Quadratic programs with hollows

Let F be a quadratically constrained, possibly nonconvex, bounded set, and let E 1 , … , E l denote ellipsoids contained in F with non-intersecting interiors. We prove that minimizing an arbitrary quadratic q ( · ) over G : = F \ ∪ k = 1 ℓ int ( E k ) is no more difficult than minimizing q ( · ) ove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming Jg. 170; H. 2; S. 541 - 553
Hauptverfasser: Yang, Boshi, Anstreicher, Kurt, Burer, Samuel
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2018
Springer Nature B.V
Schlagworte:
ISSN:0025-5610, 1436-4646
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Let F be a quadratically constrained, possibly nonconvex, bounded set, and let E 1 , … , E l denote ellipsoids contained in F with non-intersecting interiors. We prove that minimizing an arbitrary quadratic q ( · ) over G : = F \ ∪ k = 1 ℓ int ( E k ) is no more difficult than minimizing q ( · ) over F in the following sense: if a given semidefinite-programming (SDP) relaxation for min { q ( x ) : x ∈ F } is tight, then the addition of l linear constraints derived from E 1 , … , E l yields a tight SDP relaxation for min { q ( x ) : x ∈ G } . We also prove that the convex hull of { ( x , x x T ) : x ∈ G } equals the intersection of the convex hull of { ( x , x x T ) : x ∈ F } with the same l linear constraints. Inspired by these results, we resolve a related question in a seemingly unrelated area, mixed-integer nonconvex quadratic programming.
AbstractList Let F be a quadratically constrained, possibly nonconvex, bounded set, and let E1,…,El denote ellipsoids contained in F with non-intersecting interiors. We prove that minimizing an arbitrary quadratic q(·) over G:=F\∪k=1ℓint(Ek) is no more difficult than minimizing q(·) over F in the following sense: if a given semidefinite-programming (SDP) relaxation for min{q(x):x∈F} is tight, then the addition of l linear constraints derived from E1,…,El yields a tight SDP relaxation for min{q(x):x∈G}. We also prove that the convex hull of {(x,xxT):x∈G} equals the intersection of the convex hull of {(x,xxT):x∈F} with the same l linear constraints. Inspired by these results, we resolve a related question in a seemingly unrelated area, mixed-integer nonconvex quadratic programming.
Let F be a quadratically constrained, possibly nonconvex, bounded set, and let E 1 , … , E l denote ellipsoids contained in F with non-intersecting interiors. We prove that minimizing an arbitrary quadratic q ( · ) over G : = F \ ∪ k = 1 ℓ int ( E k ) is no more difficult than minimizing q ( · ) over F in the following sense: if a given semidefinite-programming (SDP) relaxation for min { q ( x ) : x ∈ F } is tight, then the addition of l linear constraints derived from E 1 , … , E l yields a tight SDP relaxation for min { q ( x ) : x ∈ G } . We also prove that the convex hull of { ( x , x x T ) : x ∈ G } equals the intersection of the convex hull of { ( x , x x T ) : x ∈ F } with the same l linear constraints. Inspired by these results, we resolve a related question in a seemingly unrelated area, mixed-integer nonconvex quadratic programming.
Author Yang, Boshi
Anstreicher, Kurt
Burer, Samuel
Author_xml – sequence: 1
  givenname: Boshi
  orcidid: 0000-0001-6760-9054
  surname: Yang
  fullname: Yang, Boshi
  email: boshiy@clemson.edu
  organization: Department of Mathematical Sciences, Clemson University
– sequence: 2
  givenname: Kurt
  surname: Anstreicher
  fullname: Anstreicher, Kurt
  organization: Department of Management Sciences, University of Iowa
– sequence: 3
  givenname: Samuel
  surname: Burer
  fullname: Burer, Samuel
  organization: Department of Management Sciences, University of Iowa
BookMark eNp9kN9LwzAQx4NMsJv-AT458Dl6l6RpfJThLxiIoM_hbNOto2tm0jL8782oIAj6dMfdfe57952ySec7x9g5whUCFNcRAaHggAVHzFNyxDJUUnOllZ6wDEDkPNcIJ2wa4wYAUBqTsYuXgapAfVPOd8GvAm3jfN_06_nat63fx1N2XFMb3dl3nLG3-7vXxSNfPj88LW6XvJSoe14LqSuRk9NGGUdUE6kbAoWClKJKiNQ0RS1JqPJdKVkL0sKUMhVynaOTM3Y57k1XfAwu9nbjh9AlSStASw1oCp2mcJwqg48xuNruQrOl8GkR7MEHO_pgkw_24IOFxBS_mLLp08O-6wM17b-kGMmYVLqVCz83_Q19AWHicW0
CitedBy_id crossref_primary_10_1007_s10107_019_01367_2
crossref_primary_10_1016_j_ejco_2021_100012
crossref_primary_10_1016_j_orl_2023_11_006
crossref_primary_10_1007_s10107_023_01985_x
crossref_primary_10_1007_s10107_025_02278_1
crossref_primary_10_1137_22M1501027
crossref_primary_10_1007_s10107_020_01589_9
crossref_primary_10_1007_s13675_018_0101_2
crossref_primary_10_1137_22M1528215
crossref_primary_10_1007_s00186_020_00726_6
crossref_primary_10_1016_j_ejor_2022_11_020
crossref_primary_10_1007_s10107_019_01453_5
crossref_primary_10_1007_s10107_024_02131_x
crossref_primary_10_1007_s10107_020_01560_8
crossref_primary_10_1007_s40305_019_00286_5
Cites_doi 10.1137/110826862
10.1007/BF02614438
10.1515/9781400873173
10.1016/j.disopt.2014.08.002
10.1080/10556789308805542
10.1016/S0167-6377(01)00093-1
10.1287/moor.28.2.246.14485
10.1007/s10107-013-0716-2
10.1142/5273
10.1137/S105262340139001X
10.1137/1.9781611970791
10.1007/s10589-013-9635-7
10.1007/s10107-010-0355-9
10.1137/0804009
10.1137/0805016
10.1007/978-3-642-56468-0
10.1007/s10107-015-0888-z
10.1137/050644471
10.1007/s10107-012-0609-9
10.1007/s10107-014-0749-1
10.1016/j.orl.2010.05.010
10.1137/1.9780898719857
10.1137/1.9781611973402.28
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2017
Mathematical Programming is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2017
– notice: Mathematical Programming is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10107-017-1157-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 553
ExternalDocumentID 10_1007_s10107_017_1157_0
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c316t-f236d25ae6848eaafaa49a0412a44ad22d2587f3a24cb443f2a628c33a25651e3
IEDL.DBID 7WY
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000437251400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Thu Sep 25 00:56:25 EDT 2025
Tue Nov 18 22:34:14 EST 2025
Sat Nov 29 03:34:00 EST 2025
Fri Feb 21 02:32:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 90C20
Semidefinite programming
Convex hull
90C30
Nonconvex quadratic programming
90C25
90C22
90C26
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-f236d25ae6848eaafaa49a0412a44ad22d2587f3a24cb443f2a628c33a25651e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6760-9054
PQID 2063601876
PQPubID 25307
PageCount 13
ParticipantIDs proquest_journals_2063601876
crossref_primary_10_1007_s10107_017_1157_0
crossref_citationtrail_10_1007_s10107_017_1157_0
springer_journals_10_1007_s10107_017_1157_0
PublicationCentury 2000
PublicationDate 20180800
2018-8-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 8
  year: 2018
  text: 20180800
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Burer, Anstreicher (CR7) 2013; 23
CR4
Berman, Shaked-Monderer (CR3) 2003
Buchheim, Traversi (CR5) 2015; 15
Pong, Wolkowicz (CR18) 2014; 58
Hiriart-Urruty, Lemaréchal (CR12) 2001
Burer, Letchford (CR8) 2014; 143
CR17
Beck, Eldar (CR2) 2006; 17
Sturm, Zhang (CR22) 2003; 28
Martínez (CR14) 1994; 4
CR11
CR10
Rendl, Wolkowicz (CR19) 1997; 77
Stern, Wolkowicz (CR21) 1995; 5
Burer (CR6) 2015; 151
Moré (CR15) 1993; 2
Burer, Yang (CR9) 2015; 149
Jeyakumar, Li (CR13) 2014; 147
Tunçel (CR23) 2001; 29
Nesterov, Nemirovskii (CR16) 1994
Anstreicher, Burer (CR1) 2010; 124
Rockafellar (CR20) 1970
Ye, Zhang (CR24) 2003; 14
C Buchheim (1157_CR5) 2015; 15
1157_CR17
RJ Stern (1157_CR21) 1995; 5
Y Ye (1157_CR24) 2003; 14
1157_CR4
A Beck (1157_CR2) 2006; 17
A Berman (1157_CR3) 2003
JM Martínez (1157_CR14) 1994; 4
JJ Moré (1157_CR15) 1993; 2
F Rendl (1157_CR19) 1997; 77
YE Nesterov (1157_CR16) 1994
JB Hiriart-Urruty (1157_CR12) 2001
L Tunçel (1157_CR23) 2001; 29
S Burer (1157_CR8) 2014; 143
RT Rockafellar (1157_CR20) 1970
KM Anstreicher (1157_CR1) 2010; 124
V Jeyakumar (1157_CR13) 2014; 147
1157_CR10
T Pong (1157_CR18) 2014; 58
S Burer (1157_CR6) 2015; 151
S Burer (1157_CR7) 2013; 23
S Burer (1157_CR9) 2015; 149
JF Sturm (1157_CR22) 2003; 28
1157_CR11
References_xml – volume: 23
  start-page: 432
  issue: 1
  year: 2013
  end-page: 451
  ident: CR7
  article-title: Second-order-cone constraints for extended trust-region subproblems
  publication-title: SIAM J. Optim.
  doi: 10.1137/110826862
– volume: 77
  start-page: 273
  issue: 1
  year: 1997
  end-page: 299
  ident: CR19
  article-title: A semidefinite framework for trust region subproblems with applications to large scale minimization
  publication-title: Math. Program.
  doi: 10.1007/BF02614438
– year: 1970
  ident: CR20
  publication-title: Convex Analysis
  doi: 10.1515/9781400873173
– volume: 15
  start-page: 1
  year: 2015
  end-page: 14
  ident: CR5
  article-title: On the separation of split inequalities for non-convex quadratic integer programming
  publication-title: Discret. Optim.
  doi: 10.1016/j.disopt.2014.08.002
– volume: 2
  start-page: 189
  year: 1993
  end-page: 209
  ident: CR15
  article-title: Generalizations of the trust region problem
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556789308805542
– volume: 29
  start-page: 181
  issue: 4
  year: 2001
  end-page: 186
  ident: CR23
  article-title: On the slater condition for the sdp relaxations of nonconvex sets
  publication-title: Oper. Res. Let.
  doi: 10.1016/S0167-6377(01)00093-1
– volume: 28
  start-page: 246
  issue: 2
  year: 2003
  end-page: 267
  ident: CR22
  article-title: On cones of nonnegative quadratic functions
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.28.2.246.14485
– ident: CR4
– volume: 147
  start-page: 171
  issue: 1–2
  year: 2014
  end-page: 206
  ident: CR13
  article-title: Trust-region problems with linear inequality constraints: exact SDP relaxation, global optimality and robust optimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0716-2
– year: 2003
  ident: CR3
  publication-title: Completely Positive Matrices
  doi: 10.1142/5273
– volume: 14
  start-page: 245
  issue: 1
  year: 2003
  end-page: 267
  ident: CR24
  article-title: New results on quadratic minimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/S105262340139001X
– ident: CR17
– year: 1994
  ident: CR16
  publication-title: Interior-Point Polynomial Algorithms in Convex Programming
  doi: 10.1137/1.9781611970791
– ident: CR10
– ident: CR11
– volume: 58
  start-page: 273
  issue: 2
  year: 2014
  end-page: 322
  ident: CR18
  article-title: The generalized trust region subproblem
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-013-9635-7
– volume: 124
  start-page: 33
  issue: 1
  year: 2010
  end-page: 43
  ident: CR1
  article-title: Computable representations for convex hulls of low-dimensional quadratic forms
  publication-title: Math. Program.
  doi: 10.1007/s10107-010-0355-9
– volume: 4
  start-page: 159
  issue: 1
  year: 1994
  end-page: 176
  ident: CR14
  article-title: Local minimizers of quadratic functions on euclidean balls and spheres
  publication-title: SIAM J. Optim.
  doi: 10.1137/0804009
– volume: 5
  start-page: 286
  issue: 2
  year: 1995
  end-page: 313
  ident: CR21
  article-title: Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations
  publication-title: SIAM J. Optim.
  doi: 10.1137/0805016
– year: 2001
  ident: CR12
  publication-title: Fundamentals of Convex Analysis
  doi: 10.1007/978-3-642-56468-0
– volume: 151
  start-page: 89
  issue: 1
  year: 2015
  end-page: 116
  ident: CR6
  article-title: A gentle, geometric introduction to copositive optimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0888-z
– volume: 17
  start-page: 844
  issue: 3
  year: 2006
  end-page: 860
  ident: CR2
  article-title: Strong duality in nonconvex quadratic optimization with two quadratic constraints
  publication-title: SIAM J. Optim.
  doi: 10.1137/050644471
– volume: 143
  start-page: 231
  issue: 1–2, Ser. A
  year: 2014
  end-page: 256
  ident: CR8
  article-title: Unbounded convex sets for non-convex mixed-integer quadratic programming
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0609-9
– volume: 149
  start-page: 253
  issue: 1–2
  year: 2015
  end-page: 264
  ident: CR9
  article-title: The trust region subproblem with non-intersecting linear constraints
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0749-1
– volume: 29
  start-page: 181
  issue: 4
  year: 2001
  ident: 1157_CR23
  publication-title: Oper. Res. Let.
  doi: 10.1016/S0167-6377(01)00093-1
– volume: 14
  start-page: 245
  issue: 1
  year: 2003
  ident: 1157_CR24
  publication-title: SIAM J. Optim.
  doi: 10.1137/S105262340139001X
– volume: 23
  start-page: 432
  issue: 1
  year: 2013
  ident: 1157_CR7
  publication-title: SIAM J. Optim.
  doi: 10.1137/110826862
– volume: 151
  start-page: 89
  issue: 1
  year: 2015
  ident: 1157_CR6
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0888-z
– ident: 1157_CR11
  doi: 10.1016/j.orl.2010.05.010
– volume: 147
  start-page: 171
  issue: 1–2
  year: 2014
  ident: 1157_CR13
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0716-2
– volume-title: Interior-Point Polynomial Algorithms in Convex Programming
  year: 1994
  ident: 1157_CR16
  doi: 10.1137/1.9781611970791
– volume: 77
  start-page: 273
  issue: 1
  year: 1997
  ident: 1157_CR19
  publication-title: Math. Program.
  doi: 10.1007/BF02614438
– ident: 1157_CR10
  doi: 10.1137/1.9780898719857
– volume-title: Convex Analysis
  year: 1970
  ident: 1157_CR20
  doi: 10.1515/9781400873173
– volume: 124
  start-page: 33
  issue: 1
  year: 2010
  ident: 1157_CR1
  publication-title: Math. Program.
  doi: 10.1007/s10107-010-0355-9
– volume-title: Completely Positive Matrices
  year: 2003
  ident: 1157_CR3
  doi: 10.1142/5273
– volume: 28
  start-page: 246
  issue: 2
  year: 2003
  ident: 1157_CR22
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.28.2.246.14485
– volume: 58
  start-page: 273
  issue: 2
  year: 2014
  ident: 1157_CR18
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-013-9635-7
– volume-title: Fundamentals of Convex Analysis
  year: 2001
  ident: 1157_CR12
  doi: 10.1007/978-3-642-56468-0
– volume: 15
  start-page: 1
  year: 2015
  ident: 1157_CR5
  publication-title: Discret. Optim.
  doi: 10.1016/j.disopt.2014.08.002
– volume: 2
  start-page: 189
  year: 1993
  ident: 1157_CR15
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556789308805542
– ident: 1157_CR4
  doi: 10.1137/1.9781611973402.28
– volume: 17
  start-page: 844
  issue: 3
  year: 2006
  ident: 1157_CR2
  publication-title: SIAM J. Optim.
  doi: 10.1137/050644471
– volume: 143
  start-page: 231
  issue: 1–2, Ser. A
  year: 2014
  ident: 1157_CR8
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0609-9
– volume: 149
  start-page: 253
  issue: 1–2
  year: 2015
  ident: 1157_CR9
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0749-1
– ident: 1157_CR17
– volume: 5
  start-page: 286
  issue: 2
  year: 1995
  ident: 1157_CR21
  publication-title: SIAM J. Optim.
  doi: 10.1137/0805016
– volume: 4
  start-page: 159
  issue: 1
  year: 1994
  ident: 1157_CR14
  publication-title: SIAM J. Optim.
  doi: 10.1137/0804009
SSID ssj0001388
Score 2.2978427
Snippet Let F be a quadratically constrained, possibly nonconvex, bounded set, and let E 1 , … , E l denote ellipsoids contained in F with non-intersecting interiors....
Let F be a quadratically constrained, possibly nonconvex, bounded set, and let E1,…,El denote ellipsoids contained in F with non-intersecting interiors. We...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 541
SubjectTerms Calculus of Variations and Optimal Control; Optimization
Combinatorics
Ellipsoids
Game theory
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Quadratic programming
Short Communication
Theoretical
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9k-qAPfovTqX3wSQnkq2n6KOLwQYeijr2VW5qCIJusm_77Jl2zTVFBH9ukodxdL7_rXX4HcKqpNEqwmPSLmBKJqSWoMCU8TbAvYqZoVSDbvUk6Hd3rpXf1Oe4yVLuHlGTlqRcOu7GqTDIhniCGuDh9OfZkMz5Ef-jO3C8TWoc-rR4chFTmd0t83ozmCPNLUrTaa9ob_3rLTVivoWV0MbWFLViyg21YWyAcdFe3M5bWcgdO7ieYewswUV2mVUb-v2zkPOLL8L3chaf21ePlNakbJhAjmBqTgguV8xit0lJbxAJRpugZtVBKzDl3gzopBHJp-lKKgqPi2gh3w-E6ZsUeNAbDgd2HCK3IHfZzmrLcxTQuCLQ0cZpkSuWmkEUTaJBcZmo2cd_U4iWb8yB7SWROEpmXREabcDZ75HVKpfHb5FZQR1Z_VWXGqWc3Y86BN-E8iH8-_ONiB3-afQirDhXpaZVfCxrj0cQewYp5Gz-Xo-PK2D4ABZXKOg
  priority: 102
  providerName: Springer Nature
Title Quadratic programs with hollows
URI https://link.springer.com/article/10.1007/s10107-017-1157-0
https://www.proquest.com/docview/2063601876
Volume 170
WOSCitedRecordID wos000437251400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9080Ef_Banc_bBJyXQJmmaPomKIujG3HROX0qWpiCMbdqp_76Xrt1UcC--HKRpQ7hLLneX6-8AjqTLtWCeT3qJ7xKuQkOUUCGhYaB6zPeEmyXIdm6DRkN2u2EzD7ileVploRMzRR0PtY2Ro5Nuka083Lyno1diq0bZ29W8hMYilPGg9m0Fg-DxaaqJPSZlUbLV2gnFrebk1zkvS7oMiIWbIe7Pc2lmbP66H82Onau1_054HVZzg9M5m6yQDVgwg01Y-QZDiK36FLs13YLDu3cV23WhnTx5K3VstNZBPdkffqbb8HB1eX9xTfIyCkQzT4xJQpmIqa-MkFwapRKleKgszpbiXMWUYqcMEqYo1z3OWUKVoFIzfIDWnmfYDpQGw4HZBUcZFqNFiPIzFD0ddA2NG6B8PSFinfCkAm7BxEjnGOO21EU_mqEjW75HyPfI8j1yK3A8_WQ0AdiY93K14HWU77U0mjG6AieFtGbdfw62N3-wfVhG40hOkv2qUBq_vZsDWNIf45f0rZYttBqUzy8bzRa2bgKCtO5eWEqblgZtpE3_GWmr3fkCvqncZw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS8MwFD54A_XBuzid2gd9UQJtkqXpg4ioQ9kcCip7q1magjC2uW6Kf8rf6EkvmwruzQcf27Sh9Ptyck5y8h2AA-lyLZhXIa244hKuAkOUUAGhga9arOIJN02Qfaz7jYZsNoPbKfgozsLYtMrCJqaGOupqu0aOQbpVtvJw8J72XoitGmV3V4sSGhktaub9DUO25OT6AvE9pLR6eX9-RfKqAkQzTwxITJmIaEUZIbk0SsVK8UBZ2SnFuYooxUbpx0xRrlucs5gqQaVmeAOdH88w7HcaZjmTwo6omk9Glt9jUhYlYq1fUuyiZkf1vDTJ0ydW3oa43-fBsXP7Yz82neaqy__tB63AUu5QO2fZCFiFKdNZg8UvMot4dTPSpk3WYf9uqCLLe-3kyWmJY1ejHZwH2t23ZAMe_uR7N2Gm0-2YLXCUYRF6vMhPQzGSw9DXuD7y1xMi0jGPS-AWoIU611C3pTza4Vj92eIcIs6hxTl0S3A0eqWXCYhMerhcYBvmtiQJx8CW4Lhgx7j51862J3e2D_NX9zf1sH7dqO3AAjqCMktsLMPMoD80uzCnXwfPSX8vJbkDT39Nmk8xCzD8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SRfTgW6xWuwdPSujmsdnsUdSiWEt9ld5Cmk1AKG3pbvXvm-yjraKCeNwkG5aZ2cmXzOQbAE65TxUjKIB9E_iQykhDyWQEcRTKPgkQ87ME2W4rbLd5rxd1ijqnSZntXoYk8zsNjqVpmDbGsWksXHxDWcpkCB1ZDLR79mVqW1xO1-NTd-aKEeG8rNnqgEIZ1vxuis8L0xxtfgmQZutOc_PfX7wFNgrI6V3kNrINlvRwB6wvEBHap_sZe2uyC-oPUxk7y1Bekb6VeO681rOecjB6T_bAS_P6-fIGFoUUoCKIpdBgwmIcSM045VpKIyWNpGPakpTKGGPbyUNDJKaqTykxWDLMFbENFu8hTfZBZTga6gPgSU1iiwmtBjW2ex27OdR-aDWMGIuVoaYK_FKKQhUs467YxUDM-ZGdJISVhHCSEH4VnM1eGecUG78NrpWqEcXflgjsO9YzZB17FZyXqph3_zjZ4Z9G18Fq56opWrftuyOwZoETzxMBa6CSTqb6GKyot_Q1mZxkNvgBSbnWAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quadratic+programs+with+hollows&rft.jtitle=Mathematical+programming&rft.au=Yang%2C+Boshi&rft.au=Anstreicher%2C+Kurt&rft.au=Burer%2C+Samuel&rft.date=2018-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=170&rft.issue=2&rft.spage=541&rft.epage=553&rft_id=info:doi/10.1007%2Fs10107-017-1157-0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon