A Machine Learning Framework for Feature Selection in Heart Disease Classification Using Improved Particle Swarm Optimization with Support Vector Machine Classifier
Machine learning is used as an effective support system in health diagnosis which contains large volume of data. More commonly, analyzing such a large volume of data consumes more resources and execution time. In addition, all the features present in the dataset do not support in achieving the solut...
Saved in:
| Published in: | Programming and computer software Vol. 44; no. 6; pp. 388 - 397 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Moscow
Pleiades Publishing
01.11.2018
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0361-7688, 1608-3261 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Machine learning is used as an effective support system in health diagnosis which contains large volume of data. More commonly, analyzing such a large volume of data consumes more resources and execution time. In addition, all the features present in the dataset do not support in achieving the solution of the given problem. Hence, there is a need to use an effective feature selection algorithm for finding the more important features that contribute more in diagnosing the diseases. The Particle Swarm Optimization (PSO) is one of the metaheuristic algorithms to find the best solution with less time. Nowadays, PSO algorithm is not only used to select the more significant features but also removes the irrelevant and redundant features present in the dataset. However, the traditional PSO algorithm has an issue in selecting the optimal weight to update the velocity and position of the particles. To overcome this issue, this paper presents a novel function for identifying optimal weights on the basis of population diversity function and tuning function. We have also proposed a novel fitness function for PSO with the help of Support Vector Machine (SVM). The objective of the fitness function is to minimize the number of attributes and increase the accuracy. The performance of the proposed PSO-SVM is compared with the various existing feature selection algorithms such as Info gain, Chi-squared, One attribute based, Consistency subset, Relief, CFS, Filtered subset, Filtered attribute, Gain ratio and PSO algorithm. The SVM classifier is also compared with several classifiers such as Naive Bayes, Random forest and MLP. |
|---|---|
| AbstractList | Machine learning is used as an effective support system in health diagnosis which contains large volume of data. More commonly, analyzing such a large volume of data consumes more resources and execution time. In addition, all the features present in the dataset do not support in achieving the solution of the given problem. Hence, there is a need to use an effective feature selection algorithm for finding the more important features that contribute more in diagnosing the diseases. The Particle Swarm Optimization (PSO) is one of the metaheuristic algorithms to find the best solution with less time. Nowadays, PSO algorithm is not only used to select the more significant features but also removes the irrelevant and redundant features present in the dataset. However, the traditional PSO algorithm has an issue in selecting the optimal weight to update the velocity and position of the particles. To overcome this issue, this paper presents a novel function for identifying optimal weights on the basis of population diversity function and tuning function. We have also proposed a novel fitness function for PSO with the help of Support Vector Machine (SVM). The objective of the fitness function is to minimize the number of attributes and increase the accuracy. The performance of the proposed PSO-SVM is compared with the various existing feature selection algorithms such as Info gain, Chi-squared, One attribute based, Consistency subset, Relief, CFS, Filtered subset, Filtered attribute, Gain ratio and PSO algorithm. The SVM classifier is also compared with several classifiers such as Naive Bayes, Random forest and MLP. |
| Author | Sultana, H. Parveen Vijayashree, J. |
| Author_xml | – sequence: 1 givenname: J. surname: Vijayashree fullname: Vijayashree, J. email: vijayashree.j@vit.ac.in organization: School of Computer Science and Engineering, Vellore Institute of Technology – sequence: 2 givenname: H. Parveen surname: Sultana fullname: Sultana, H. Parveen organization: School of Computer Science and Engineering, Vellore Institute of Technology |
| BookMark | eNp9kc1KAzEUhYMo2FYfwF3A9Wgymd9lqdYWKgpVt0MmvbGpM5kxSS36PD6omVYRFCWLLM453z2X20f7utGA0AklZ5Sy6HxOWELTJMtoRhJCw3wP9WhCsoCFCd1HvU4OOv0Q9a1dEUIJiaIeeh_iay6WSgOeATda6Uc8NryGTWOesGwMHgN3awN4DhUIpxqNlcYT73X4QlngFvCo4tYqqQTf6ve2o0zr1jQvsMC33qpE5Qkbbmp80zpVq7eddaPcEs_Xbdt43IPn-4Fffb6oYI7QgeSVhePPf4Dux5d3o0kwu7majoazQDCauECSMo1FGRMiFzFLF8lCQBzmuV87ZCKSQAXIqOQli0WcAaGRZCXJoSzDNOYU2ACd7ri--fMarCtWzdpoP7IIc5rFGcv9G6B05xKmsdaALIRy23Wc4aoqKCm6kxS_TuKT9EeyNarm5vXfTLjLWO_Vj2C-O_0d-gBfKaHb |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2939490 crossref_primary_10_1007_s13369_022_07408_x crossref_primary_10_1016_j_irbm_2023_100786 crossref_primary_10_1007_s10742_025_00341_0 crossref_primary_10_1007_s11831_025_10271_2 crossref_primary_10_1016_j_ijcard_2024_132757 crossref_primary_10_1016_j_measurement_2022_112166 crossref_primary_10_1007_s43069_024_00356_2 crossref_primary_10_1155_2021_8500314 crossref_primary_10_1007_s41870_021_00671_5 crossref_primary_10_1007_s40031_021_00644_z crossref_primary_10_1109_ACCESS_2020_3006424 crossref_primary_10_4018_IJITSA_290001 crossref_primary_10_1016_j_asoc_2022_109293 crossref_primary_10_1155_2022_2482989 crossref_primary_10_1007_s12652_020_02027_6 crossref_primary_10_1109_ACCESS_2019_2962755 crossref_primary_10_1016_j_cct_2021_106397 crossref_primary_10_1016_j_compbiomed_2025_111027 crossref_primary_10_1007_s11042_024_18312_x crossref_primary_10_3390_bioengineering8050060 crossref_primary_10_1016_j_eswa_2022_117882 crossref_primary_10_1142_S2737599424500087 crossref_primary_10_1155_2021_6718029 crossref_primary_10_3390_make6020046 crossref_primary_10_1109_ACCESS_2020_2974687 crossref_primary_10_1007_s41870_023_01361_0 crossref_primary_10_3390_pr11041210 crossref_primary_10_1002_cpe_6953 crossref_primary_10_21015_vtse_v12i3_1860 crossref_primary_10_1134_S0361768821080211 crossref_primary_10_3390_app13179555 crossref_primary_10_1016_j_ijcard_2025_133266 crossref_primary_10_4018_IJSI_303582 crossref_primary_10_1007_s11069_021_05001_3 crossref_primary_10_1080_21681163_2021_2004444 crossref_primary_10_1088_1742_6596_1968_1_012016 crossref_primary_10_1007_s11831_024_10075_w crossref_primary_10_32604_cmc_2023_040329 crossref_primary_10_1016_j_patrec_2020_02_010 crossref_primary_10_1109_ACCESS_2022_3191669 crossref_primary_10_1016_j_procs_2023_01_062 crossref_primary_10_3390_math11030707 crossref_primary_10_1111_exsy_13002 crossref_primary_10_1007_s40745_024_00571_y crossref_primary_10_3390_a17010034 crossref_primary_10_1109_ACCESS_2020_2980739 crossref_primary_10_3390_designs6050087 crossref_primary_10_1134_S0361768820080198 crossref_primary_10_1038_s41598_025_09957_1 crossref_primary_10_2478_cait_2022_0040 crossref_primary_10_1016_j_knosys_2022_109709 crossref_primary_10_1109_ACCESS_2024_3524577 |
| Cites_doi | 10.1016/j.eswa.2008.09.013 10.1016/j.artmed.2010.12.001 10.1016/j.eswa.2007.04.015 10.1142/S021812661750061X 10.1016/j.eswa.2010.10.041 10.1016/j.compbiomed.2017.09.011 10.1007/s00125-011-2206-5 10.1016/j.cmpb.2008.09.005 10.1016/j.cmpb.2017.01.004 10.1016/j.jclinepi.2012.11.008 10.1016/j.eswa.2006.09.004 10.1016/j.cmpb.2010.12.015 10.1007/s12015-010-9220-8 10.1109/TITB.2006.864475 10.1016/j.jbi.2012.04.013 10.1016/j.eswa.2012.04.036 10.1016/j.eswa.2008.10.013 10.1016/j.eswa.2007.11.013 10.1016/j.eswa.2009.09.064 10.1016/j.eswa.2012.07.032 10.1016/j.eswa.2007.06.004 10.1016/j.eswa.2006.01.027 10.1016/j.artmed.2010.08.001 10.1016/j.eswa.2006.01.038 10.1016/j.asoc.2007.05.017 10.1016/j.physa.2017.04.113 10.1016/j.cmpb.2013.10.007 10.1007/s12529-008-9001-9 10.1016/j.eswa.2012.08.028 10.1016/j.proeng.2012.08.109 10.1109/TITB.2007.907985 10.1007/978-3-642-16167-4_41 10.1155/2017/9512741 10.1109/TSMCC.2004.843220 10.1016/j.cmpb.2011.03.018 10.1109/ICIEV.2016.7759984 10.1016/j.eswa.2013.01.032 10.1016/j.eswa.2009.01.041 10.1016/j.cmpb.2007.07.013 10.1109/TITB.2012.2205009 10.1016/j.eswa.2010.05.022 |
| ContentType | Journal Article |
| Copyright | Pleiades Publishing, Ltd. 2018 Pleiades Publishing, Ltd. 2018. |
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2018 – notice: Pleiades Publishing, Ltd. 2018. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1134/S0361768818060129 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: ProQuest advanced technologies & aerospace journals url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1608-3261 |
| EndPage | 397 |
| ExternalDocumentID | 10_1134_S0361768818060129 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K7- KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9O PF0 PT4 QOS R89 R9I RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c316t-f0b75cb500fd537d6dce529976823c4fe1cef4bab35c58e014f3b09ebb275a1e3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 64 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460668600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0361-7688 |
| IngestDate | Fri Nov 07 23:35:33 EST 2025 Sat Nov 29 04:55:43 EST 2025 Tue Nov 18 21:49:16 EST 2025 Fri Feb 21 02:34:03 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | population diversity function tuning function Support Vector Machine fitness function ROC analysis Particle Swarm Optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-f0b75cb500fd537d6dce529976823c4fe1cef4bab35c58e014f3b09ebb275a1e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2918583939 |
| PQPubID | 2043762 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2918583939 crossref_citationtrail_10_1134_S0361768818060129 crossref_primary_10_1134_S0361768818060129 springer_journals_10_1134_S0361768818060129 |
| PublicationCentury | 2000 |
| PublicationDate | 20181100 2018-11-00 20181101 |
| PublicationDateYYYYMMDD | 2018-11-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: 20181100 |
| PublicationDecade | 2010 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow – name: New York |
| PublicationTitle | Programming and computer software |
| PublicationTitleAbbrev | Program Comput Soft |
| PublicationYear | 2018 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | Kusiak, Caldarone (CR4) 2006; 36 Reddy, Khare (CR51) 2017; 26 Pal (CR25) 2012 Babaoglu, Kaan Baykan (CR5) 2009; 36 Setiawan (CR14) 2009; 21 CR38 CR36 Nahar, Imam (CR13) 2013; 40 CR35 CR33 CR30 Kahramanli, Allahverdi (CR26) 2008; 35 Ordonez (CR3) 2006; 10 Karsdorp, Kindt (CR29) 2009; 16 CR6 Park, Chun (CR24) 2011; 51 Zhao, Fu, Ji, Tang, Zhou (CR37) 2011; 38 Chi, Nick Street (CR23) 2010; 50 CR48 Anooj (CR32) 2012; 24 CR45 Tomar, Agarwal (CR50) 2014; 6 CR42 CR40 Huang, Chen (CR7) 2007; 32 Das, Turkoglu (CR16) 2009; 36 Jabbar, Deekshatulu, Chandra (CR47) 2016 Eom, Kim (CR41) 2008; 34 Austin, Tu (CR10) 2013; 66 CR19 Yan, Zheng (CR2) 2008; 8 Luukka, Lampinen (CR15) 2010; 7 Polat (CR21) 2007; 32 CR11 Pimentel (CR52) 2017 Babaoglu, Findik (CR12) 2010; 37 Pfister, Barnes (CR39) 2011; 54 Das, Turkoglu (CR17) 2009; 93 CR27 Vivekanandan, Iyengar (CR46) 2017; 90 Arabasadi, Alizadehsani, Roshanzamir, Moosaei, Yarifard (CR44) 2017; 141 Goekmen Turan, Bozdag (CR28) 2011; 7 Shah, Batool, Khan, Ashraf, Abbas, Hussain (CR43) 2017; 482 Paredesa (CR34) 2011; 101 Nahar, Imam (CR9) 2013; 40 CR22 Son, Kim (CR18) 2012; 45 CR20 Muthukaruppan, Er (CR31) 2012; 39 Kurt, Ture (CR1) 2008; 34 Inbarani, Azar, Jothi (CR49) 2014; 113 Tan, Teoh (CR8) 2009; 36 Carlos Ordonez (7022_CR3) 2006; 10 Mu-Jung Huang (7022_CR7) 2007; 32 Kemal Polat (7022_CR21) 2007; 32 7022_CR20 7022_CR22 7022_CR27 S.M.S. Shah (7022_CR43) 2017; 482 7022_CR6 G.T. Reddy (7022_CR51) 2017; 26 P.K. Anooj (7022_CR32) 2012; 24 H.H. Inbarani (7022_CR49) 2014; 113 Hongmei Yan (7022_CR2) 2008; 8 7022_CR30 7022_CR33 7022_CR35 7022_CR36 M.A. Jabbar (7022_CR47) 2016 D. Tomar (7022_CR50) 2014; 6 M. Zhao (7022_CR37) 2011; 38 7022_CR38 R. Das (7022_CR16) 2009; 36 S. Muthukaruppan (7022_CR31) 2012; 39 R. Goekmen Turan (7022_CR28) 2011; 7 Jesmin Nahar (7022_CR13) 2013; 40 S. Paredesa (7022_CR34) 2011; 101 Jesmin Nahar (7022_CR9) 2013; 40 7022_CR40 K.C. Tan (7022_CR8) 2009; 36 7022_CR42 A. Pimentel (7022_CR52) 2017 I. Babaoglu (7022_CR5) 2009; 36 7022_CR45 7022_CR48 P. Luukka (7022_CR15) 2010; 7 R. Pfister (7022_CR39) 2011; 54 T. Vivekanandan (7022_CR46) 2017; 90 Imran Kurt (7022_CR1) 2008; 34 P.C. Austin (7022_CR10) 2013; 66 Chih-Lin Chi (7022_CR23) 2010; 50 H. Kahramanli (7022_CR26) 2008; 35 P.A. Karsdorp (7022_CR29) 2009; 16 7022_CR11 Jae-Hong Eom (7022_CR41) 2008; 34 7022_CR19 A. Kusiak (7022_CR4) 2006; 36 Debabrata Pal (7022_CR25) 2012 R. Das (7022_CR17) 2009; 93 Z. Arabasadi (7022_CR44) 2017; 141 Chang-Sik Son (7022_CR18) 2012; 45 Yoon-Joo Park (7022_CR24) 2011; 51 N.A. Setiawan (7022_CR14) 2009; 21 I. Babaoglu (7022_CR12) 2010; 37 |
| References_xml | – ident: CR45 – ident: CR22 – volume: 36 start-page: 7675 year: 2009 end-page: 7680 ident: CR16 article-title: Effective diagnosis of heart disease through neural networks ensembles publication-title: J. Expert Syst. Appl. doi: 10.1016/j.eswa.2008.09.013 – volume: 51 start-page: 133 year: 2011 end-page: 145 ident: CR24 article-title: Cost-sensitive case-based reasoning using a genetic algorithm: Application to medical diagnosis publication-title: J. Artif. Intell. Med doi: 10.1016/j.artmed.2010.12.001 – volume: 34 start-page: 2479 year: 2008 ident: CR41 article-title: AptaCDSS-E: A classifier ensemble-based clinical decision support system for cardiovascular disease level prediction publication-title: J. Expert Syst. Appl doi: 10.1016/j.eswa.2007.04.015 – volume: 26 start-page: 1750061 year: 2017 ident: CR51 article-title: An efficient system for heart disease prediction using hybrid OFBAT with rule-based Fuzzy Logic Model publication-title: J. Circuits, Syst. Comput. doi: 10.1142/S021812661750061X – volume: 38 start-page: 5197 year: 2011 end-page: 5204 ident: CR37 article-title: Feature selection and parameter optimization for Support Vector Machines: A new approach based on genetic algorithm with feature chromosomes publication-title: Expert Syst. Appl doi: 10.1016/j.eswa.2010.10.041 – volume: 90 start-page: 125 year: 2017 end-page: 136 ident: CR46 article-title: Optimal feature selection using a modified differential evolution algorithm and its effectiveness for prediction of heart disease publication-title: Comput. Biol. Med doi: 10.1016/j.compbiomed.2017.09.011 – ident: CR35 – volume: 54 start-page: 2283 year: 2011 end-page: 2287 ident: CR39 article-title: Individual and cumulative effect of type 2 diabetes genetic susceptibility variants on risk of coronary heart disease publication-title: J. Diabetologia doi: 10.1007/s00125-011-2206-5 – volume: 6 start-page: 69 year: 2014 end-page: 82 ident: CR50 article-title: Feature selection based Least Square Twin Support Vector Machine for diagnosis of heart disease, publication-title: J. Bio-Sci. Bio-Technol – ident: CR42 – volume: 93 start-page: 185 year: 2009 end-page: 191 ident: CR17 article-title: Diagnosis of valvular heart disease through neural networks ensembles publication-title: J. Comput. Methods Programs Biomed doi: 10.1016/j.cmpb.2008.09.005 – volume: 36 start-page: 21 year: 2006 end-page: 40 ident: CR4 article-title: Hypo plastic left heart syndrome knowledge discovery with a data mining approach, publication-title: Biol. Med – volume: 141 start-page: 19 year: 2017 end-page: 26 ident: CR44 article-title: Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm publication-title: Comput. Methods Progr. Biomed doi: 10.1016/j.cmpb.2017.01.004 – ident: CR19 – volume: 24 start-page: 27 year: 2012 end-page: 40 ident: CR32 article-title: Clinical decision support system: Risk level prediction of heart disease using weighted fuzzy rules publication-title: J. Comput. Inf. Sci – volume: 66 start-page: 398 year: 2013 end-page: 407 ident: CR10 article-title: Using methods from the data-mining and machine-learning literature for disease classification and prediction: A case study examining classification of heart failure subtypes publication-title: J. Clin. Epidemiol doi: 10.1016/j.jclinepi.2012.11.008 – ident: CR11 – year: 2012 ident: CR25 publication-title: Mandana, K.M., et al., Fuzzy expert system approach for coronary artery disease screening using clinical parameters – volume: 34 start-page: 366 year: 2008 end-page: 374 ident: CR1 article-title: Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease publication-title: J. Expert Syst. Appl. doi: 10.1016/j.eswa.2006.09.004 – volume: 101 start-page: 231 year: 2011 end-page: 242 ident: CR34 article-title: Long term cardiovascular risk models’ combination publication-title: J. Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2010.12.015 – ident: CR36 – volume: 7 start-page: 646 year: 2011 end-page: 656 ident: CR28 article-title: Improved functional activity of bone marrow derived circulating progenitor cells after intra coronary freshly isolated bone marrow cells transplantation in patients with ischemic heart disease publication-title: J. Stem Cell Rev. Rep doi: 10.1007/s12015-010-9220-8 – volume: 10 start-page: 334 year: 2006 end-page: 343 ident: CR3 article-title: Association rule discover with the train and test approach for the heart disease prediction publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2006.864475 – volume: 45 start-page: 999 year: 2012 end-page: 1008 ident: CR18 article-title: Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches publication-title: J. Biomed. Inf doi: 10.1016/j.jbi.2012.04.013 – volume: 39 start-page: 11657 year: 2012 end-page: 11665 ident: CR31 article-title: A hybrid Particle Swarm Optimization based fuzzy expert system for the diagnosis of coronary artery disease publication-title: J. Expert Syst. Appl doi: 10.1016/j.eswa.2012.04.036 – volume: 7 start-page: 263 year: 2010 end-page: 283 ident: CR15 article-title: A classification method based on Principal Component Analysis and differential evolution algorithm applied for prediction diagnosis from clinical EMR heart data sets, publication-title: Learn. Optim – volume: 36 start-page: 8616 year: 2009 end-page: 8630 ident: CR8 article-title: A hybrid evolutionary algorithm for attribute selection in data mining publication-title: J. Expert Syst. Appl doi: 10.1016/j.eswa.2008.10.013 – volume: 36 start-page: 2562 year: 2009 end-page: 2566 ident: CR5 article-title: Assessment of exercise stress testing with artificial neural network in determining coronary artery disease and predicting lesion localization publication-title: J. Expert Syst. Appl doi: 10.1016/j.eswa.2007.11.013 – year: 2017 ident: CR52 publication-title: Ubiquitous Machine Learning and Its Applications – ident: CR30 – year: 2016 ident: CR47 publication-title: Innovations in Bio-Inspired Computing and Applications – volume: 37 start-page: 3177 year: 2010 end-page: 3183 ident: CR12 article-title: A comparison of feature selection models utilizing binary Particle Swarm Optimization and genetic algorithm in determining coronary artery disease using Support Vector Machine publication-title: J. Expert Syst. Appl. doi: 10.1016/j.eswa.2009.09.064 – volume: 40 start-page: 96 year: 2013 end-page: 104 ident: CR13 article-title: Computational intelligence for heart disease diagnosis: A medical knowledge driven approach publication-title: J. Expert Syst. Appl doi: 10.1016/j.eswa.2012.07.032 – ident: CR33 – ident: CR6 – ident: CR40 – volume: 35 start-page: 82 year: 2008 end-page: 89 ident: CR26 article-title: Design of a hybrid system for the diabetes and heart diseases publication-title: J. Expert Syst. Appl doi: 10.1016/j.eswa.2007.06.004 – ident: CR27 – volume: 32 start-page: 625 year: 2007 end-page: 631 ident: CR21 article-title: Automatic detection of heart disease using an Artificial Immune Recognition System (AIRS) with fuzzy resource allocation mechanism and k-nn (nearest neighbor) based weighting preprocessing publication-title: J. Expert Syst. Appl doi: 10.1016/j.eswa.2006.01.027 – volume: 50 start-page: 149 year: 2010 end-page: 161 ident: CR23 article-title: A decision support system for cost-effective diagnosis publication-title: J. Artif. Intell. Med doi: 10.1016/j.artmed.2010.08.001 – volume: 32 start-page: 856 year: 2007 end-page: 867 ident: CR7 article-title: Integrating data mining with case-based reasoning for chronic diseases prognosis and diagnosis publication-title: J. Expert Syst. Appl doi: 10.1016/j.eswa.2006.01.038 – ident: CR48 – ident: CR38 – volume: 8 start-page: 1105 year: 2008 end-page: 1111 ident: CR2 article-title: Selecting critical clinical features for heart diseases diagnosis with a real-coded genetic algorithm publication-title: J. Appl. Soft Comput doi: 10.1016/j.asoc.2007.05.017 – volume: 482 start-page: 796 year: 2017 end-page: 807 ident: CR43 article-title: Feature extraction through parallel probabilistic Principal Component Analysis for heart disease diagnosis, publication-title: Statistical Mechanics and Its Applications doi: 10.1016/j.physa.2017.04.113 – volume: 113 start-page: 175 year: 2014 end-page: 185 ident: CR49 article-title: Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis publication-title: Comput. Methods Progr. Biomed doi: 10.1016/j.cmpb.2013.10.007 – volume: 16 start-page: 81 year: 2009 end-page: 88 ident: CR29 article-title: False heart rate feedback and the perception of heart symptoms in patients with congenital heart disease and anxiety publication-title: Int. J. Behav. Med doi: 10.1007/s12529-008-9001-9 – volume: 40 start-page: 1086 year: 2013 end-page: 1093 ident: CR9 article-title: Association rule mining to detect factors which contribute to heart disease in males and females publication-title: J. Expert Syst. Appl doi: 10.1016/j.eswa.2012.08.028 – volume: 21 start-page: 266 year: 2009 end-page: 269 ident: CR14 article-title: A comparative study of imputation methods to predict missing attribute values in coronary heart disease data set publication-title: J. Dep. Electr. Electron. Eng – ident: CR20 – ident: 7022_CR6 doi: 10.1016/j.proeng.2012.08.109 – ident: 7022_CR33 doi: 10.1109/TITB.2007.907985 – volume: 141 start-page: 19 year: 2017 ident: 7022_CR44 publication-title: Comput. Methods Progr. Biomed doi: 10.1016/j.cmpb.2017.01.004 – ident: 7022_CR40 doi: 10.1007/978-3-642-16167-4_41 – volume: 34 start-page: 366 year: 2008 ident: 7022_CR1 publication-title: J. Expert Syst. Appl. doi: 10.1016/j.eswa.2006.09.004 – volume: 66 start-page: 398 year: 2013 ident: 7022_CR10 publication-title: J. Clin. Epidemiol doi: 10.1016/j.jclinepi.2012.11.008 – volume: 36 start-page: 2562 year: 2009 ident: 7022_CR5 publication-title: J. Expert Syst. Appl doi: 10.1016/j.eswa.2007.11.013 – volume: 32 start-page: 856 year: 2007 ident: 7022_CR7 publication-title: J. Expert Syst. Appl doi: 10.1016/j.eswa.2006.01.038 – volume-title: Mandana, K.M., et al., Fuzzy expert system approach for coronary artery disease screening using clinical parameters year: 2012 ident: 7022_CR25 – ident: 7022_CR45 doi: 10.1155/2017/9512741 – volume: 16 start-page: 81 year: 2009 ident: 7022_CR29 publication-title: Int. J. Behav. Med doi: 10.1007/s12529-008-9001-9 – ident: 7022_CR19 doi: 10.1109/TSMCC.2004.843220 – volume: 10 start-page: 334 year: 2006 ident: 7022_CR3 publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2006.864475 – volume: 24 start-page: 27 year: 2012 ident: 7022_CR32 publication-title: J. Comput. Inf. Sci – volume: 101 start-page: 231 year: 2011 ident: 7022_CR34 publication-title: J. Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2010.12.015 – volume: 40 start-page: 1086 year: 2013 ident: 7022_CR9 publication-title: J. Expert Syst. Appl doi: 10.1016/j.eswa.2012.08.028 – volume: 21 start-page: 266 year: 2009 ident: 7022_CR14 publication-title: J. Dep. Electr. Electron. Eng – volume: 93 start-page: 185 year: 2009 ident: 7022_CR17 publication-title: J. Comput. Methods Programs Biomed doi: 10.1016/j.cmpb.2008.09.005 – volume-title: Ubiquitous Machine Learning and Its Applications year: 2017 ident: 7022_CR52 – volume: 36 start-page: 21 year: 2006 ident: 7022_CR4 publication-title: Biol. Med – volume: 50 start-page: 149 year: 2010 ident: 7022_CR23 publication-title: J. Artif. Intell. Med doi: 10.1016/j.artmed.2010.08.001 – volume: 34 start-page: 2479 year: 2008 ident: 7022_CR41 publication-title: J. Expert Syst. Appl doi: 10.1016/j.eswa.2007.04.015 – ident: 7022_CR42 – ident: 7022_CR22 doi: 10.1016/j.cmpb.2011.03.018 – volume: 7 start-page: 646 year: 2011 ident: 7022_CR28 publication-title: J. Stem Cell Rev. Rep doi: 10.1007/s12015-010-9220-8 – volume: 6 start-page: 69 year: 2014 ident: 7022_CR50 publication-title: J. Bio-Sci. Bio-Technol – volume: 37 start-page: 3177 year: 2010 ident: 7022_CR12 publication-title: J. Expert Syst. Appl. doi: 10.1016/j.eswa.2009.09.064 – ident: 7022_CR48 doi: 10.1109/ICIEV.2016.7759984 – ident: 7022_CR35 doi: 10.1016/j.eswa.2013.01.032 – volume: 38 start-page: 5197 year: 2011 ident: 7022_CR37 publication-title: Expert Syst. Appl doi: 10.1016/j.eswa.2010.10.041 – ident: 7022_CR11 doi: 10.1016/j.eswa.2009.01.041 – ident: 7022_CR36 – ident: 7022_CR20 doi: 10.1016/j.cmpb.2007.07.013 – volume: 39 start-page: 11657 year: 2012 ident: 7022_CR31 publication-title: J. Expert Syst. Appl doi: 10.1016/j.eswa.2012.04.036 – volume-title: Innovations in Bio-Inspired Computing and Applications year: 2016 ident: 7022_CR47 – volume: 36 start-page: 7675 year: 2009 ident: 7022_CR16 publication-title: J. Expert Syst. Appl. doi: 10.1016/j.eswa.2008.09.013 – volume: 26 start-page: 1750061 year: 2017 ident: 7022_CR51 publication-title: J. Circuits, Syst. Comput. doi: 10.1142/S021812661750061X – ident: 7022_CR38 doi: 10.1109/TITB.2012.2205009 – volume: 51 start-page: 133 year: 2011 ident: 7022_CR24 publication-title: J. Artif. Intell. Med doi: 10.1016/j.artmed.2010.12.001 – volume: 45 start-page: 999 year: 2012 ident: 7022_CR18 publication-title: J. Biomed. Inf doi: 10.1016/j.jbi.2012.04.013 – ident: 7022_CR30 – volume: 32 start-page: 625 year: 2007 ident: 7022_CR21 publication-title: J. Expert Syst. Appl doi: 10.1016/j.eswa.2006.01.027 – volume: 7 start-page: 263 year: 2010 ident: 7022_CR15 publication-title: Learn. Optim – volume: 113 start-page: 175 year: 2014 ident: 7022_CR49 publication-title: Comput. Methods Progr. Biomed doi: 10.1016/j.cmpb.2013.10.007 – volume: 54 start-page: 2283 year: 2011 ident: 7022_CR39 publication-title: J. Diabetologia doi: 10.1007/s00125-011-2206-5 – volume: 36 start-page: 8616 year: 2009 ident: 7022_CR8 publication-title: J. Expert Syst. Appl doi: 10.1016/j.eswa.2008.10.013 – ident: 7022_CR27 doi: 10.1016/j.eswa.2010.05.022 – volume: 90 start-page: 125 year: 2017 ident: 7022_CR46 publication-title: Comput. Biol. Med doi: 10.1016/j.compbiomed.2017.09.011 – volume: 482 start-page: 796 year: 2017 ident: 7022_CR43 publication-title: Statistical Mechanics and Its Applications doi: 10.1016/j.physa.2017.04.113 – volume: 8 start-page: 1105 year: 2008 ident: 7022_CR2 publication-title: J. Appl. Soft Comput doi: 10.1016/j.asoc.2007.05.017 – volume: 40 start-page: 96 year: 2013 ident: 7022_CR13 publication-title: J. Expert Syst. Appl doi: 10.1016/j.eswa.2012.07.032 – volume: 35 start-page: 82 year: 2008 ident: 7022_CR26 publication-title: J. Expert Syst. Appl doi: 10.1016/j.eswa.2007.06.004 |
| SSID | ssj0010044 |
| Score | 2.3617551 |
| Snippet | Machine learning is used as an effective support system in health diagnosis which contains large volume of data. More commonly, analyzing such a large volume... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 388 |
| SubjectTerms | Algorithms Artificial Intelligence Cardiovascular disease Classification Classifiers Computer Science Datasets Genetic algorithms Heart diseases Heuristic methods Machine learning Medical records Operating Systems Particle swarm optimization Performance evaluation Software Engineering Software Engineering/Programming and Operating Systems Support systems Support vector machines |
| SummonAdditionalLinks | – databaseName: Springer Nature - Connect here FIRST to enable access dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgcOBCWcWuOXACRSR11mMFVD2wVBSq3qLEHqNKUFDawg_xoYwdpxWrBGc7lpUZe579ZvwYOzSg1lcNLd8uNc0YOpnMDAdPwUNmipvHdHoX0dVV3O8nHVvHPaqy3StK0uzUpe6If9KlvdYjcKyLk0N9fTLPFijaxVqv4abbm1IHmqIsCUrP0d0tlfntEB-D0QxhfiJFTaxp1f81yxW2bKElNEtfWGVzOFxj9Uq2AewqXmdvTbg0KZQI9nXVe2hVOVpAIBY0LpwUCF0jkkOWg8EQ2tR3DGcloQNGTFOnGRnLgsk8gPKGAiV0rENC9zUrHuGa9qVHW_AJ-uYXtJgoAX_oGdJgOp9qVCw22F3r_Pa07VixBkdwLxw7ys2jQOSB6yoZ8EiGUmBAsY7-RYMLX6EnUPl5lvNABDHSyUzx3E0wzxtRkHnIN1lt-DTELQZeHGa-EJjpOlcu40QiHQMVSuVGyJNgm7mV1VJhXzLXghoPqTnRcD_9YoVtdjT95Ll8xuO3znuVK6R2RY_SRkLIhtAkp-bjyvSz5h8H2_lT7122RIgsLosd91htXExwny2Kl_FgVBwYR38H_fD3iQ priority: 102 providerName: Springer Nature |
| Title | A Machine Learning Framework for Feature Selection in Heart Disease Classification Using Improved Particle Swarm Optimization with Support Vector Machine Classifier |
| URI | https://link.springer.com/article/10.1134/S0361768818060129 https://www.proquest.com/docview/2918583939 |
| Volume | 44 |
| WOSCitedRecordID | wos000460668600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1608-3261 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0010044 issn: 0361-7688 databaseCode: K7- dateStart: 20000101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1608-3261 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0010044 issn: 0361-7688 databaseCode: P5Z dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 1608-3261 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0010044 issn: 0361-7688 databaseCode: BENPR dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1608-3261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010044 issn: 0361-7688 databaseCode: RSV dateStart: 20000101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4N2AMvYz9AK7DqHva0KSKp4yZ5QsCokLZ1FR0V4iVK7PNUaZSStvAP8Yfic5x22jReeMmD41hW7uw733e-D-Cjc2pj02H6ds0wYzcodOEweGs8dGGEK6Yz-pb0--nlZTbwAbeZT6ts9kS3UesbxTHyg05mLYu15iI7nN4GzBrF6Kqn0FiDDa6SwNQNA3m1RBEYrayxyiiwbnXqUc1IxAdDbuS2KOWKJM7D_MMurZzNv_BRZ3Z6W8-d8Gt45R1OPKo15A28oMlb2GrIHNCv7XfwcITfXWIloa-5-gt7TeYWWtcW2VtcVIRDR51j5YnjCZ7ZvnP8UsM86Cg2OfnIyRtdPgLWcQvSOPBqisP7orrGH3a3uvbXQJHjwcgUo_Y4gCMHJSzn04xK1TZc9E5_npwFnsIhUCLqzgMTlolUpQxDo6VIdFcrktYC2j_fESo2FCkycVmUQiqZkj2vGVGGGZVlJ5FFRGIH1ic3E3oPGKXdIlaKCr79KnSaabKHQ0PahAmJTLYgbASYK1_fnGk2fufunCPi_B-Zt-DT8pNpXdzjqc77jZxzv85n-UrILfjcaMrq9X8H2316sD3YtI5ZWt953If1ebWgD_BS3c3Hs6oNG8en_cF5G9a-JkHbqbx9ng9Hj3FtBo0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VggQXyqcILTAHuICs2l47tg-oqihRqqRppZSqN2PvzqJKNC1O2qr_p2d-Y2fXu0kForceuNrOyHLezse-2XkA721Sm-jYyLcrQzN2g0pVloPn4KEqLewwnYNhNhrlh4fF3hL89mdhTFul94nWUasTafbI1-OCIwtHc1FsnP4KjGqUYVe9hEYLiwFdXnDJNv28vcX_74c47n3d_9IPnKpAIEXUnQU6rLNU1mkYapWKTHWVpJSdMufdsZCJpkiSTuqqFqlMc-ISQos6LKiu4yytIhJs9x7cT0SemXU1yII5a2HY0ZYbjQI2lzsWNRLJ-thcNNei3ExAsRntjTi4SG7_4GNtmOut_G8f6Ak8dgk1brYr4Cks0eQZrHixCnS-6zlcbeKObRwldDNlf2DPd6Yhp-5osuGzhnBspYEYr3g0wT4_O8OtlsZCKyFqmqssntH2W2C7L0MK99wyxPFF1RzjLnvjY3fMFc1-NxoJVS538MBSJfP38VapeQHf7uRbvYTlycmEXgFGebdKpKTKnO4VKi8UcfGrSekwI1GkHQg9YErp5rcbGZGfpa3jRFL-hbEOfJz_5LQdXnLbw2seV6XzY9NyAaoOfPLIXNz-p7HXtxt7Bw_7-zvDcrg9GqzCI05C8_Z85xosz5ozegMP5PnsaNq8tQsM4ftdA_YaJxhhdQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6-EC--xdVV5-BJKbabPo-LWhR1XVhdvJU2mciCW5du1T_kDzVJ0xWfIJ6ThtBMkm_yzcxHyL4Gta5oKfl2rmhG30p5qjl4eXnwVFBdTKd_GXQ64d1d1DU6p-M62r2mJKucBlWlKS-PRlwYDRL3qCfPXUcCZZWo7KunlGky66o4euWu9_oTGkHRlRVZ6Viqu6E1vx3i48X0jjY_EaT63omX_j3jZbJoICe0KxtZIVOYr5KlWs4BzO5eI69tuNKhlQim6uo9xHXsFkhwCwovPhUIPS2eI1cUBjmcyb4lnFRED2iRTRV-pFccdEQCVC8XyKFrDBV6L2kxhGt5Xg1NIiioF2FQIqPSIYC-JhMm86lHxWKd3ManN8dnlhFxsBh1_NISdhZ4LPNsW3CPBtznDD15B8p_0aLMFegwFG6WZtRjXojSYxM0syPMslbgpQ7SDTKTP-a4ScAJ_dRlDFOV_0p5GHGU7qFALuwAaeQ1iF2vYMJMhXMltPGQaE-HusmXVWiQg8kno6q8x2-dm7VZJGanj5NWJBGPRJlUNh_WZvDe_ONgW3_qvUfmuydxcnneudgmCxK0hVU-ZJPMlMUT7pA59lwOxsWutv83qXADYA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine+Learning+Framework+for+Feature+Selection+in+Heart+Disease+Classification+Using+Improved+Particle+Swarm+Optimization+with+Support+Vector+Machine+Classifier&rft.jtitle=Programming+and+computer+software&rft.au=Vijayashree%2C+J&rft.au=Sultana%2C+H.+Parveen&rft.date=2018-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0361-7688&rft.eissn=1608-3261&rft.volume=44&rft.issue=6&rft.spage=388&rft.epage=397&rft_id=info:doi/10.1134%2FS0361768818060129 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-7688&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-7688&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-7688&client=summon |