Quadratic programs with hollows

Let F be a quadratically constrained, possibly nonconvex, bounded set, and let E 1 , … , E l denote ellipsoids contained in F with non-intersecting interiors. We prove that minimizing an arbitrary quadratic q ( · ) over G : = F \ ∪ k = 1 ℓ int ( E k ) is no more difficult than minimizing q ( · ) ove...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 170; číslo 2; s. 541 - 553
Hlavní autoři: Yang, Boshi, Anstreicher, Kurt, Burer, Samuel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2018
Springer Nature B.V
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let F be a quadratically constrained, possibly nonconvex, bounded set, and let E 1 , … , E l denote ellipsoids contained in F with non-intersecting interiors. We prove that minimizing an arbitrary quadratic q ( · ) over G : = F \ ∪ k = 1 ℓ int ( E k ) is no more difficult than minimizing q ( · ) over F in the following sense: if a given semidefinite-programming (SDP) relaxation for min { q ( x ) : x ∈ F } is tight, then the addition of l linear constraints derived from E 1 , … , E l yields a tight SDP relaxation for min { q ( x ) : x ∈ G } . We also prove that the convex hull of { ( x , x x T ) : x ∈ G } equals the intersection of the convex hull of { ( x , x x T ) : x ∈ F } with the same l linear constraints. Inspired by these results, we resolve a related question in a seemingly unrelated area, mixed-integer nonconvex quadratic programming.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-017-1157-0