Visual tracking based on stacked Denoising Autoencoder network with genetic algorithm optimization

Visual object tracking in dynamic environments with severe appearance variations is a significant problem in the computer vision field. This paper proposes a novel visual tracking algorithm that exploits the multiple level features learning ability of SDAE. There are two training stages for the SDAE...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multimedia tools and applications Ročník 77; číslo 4; s. 4253 - 4269
Hlavní autoři: Hua, Weixin, Mu, Dejun, Guo, Dawei, Liu, Hang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.02.2018
Springer Nature B.V
Témata:
ISSN:1380-7501, 1573-7721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Visual object tracking in dynamic environments with severe appearance variations is a significant problem in the computer vision field. This paper proposes a novel visual tracking algorithm that exploits the multiple level features learning ability of SDAE. There are two training stages for the SDAE network: Layer-wise pre-training and fine-tuning. In the pre-training stage, a two-layer sparse-coded method is used to represent the input image, then a multi-level image feature descriptor is obtained. In the fine-tuning stage, the connection weights and bias terms for back propagation are gathered via genetic algorithm. A logistic classification layer is added at the top of the encoder network to enable tracking within the well-established particle filter network. Experimental results confirm, both qualitatively and quantitatively, that the proposed method performs well in comparison against eight other state-of-the-art methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-017-4702-1