  year: 2021
  ident: 2491_CR48
  publication-title: IEEE Transactions on Dependable and Secure Computing
– ident: 2491_CR81
– ident: 2491_CR41
  doi: 10.1109/ICDMW51313.2020.00075
– ident: 2491_CR54
– volume: 2
  start-page: 273
  year: 2014
  ident: 2491_CR21
  publication-title: Transactions of the Association for Computational Linguistics
  doi: 10.1162/tacl_a_00182
– volume: 148
  year: 2025
  ident: 2491_CR38
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2024.104125
– ident: 2491_CR12
– ident: 2491_CR37
  doi: 10.1109/EuroSP51992.2021.00046
– ident: 2491_CR33
  doi: 10.1145/3134600.3134646
– ident: 2491_CR60
– ident: 2491_CR64
– ident: 2491_CR61
  doi: 10.1007/978-3-319-47241-6
– ident: 2491_CR8
– ident: 2491_CR19
– ident: 2491_CR22
– ident: 2491_CR15
– ident: 2491_CR26
  doi: 10.1109/EuroSP.2018.00039
– ident: 2491_CR74
– ident: 2491_CR46
  doi: 10.1109/ICDE51399.2021.00024
– ident: 2491_CR4
– ident: 2491_CR35
  doi: 10.1007/978-3-031-17140-6_29
– volume: 136
  year: 2024
  ident: 2491_CR34
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2023.103579
– ident: 2491_CR78
– ident: 2491_CR57
  doi: 10.11613/BM.2012.031
SSID ssj0017611
Score 2.3990016
Snippet Cyberthreat intelligence (CTI) reports on past cyberattacks describe the sequence of actions of attackers in terms of time. The sequence contains temporal...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 8941
SubjectTerms Best practice
Computer Science
Countermeasures
Cybercrime
Cybersecurity
Data Mining and Knowledge Discovery
Database Management
Datasets
Graphical representations
Information retrieval
Information Storage and Retrieval
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
Intelligence
IT in Business
Knowledge management
Knowledge representation
Large language models
Machine learning
Malware
Natural language processing
Title Mining temporal attack patterns from cyberthreat intelligence reports
URI https://link.springer.com/article/10.1007/s10115-025-02491-6
https://www.proquest.com/docview/3261458257
Volume 67
WOSCitedRecordID wos001533639800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 0219-3116
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017611
  issn: 0219-1377
  databaseCode: RSV
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BYWChfIpCQR7YwFLSJLYzItSKhQrxpW5R7NiiAqVVE5D495xdhxYEA8yJLOvs873T3b0HcMrCMCqY1JRpaWgsuaYi5DnF0JLgk6yEUcqJTfDhUIxG6Y0fCquabvemJOle6qVhN0Qv1MqvWpq7kLJVWMNwJ6xgw-3d42ftABNzp5OHvkgtn54flfl5ja_haIExv5VFXbQZtP-3zy3Y9OiSXMyvwzas6HIH2o1yA_GOvAv9a6cLQTwx1QvJ6zpXz2Tq2DbLitipE6Lebdf1k4WVZLxE3Ul8oWEPHgb9-8sr6gUVqIpCVlMTBUUQ6B4zQSBtYognkkYaER9X6IlK5Ji_oEcXcY4wB3PuguvQ6J5MeGoSBAb70ConpT4AIo2UPBeJ5lEcp0EijCwiIWNEB2mcmKIDZ41ds-mcNyNbMCRbC2VoocxZKGMd6Damz7wPVRkCy9BW9RLegfPG1IvPv692-Lffj2CjZ0_Ldeh1oVXPXvUxrKu3elzNTtzd-gB0xMht
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50Cvri_InTqXnwTQPt-iPto8jGxG2ITtlbaNIEh1LHWgX_ey9Z66bogz63hHDJ5b7j7r4P4DR0XS8NhaKhEpr6gikauSyhGFoCfJJlpKW0YhNsMIhGo_imHArLq273qiRpX-qFYTdEL9TIrxqaO5eGy7DiY8QyjPm3dw-ftQNMzK1OHvoiNXx65ajMz2t8DUdzjPmtLGqjTaf-v31uwkaJLsnF7DpswZLKtqFeKTeQ0pF3oN23uhCkJKZ6JklRJPKJTCzbZpYTM3VC5Lvpun40sJKMF6g7SVlo2IX7Tnt42aWloAKVnhsWVHtO6jiqFWrHESYxxBOJPYWIj0n0RBklmL-gR6d-gjAHc-6UKVerlghYrAMEBntQy14ytQ9EaCFYEgWKeb4fO0GkRepFwkd0EPuBThtwVtmVT2a8GXzOkGwsxNFC3FqIhw1oVqbnpQ_lHIGla6p6AWvAeWXq-effVzv42-8nsNYd9nu8dzW4PoT1ljk5263XhFoxfVVHsCrfinE-Pbb37APkMMtR
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20inixfmK16h686WLSZLPJUbRFUUvBD3pbsptdLEosbRT8985uE1tFD-I5YQkzO5k3zMx7AIeR7wdZJDWNtDQ0lFzT2OcpxdTC8JesYqOUE5vg3W7c7ye9mS1-N-1etSQnOw2WpSkvToaZOZlZfEMkQ60Uq6W882k0DwuhHaS39frtw2cfAYt0p5mHcUktt165NvPzGV9T0xRvfmuRuszTqf__m1dhpUSd5HRyTdZgTufrUK8UHUgZ4BvQvnF6EaQkrHomaVGk6okMHQtnPiZ2G4WodzuN_WjhJhnMUHqSsgGxCfed9t3ZBS2FFqgK_KigJvAyz9OtyHietAUjeioJNCJBrjBCVZxiXYORnoUpwh-sxTOufaNbkvHEMAQMW1DLX3K9DUQaKXkaM82DMEw8FhuZBbEMETUkITNZA44qG4vhhE9DTJmTrYUEWkg4C4moAc3KDaKMrbFAwOnbbh_jDTiuzD59_PtpO397_QCWeucdcX3ZvdqF5ZZ1nBvia0KtGL3qPVhUb8VgPNp3V-4DLf7UNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+temporal+attack+patterns+from+cyberthreat+intelligence+reports&rft.jtitle=Knowledge+and+information+systems&rft.au=Rahman%2C+Md+Rayhanur&rft.au=Wroblewski%2C+Brandon&rft.au=Matthews%2C+Quinn&rft.au=Morgan%2C+Brantley&rft.date=2025-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0219-1377&rft.eissn=0219-3116&rft.volume=67&rft.issue=10&rft.spage=8941&rft.epage=8981&rft_id=info:doi/10.1007%2Fs10115-025-02491-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-1377&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-1377&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-1377&client=summon