A Machine Learning Framework for Feature Selection in Heart Disease Classification Using Improved Particle Swarm Optimization with Support Vector Machine Classifier

Machine learning is used as an effective support system in health diagnosis which contains large volume of data. More commonly, analyzing such a large volume of data consumes more resources and execution time. In addition, all the features present in the dataset do not support in achieving the solut...

Full description

Saved in:
Bibliographic Details
Published in:Programming and computer software Vol. 44; no. 6; pp. 388 - 397
Main Authors: Vijayashree, J., Sultana, H. Parveen
Format: Journal Article
Language:English
Published: Moscow Pleiades Publishing 01.11.2018
Springer Nature B.V
Subjects:
ISSN:0361-7688, 1608-3261
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Machine learning is used as an effective support system in health diagnosis which contains large volume of data. More commonly, analyzing such a large volume of data consumes more resources and execution time. In addition, all the features present in the dataset do not support in achieving the solution of the given problem. Hence, there is a need to use an effective feature selection algorithm for finding the more important features that contribute more in diagnosing the diseases. The Particle Swarm Optimization (PSO) is one of the metaheuristic algorithms to find the best solution with less time. Nowadays, PSO algorithm is not only used to select the more significant features but also removes the irrelevant and redundant features present in the dataset. However, the traditional PSO algorithm has an issue in selecting the optimal weight to update the velocity and position of the particles. To overcome this issue, this paper presents a novel function for identifying optimal weights on the basis of population diversity function and tuning function. We have also proposed a novel fitness function for PSO with the help of Support Vector Machine (SVM). The objective of the fitness function is to minimize the number of attributes and increase the accuracy. The performance of the proposed PSO-SVM is compared with the various existing feature selection algorithms such as Info gain, Chi-squared, One attribute based, Consistency subset, Relief, CFS, Filtered subset, Filtered attribute, Gain ratio and PSO algorithm. The SVM classifier is also compared with several classifiers such as Naive Bayes, Random forest and MLP.
AbstractList Machine learning is used as an effective support system in health diagnosis which contains large volume of data. More commonly, analyzing such a large volume of data consumes more resources and execution time. In addition, all the features present in the dataset do not support in achieving the solution of the given problem. Hence, there is a need to use an effective feature selection algorithm for finding the more important features that contribute more in diagnosing the diseases. The Particle Swarm Optimization (PSO) is one of the metaheuristic algorithms to find the best solution with less time. Nowadays, PSO algorithm is not only used to select the more significant features but also removes the irrelevant and redundant features present in the dataset. However, the traditional PSO algorithm has an issue in selecting the optimal weight to update the velocity and position of the particles. To overcome this issue, this paper presents a novel function for identifying optimal weights on the basis of population diversity function and tuning function. We have also proposed a novel fitness function for PSO with the help of Support Vector Machine (SVM). The objective of the fitness function is to minimize the number of attributes and increase the accuracy. The performance of the proposed PSO-SVM is compared with the various existing feature selection algorithms such as Info gain, Chi-squared, One attribute based, Consistency subset, Relief, CFS, Filtered subset, Filtered attribute, Gain ratio and PSO algorithm. The SVM classifier is also compared with several classifiers such as Naive Bayes, Random forest and MLP.
Author Sultana, H. Parveen
Vijayashree, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Vijayashree
  fullname: Vijayashree, J.
  email: vijayashree.j@vit.ac.in
  organization: School of Computer Science and Engineering, Vellore Institute of Technology
– sequence: 2
  givenname: H. Parveen
  surname: Sultana
  fullname: Sultana, H. Parveen
  organization: School of Computer Science and Engineering, Vellore Institute of Technology
BookMark eNp9kc1KAzEUhYMo2FYfwF3A9Wgymd9lqdYWKgpVt0MmvbGpM5kxSS36PD6omVYRFCWLLM453z2X20f7utGA0AklZ5Sy6HxOWELTJMtoRhJCw3wP9WhCsoCFCd1HvU4OOv0Q9a1dEUIJiaIeeh_iay6WSgOeATda6Uc8NryGTWOesGwMHgN3awN4DhUIpxqNlcYT73X4QlngFvCo4tYqqQTf6ve2o0zr1jQvsMC33qpE5Qkbbmp80zpVq7eddaPcEs_Xbdt43IPn-4Fffb6oYI7QgeSVhePPf4Dux5d3o0kwu7majoazQDCauECSMo1FGRMiFzFLF8lCQBzmuV87ZCKSQAXIqOQli0WcAaGRZCXJoSzDNOYU2ACd7ri--fMarCtWzdpoP7IIc5rFGcv9G6B05xKmsdaALIRy23Wc4aoqKCm6kxS_TuKT9EeyNarm5vXfTLjLWO_Vj2C-O_0d-gBfKaHb
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2939490
crossref_primary_10_1007_s13369_022_07408_x
crossref_primary_10_1016_j_irbm_2023_100786
crossref_primary_10_1007_s10742_025_00341_0
crossref_primary_10_1007_s11831_025_10271_2
crossref_primary_10_1016_j_ijcard_2024_132757
crossref_primary_10_1016_j_measurement_2022_112166
crossref_primary_10_1007_s43069_024_00356_2
crossref_primary_10_1155_2021_8500314
crossref_primary_10_1007_s41870_021_00671_5
crossref_primary_10_1007_s40031_021_00644_z
crossref_primary_10_1109_ACCESS_2020_3006424
crossref_primary_10_4018_IJITSA_290001
crossref_primary_10_1016_j_asoc_2022_109293
crossref_primary_10_1155_2022_2482989
crossref_primary_10_1007_s12652_020_02027_6
crossref_primary_10_1109_ACCESS_2019_2962755
crossref_primary_10_1016_j_cct_2021_106397
crossref_primary_10_1016_j_compbiomed_2025_111027
crossref_primary_10_1007_s11042_024_18312_x
crossref_primary_10_3390_bioengineering8050060
crossref_primary_10_1016_j_eswa_2022_117882
crossref_primary_10_1142_S2737599424500087
crossref_primary_10_1155_2021_6718029
crossref_primary_10_3390_make6020046
crossref_primary_10_1109_ACCESS_2020_2974687
crossref_primary_10_1007_s41870_023_01361_0
crossref_primary_10_3390_pr11041210
crossref_primary_10_1002_cpe_6953
crossref_primary_10_21015_vtse_v12i3_1860
crossref_primary_10_1134_S0361768821080211
crossref_primary_10_3390_app13179555
crossref_primary_10_1016_j_ijcard_2025_133266
crossref_primary_10_4018_IJSI_303582
crossref_primary_10_1007_s11069_021_05001_3
crossref_primary_10_1080_21681163_2021_2004444
crossref_primary_10_1088_1742_6596_1968_1_012016
crossref_primary_10_1007_s11831_024_10075_w
crossref_primary_10_32604_cmc_2023_040329
crossref_primary_10_1016_j_patrec_2020_02_010
crossref_primary_10_1109_ACCESS_2022_3191669
crossref_primary_10_1016_j_procs_2023_01_062
crossref_primary_10_3390_math11030707
crossref_primary_10_1111_exsy_13002
crossref_primary_10_1007_s40745_024_00571_y
crossref_primary_10_3390_a17010034
crossref_primary_10_1109_ACCESS_2020_2980739
crossref_primary_10_3390_designs6050087
crossref_primary_10_1134_S0361768820080198
crossref_primary_10_1038_s41598_025_09957_1
crossref_primary_10_2478_cait_2022_0040
crossref_primary_10_1016_j_knosys_2022_109709
crossref_primary_10_1109_ACCESS_2024_3524577
Cites_doi 10.1016/j.eswa.2008.09.013
10.1016/j.artmed.2010.12.001
10.1016/j.eswa.2007.04.015
10.1142/S021812661750061X
10.1016/j.eswa.2010.10.041
10.1016/j.compbiomed.2017.09.011
10.1007/s00125-011-2206-5
10.1016/j.cmpb.2008.09.005
10.1016/j.cmpb.2017.01.004
10.1016/j.jclinepi.2012.11.008
10.1016/j.eswa.2006.09.004
10.1016/j.cmpb.2010.12.015
10.1007/s12015-010-9220-8
10.1109/TITB.2006.864475
10.1016/j.jbi.2012.04.013
10.1016/j.eswa.2012.04.036
10.1016/j.eswa.2008.10.013
10.1016/j.eswa.2007.11.013
10.1016/j.eswa.2009.09.064
10.1016/j.eswa.2012.07.032
10.1016/j.eswa.2007.06.004
10.1016/j.eswa.2006.01.027
10.1016/j.artmed.2010.08.001
10.1016/j.eswa.2006.01.038
10.1016/j.asoc.2007.05.017
10.1016/j.physa.2017.04.113
10.1016/j.cmpb.2013.10.007
10.1007/s12529-008-9001-9
10.1016/j.eswa.2012.08.028
10.1016/j.proeng.2012.08.109
10.1109/TITB.2007.907985
10.1007/978-3-642-16167-4_41
10.1155/2017/9512741
10.1109/TSMCC.2004.843220
10.1016/j.cmpb.2011.03.018
10.1109/ICIEV.2016.7759984
10.1016/j.eswa.2013.01.032
10.1016/j.eswa.2009.01.041
10.1016/j.cmpb.2007.07.013
10.1109/TITB.2012.2205009
10.1016/j.eswa.2010.05.022
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2018
Pleiades Publishing, Ltd. 2018.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2018
– notice: Pleiades Publishing, Ltd. 2018.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1134/S0361768818060129
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1608-3261
EndPage 397
ExternalDocumentID 10_1134_S0361768818060129
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9O
PF0
PT4
QOS
R89
R9I
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-f0b75cb500fd537d6dce529976823c4fe1cef4bab35c58e014f3b09ebb275a1e3
IEDL.DBID RSV
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460668600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0361-7688
IngestDate Fri Nov 07 23:35:33 EST 2025
Sat Nov 29 04:55:43 EST 2025
Tue Nov 18 21:49:16 EST 2025
Fri Feb 21 02:34:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords population diversity function
tuning function
Support Vector Machine
fitness function
ROC analysis
Particle Swarm Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-f0b75cb500fd537d6dce529976823c4fe1cef4bab35c58e014f3b09ebb275a1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918583939
PQPubID 2043762
PageCount 10
ParticipantIDs proquest_journals_2918583939
crossref_citationtrail_10_1134_S0361768818060129
crossref_primary_10_1134_S0361768818060129
springer_journals_10_1134_S0361768818060129
PublicationCentury 2000
PublicationDate 20181100
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 20181100
PublicationDecade 2010
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Programming and computer software
PublicationTitleAbbrev Program Comput Soft
PublicationYear 2018
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References Kusiak, Caldarone (CR4) 2006; 36
Reddy, Khare (CR51) 2017; 26
Pal (CR25) 2012
Babaoglu, Kaan Baykan (CR5) 2009; 36
Setiawan (CR14) 2009; 21
CR38
CR36
Nahar, Imam (CR13) 2013; 40
CR35
CR33
CR30
Kahramanli, Allahverdi (CR26) 2008; 35
Ordonez (CR3) 2006; 10
Karsdorp, Kindt (CR29) 2009; 16
CR6
Park, Chun (CR24) 2011; 51
Zhao, Fu, Ji, Tang, Zhou (CR37) 2011; 38
Chi, Nick Street (CR23) 2010; 50
CR48
Anooj (CR32) 2012; 24
CR45
Tomar, Agarwal (CR50) 2014; 6
CR42
CR40
Huang, Chen (CR7) 2007; 32
Das, Turkoglu (CR16) 2009; 36
Jabbar, Deekshatulu, Chandra (CR47) 2016
Eom, Kim (CR41) 2008; 34
Austin, Tu (CR10) 2013; 66
CR19
Yan, Zheng (CR2) 2008; 8
Luukka, Lampinen (CR15) 2010; 7
Polat (CR21) 2007; 32
CR11
Pimentel (CR52) 2017
Babaoglu, Findik (CR12) 2010; 37
Pfister, Barnes (CR39) 2011; 54
Das, Turkoglu (CR17) 2009; 93
CR27
Vivekanandan, Iyengar (CR46) 2017; 90
Arabasadi, Alizadehsani, Roshanzamir, Moosaei, Yarifard (CR44) 2017; 141
Goekmen Turan, Bozdag (CR28) 2011; 7
Shah, Batool, Khan, Ashraf, Abbas, Hussain (CR43) 2017; 482
Paredesa (CR34) 2011; 101
Nahar, Imam (CR9) 2013; 40
CR22
Son, Kim (CR18) 2012; 45
CR20
Muthukaruppan, Er (CR31) 2012; 39
Kurt, Ture (CR1) 2008; 34
Inbarani, Azar, Jothi (CR49) 2014; 113
Tan, Teoh (CR8) 2009; 36
Carlos Ordonez (7022_CR3) 2006; 10
Mu-Jung Huang (7022_CR7) 2007; 32
Kemal Polat (7022_CR21) 2007; 32
7022_CR20
7022_CR22
7022_CR27
S.M.S. Shah (7022_CR43) 2017; 482
7022_CR6
G.T. Reddy (7022_CR51) 2017; 26
P.K. Anooj (7022_CR32) 2012; 24
H.H. Inbarani (7022_CR49) 2014; 113
Hongmei Yan (7022_CR2) 2008; 8
7022_CR30
7022_CR33
7022_CR35
7022_CR36
M.A. Jabbar (7022_CR47) 2016
D. Tomar (7022_CR50) 2014; 6
M. Zhao (7022_CR37) 2011; 38
7022_CR38
R. Das (7022_CR16) 2009; 36
S. Muthukaruppan (7022_CR31) 2012; 39
R. Goekmen Turan (7022_CR28) 2011; 7
Jesmin Nahar (7022_CR13) 2013; 40
S. Paredesa (7022_CR34) 2011; 101
Jesmin Nahar (7022_CR9) 2013; 40
7022_CR40
K.C. Tan (7022_CR8) 2009; 36
7022_CR42
A. Pimentel (7022_CR52) 2017
I. Babaoglu (7022_CR5) 2009; 36
7022_CR45
7022_CR48
P. Luukka (7022_CR15) 2010; 7
R. Pfister (7022_CR39) 2011; 54
T. Vivekanandan (7022_CR46) 2017; 90
Imran Kurt (7022_CR1) 2008; 34
P.C. Austin (7022_CR10) 2013; 66
Chih-Lin Chi (7022_CR23) 2010; 50
H. Kahramanli (7022_CR26) 2008; 35
P.A. Karsdorp (7022_CR29) 2009; 16
7022_CR11
Jae-Hong Eom (7022_CR41) 2008; 34
7022_CR19
A. Kusiak (7022_CR4) 2006; 36
Debabrata Pal (7022_CR25) 2012
R. Das (7022_CR17) 2009; 93
Z. Arabasadi (7022_CR44) 2017; 141
Chang-Sik Son (7022_CR18) 2012; 45
Yoon-Joo Park (7022_CR24) 2011; 51
N.A. Setiawan (7022_CR14) 2009; 21
I. Babaoglu (7022_CR12) 2010; 37
References_xml – ident: CR45
– ident: CR22
– volume: 36
  start-page: 7675
  year: 2009
  end-page: 7680
  ident: CR16
  article-title: Effective diagnosis of heart disease through neural networks ensembles
  publication-title: J. Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.09.013
– volume: 51
  start-page: 133
  year: 2011
  end-page: 145
  ident: CR24
  article-title: Cost-sensitive case-based reasoning using a genetic algorithm: Application to medical diagnosis
  publication-title: J. Artif. Intell. Med
  doi: 10.1016/j.artmed.2010.12.001
– volume: 34
  start-page: 2479
  year: 2008
  ident: CR41
  article-title: AptaCDSS-E: A classifier ensemble-based clinical decision support system for cardiovascular disease level prediction
  publication-title: J. Expert Syst. Appl
  doi: 10.1016/j.eswa.2007.04.015
– volume: 26
  start-page: 1750061
  year: 2017
  ident: CR51
  article-title: An efficient system for heart disease prediction using hybrid OFBAT with rule-based Fuzzy Logic Model
  publication-title: J. Circuits, Syst. Comput.
  doi: 10.1142/S021812661750061X
– volume: 38
  start-page: 5197
  year: 2011
  end-page: 5204
  ident: CR37
  article-title: Feature selection and parameter optimization for Support Vector Machines: A new approach based on genetic algorithm with feature chromosomes
  publication-title: Expert Syst. Appl
  doi: 10.1016/j.eswa.2010.10.041
– volume: 90
  start-page: 125
  year: 2017
  end-page: 136
  ident: CR46
  article-title: Optimal feature selection using a modified differential evolution algorithm and its effectiveness for prediction of heart disease
  publication-title: Comput. Biol. Med
  doi: 10.1016/j.compbiomed.2017.09.011
– ident: CR35
– volume: 54
  start-page: 2283
  year: 2011
  end-page: 2287
  ident: CR39
  article-title: Individual and cumulative effect of type 2 diabetes genetic susceptibility variants on risk of coronary heart disease
  publication-title: J. Diabetologia
  doi: 10.1007/s00125-011-2206-5
– volume: 6
  start-page: 69
  year: 2014
  end-page: 82
  ident: CR50
  article-title: Feature selection based Least Square Twin Support Vector Machine for diagnosis of heart disease,
  publication-title: J. Bio-Sci. Bio-Technol
– ident: CR42
– volume: 93
  start-page: 185
  year: 2009
  end-page: 191
  ident: CR17
  article-title: Diagnosis of valvular heart disease through neural networks ensembles
  publication-title: J. Comput. Methods Programs Biomed
  doi: 10.1016/j.cmpb.2008.09.005
– volume: 36
  start-page: 21
  year: 2006
  end-page: 40
  ident: CR4
  article-title: Hypo plastic left heart syndrome knowledge discovery with a data mining approach,
  publication-title: Biol. Med
– volume: 141
  start-page: 19
  year: 2017
  end-page: 26
  ident: CR44
  article-title: Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm
  publication-title: Comput. Methods Progr. Biomed
  doi: 10.1016/j.cmpb.2017.01.004
– ident: CR19
– volume: 24
  start-page: 27
  year: 2012
  end-page: 40
  ident: CR32
  article-title: Clinical decision support system: Risk level prediction of heart disease using weighted fuzzy rules
  publication-title: J. Comput. Inf. Sci
– volume: 66
  start-page: 398
  year: 2013
  end-page: 407
  ident: CR10
  article-title: Using methods from the data-mining and machine-learning literature for disease classification and prediction: A case study examining classification of heart failure subtypes
  publication-title: J. Clin. Epidemiol
  doi: 10.1016/j.jclinepi.2012.11.008
– ident: CR11
– year: 2012
  ident: CR25
  publication-title: Mandana, K.M., et al., Fuzzy expert system approach for coronary artery disease screening using clinical parameters
– volume: 34
  start-page: 366
  year: 2008
  end-page: 374
  ident: CR1
  article-title: Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease
  publication-title: J. Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.09.004
– volume: 101
  start-page: 231
  year: 2011
  end-page: 242
  ident: CR34
  article-title: Long term cardiovascular risk models’ combination
  publication-title: J. Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2010.12.015
– ident: CR36
– volume: 7
  start-page: 646
  year: 2011
  end-page: 656
  ident: CR28
  article-title: Improved functional activity of bone marrow derived circulating progenitor cells after intra coronary freshly isolated bone marrow cells transplantation in patients with ischemic heart disease
  publication-title: J. Stem Cell Rev. Rep
  doi: 10.1007/s12015-010-9220-8
– volume: 10
  start-page: 334
  year: 2006
  end-page: 343
  ident: CR3
  article-title: Association rule discover with the train and test approach for the heart disease prediction
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2006.864475
– volume: 45
  start-page: 999
  year: 2012
  end-page: 1008
  ident: CR18
  article-title: Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches
  publication-title: J. Biomed. Inf
  doi: 10.1016/j.jbi.2012.04.013
– volume: 39
  start-page: 11657
  year: 2012
  end-page: 11665
  ident: CR31
  article-title: A hybrid Particle Swarm Optimization based fuzzy expert system for the diagnosis of coronary artery disease
  publication-title: J. Expert Syst. Appl
  doi: 10.1016/j.eswa.2012.04.036
– volume: 7
  start-page: 263
  year: 2010
  end-page: 283
  ident: CR15
  article-title: A classification method based on Principal Component Analysis and differential evolution algorithm applied for prediction diagnosis from clinical EMR heart data sets,
  publication-title: Learn. Optim
– volume: 36
  start-page: 8616
  year: 2009
  end-page: 8630
  ident: CR8
  article-title: A hybrid evolutionary algorithm for attribute selection in data mining
  publication-title: J. Expert Syst. Appl
  doi: 10.1016/j.eswa.2008.10.013
– volume: 36
  start-page: 2562
  year: 2009
  end-page: 2566
  ident: CR5
  article-title: Assessment of exercise stress testing with artificial neural network in determining coronary artery disease and predicting lesion localization
  publication-title: J. Expert Syst. Appl
  doi: 10.1016/j.eswa.2007.11.013
– year: 2017
  ident: CR52
  publication-title: Ubiquitous Machine Learning and Its Applications
– ident: CR30
– year: 2016
  ident: CR47
  publication-title: Innovations in Bio-Inspired Computing and Applications
– volume: 37
  start-page: 3177
  year: 2010
  end-page: 3183
  ident: CR12
  article-title: A comparison of feature selection models utilizing binary Particle Swarm Optimization and genetic algorithm in determining coronary artery disease using Support Vector Machine
  publication-title: J. Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.09.064
– volume: 40
  start-page: 96
  year: 2013
  end-page: 104
  ident: CR13
  article-title: Computational intelligence for heart disease diagnosis: A medical knowledge driven approach
  publication-title: J. Expert Syst. Appl
  doi: 10.1016/j.eswa.2012.07.032
– ident: CR33
– ident: CR6
– ident: CR40
– volume: 35
  start-page: 82
  year: 2008
  end-page: 89
  ident: CR26
  article-title: Design of a hybrid system for the diabetes and heart diseases
  publication-title: J. Expert Syst. Appl
  doi: 10.1016/j.eswa.2007.06.004
– ident: CR27
– volume: 32
  start-page: 625
  year: 2007
  end-page: 631
  ident: CR21
  article-title: Automatic detection of heart disease using an Artificial Immune Recognition System (AIRS) with fuzzy resource allocation mechanism and k-nn (nearest neighbor) based weighting preprocessing
  publication-title: J. Expert Syst. Appl
  doi: 10.1016/j.eswa.2006.01.027
– volume: 50
  start-page: 149
  year: 2010
  end-page: 161
  ident: CR23
  article-title: A decision support system for cost-effective diagnosis
  publication-title: J. Artif. Intell. Med
  doi: 10.1016/j.artmed.2010.08.001
– volume: 32
  start-page: 856
  year: 2007
  end-page: 867
  ident: CR7
  article-title: Integrating data mining with case-based reasoning for chronic diseases prognosis and diagnosis
  publication-title: J. Expert Syst. Appl
  doi: 10.1016/j.eswa.2006.01.038
– ident: CR48
– ident: CR38
– volume: 8
  start-page: 1105
  year: 2008
  end-page: 1111
  ident: CR2
  article-title: Selecting critical clinical features for heart diseases diagnosis with a real-coded genetic algorithm
  publication-title: J. Appl. Soft Comput
  doi: 10.1016/j.asoc.2007.05.017
– volume: 482
  start-page: 796
  year: 2017
  end-page: 807
  ident: CR43
  article-title: Feature extraction through parallel probabilistic Principal Component Analysis for heart disease diagnosis,
  publication-title: Statistical Mechanics and Its Applications
  doi: 10.1016/j.physa.2017.04.113
– volume: 113
  start-page: 175
  year: 2014
  end-page: 185
  ident: CR49
  article-title: Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis
  publication-title: Comput. Methods Progr. Biomed
  doi: 10.1016/j.cmpb.2013.10.007
– volume: 16
  start-page: 81
  year: 2009
  end-page: 88
  ident: CR29
  article-title: False heart rate feedback and the perception of heart symptoms in patients with congenital heart disease and anxiety
  publication-title: Int. J. Behav. Med
  doi: 10.1007/s12529-008-9001-9
– volume: 40
  start-page: 1086
  year: 2013
  end-page: 1093
  ident: CR9
  article-title: Association rule mining to detect factors which contribute to heart disease in males and females
  publication-title: J. Expert Syst. Appl
  doi: 10.1016/j.eswa.2012.08.028
– volume: 21
  start-page: 266
  year: 2009
  end-page: 269
  ident: CR14
  article-title: A comparative study of imputation methods to predict missing attribute values in coronary heart disease data set
  publication-title: J. Dep. Electr. Electron. Eng
– ident: CR20
– ident: 7022_CR6
  doi: 10.1016/j.proeng.2012.08.109
– ident: 7022_CR33
  doi: 10.1109/TITB.2007.907985
– volume: 141
  start-page: 19
  year: 2017
  ident: 7022_CR44
  publication-title: Comput. Methods Progr. Biomed
  doi: 10.1016/j.cmpb.2017.01.004
– ident: 7022_CR40
  doi: 10.1007/978-3-642-16167-4_41
– volume: 34
  start-page: 366
  year: 2008
  ident: 7022_CR1
  publication-title: J. Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.09.004
– volume: 66
  start-page: 398
  year: 2013
  ident: 7022_CR10
  publication-title: J. Clin. Epidemiol
  doi: 10.1016/j.jclinepi.2012.11.008
– volume: 36
  start-page: 2562
  year: 2009
  ident: 7022_CR5
  publication-title: J. Expert Syst. Appl
  doi: 10.1016/j.eswa.2007.11.013
– volume: 32
  start-page: 856
  year: 2007
  ident: 7022_CR7
  publication-title: J. Expert Syst. Appl
  doi: 10.1016/j.eswa.2006.01.038
– volume-title: Mandana, K.M., et al., Fuzzy expert system approach for coronary artery disease screening using clinical parameters
  year: 2012
  ident: 7022_CR25
– ident: 7022_CR45
  doi: 10.1155/2017/9512741
– volume: 16
  start-page: 81
  year: 2009
  ident: 7022_CR29
  publication-title: Int. J. Behav. Med
  doi: 10.1007/s12529-008-9001-9
– ident: 7022_CR19
  doi: 10.1109/TSMCC.2004.843220
– volume: 10
  start-page: 334
  year: 2006
  ident: 7022_CR3
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2006.864475
– volume: 24
  start-page: 27
  year: 2012
  ident: 7022_CR32
  publication-title: J. Comput. Inf. Sci
– volume: 101
  start-page: 231
  year: 2011
  ident: 7022_CR34
  publication-title: J. Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2010.12.015
– volume: 40
  start-page: 1086
  year: 2013
  ident: 7022_CR9
  publication-title: J. Expert Syst. Appl
  doi: 10.1016/j.eswa.2012.08.028
– volume: 21
  start-page: 266
  year: 2009
  ident: 7022_CR14
  publication-title: J. Dep. Electr. Electron. Eng
– volume: 93
  start-page: 185
  year: 2009
  ident: 7022_CR17
  publication-title: J. Comput. Methods Programs Biomed
  doi: 10.1016/j.cmpb.2008.09.005
– volume-title: Ubiquitous Machine Learning and Its Applications
  year: 2017
  ident: 7022_CR52
– volume: 36
  start-page: 21
  year: 2006
  ident: 7022_CR4
  publication-title: Biol. Med
– volume: 50
  start-page: 149
  year: 2010
  ident: 7022_CR23
  publication-title: J. Artif. Intell. Med
  doi: 10.1016/j.artmed.2010.08.001
– volume: 34
  start-page: 2479
  year: 2008
  ident: 7022_CR41
  publication-title: J. Expert Syst. Appl
  doi: 10.1016/j.eswa.2007.04.015
– ident: 7022_CR42
– ident: 7022_CR22
  doi: 10.1016/j.cmpb.2011.03.018
– volume: 7
  start-page: 646
  year: 2011
  ident: 7022_CR28
  publication-title: J. Stem Cell Rev. Rep
  doi: 10.1007/s12015-010-9220-8
– volume: 6
  start-page: 69
  year: 2014
  ident: 7022_CR50
  publication-title: J. Bio-Sci. Bio-Technol
– volume: 37
  start-page: 3177
  year: 2010
  ident: 7022_CR12
  publication-title: J. Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.09.064
– ident: 7022_CR48
  doi: 10.1109/ICIEV.2016.7759984
– ident: 7022_CR35
  doi: 10.1016/j.eswa.2013.01.032
– volume: 38
  start-page: 5197
  year: 2011
  ident: 7022_CR37
  publication-title: Expert Syst. Appl
  doi: 10.1016/j.eswa.2010.10.041
– ident: 7022_CR11
  doi: 10.1016/j.eswa.2009.01.041
– ident: 7022_CR36
– ident: 7022_CR20
  doi: 10.1016/j.cmpb.2007.07.013
– volume: 39
  start-page: 11657
  year: 2012
  ident: 7022_CR31
  publication-title: J. Expert Syst. Appl
  doi: 10.1016/j.eswa.2012.04.036
– volume-title: Innovations in Bio-Inspired Computing and Applications
  year: 2016
  ident: 7022_CR47
– volume: 36
  start-page: 7675
  year: 2009
  ident: 7022_CR16
  publication-title: J. Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.09.013
– volume: 26
  start-page: 1750061
  year: 2017
  ident: 7022_CR51
  publication-title: J. Circuits, Syst. Comput.
  doi: 10.1142/S021812661750061X
– ident: 7022_CR38
  doi: 10.1109/TITB.2012.2205009
– volume: 51
  start-page: 133
  year: 2011
  ident: 7022_CR24
  publication-title: J. Artif. Intell. Med
  doi: 10.1016/j.artmed.2010.12.001
– volume: 45
  start-page: 999
  year: 2012
  ident: 7022_CR18
  publication-title: J. Biomed. Inf
  doi: 10.1016/j.jbi.2012.04.013
– ident: 7022_CR30
– volume: 32
  start-page: 625
  year: 2007
  ident: 7022_CR21
  publication-title: J. Expert Syst. Appl
  doi: 10.1016/j.eswa.2006.01.027
– volume: 7
  start-page: 263
  year: 2010
  ident: 7022_CR15
  publication-title: Learn. Optim
– volume: 113
  start-page: 175
  year: 2014
  ident: 7022_CR49
  publication-title: Comput. Methods Progr. Biomed
  doi: 10.1016/j.cmpb.2013.10.007
– volume: 54
  start-page: 2283
  year: 2011
  ident: 7022_CR39
  publication-title: J. Diabetologia
  doi: 10.1007/s00125-011-2206-5
– volume: 36
  start-page: 8616
  year: 2009
  ident: 7022_CR8
  publication-title: J. Expert Syst. Appl
  doi: 10.1016/j.eswa.2008.10.013
– ident: 7022_CR27
  doi: 10.1016/j.eswa.2010.05.022
– volume: 90
  start-page: 125
  year: 2017
  ident: 7022_CR46
  publication-title: Comput. Biol. Med
  doi: 10.1016/j.compbiomed.2017.09.011
– volume: 482
  start-page: 796
  year: 2017
  ident: 7022_CR43
  publication-title: Statistical Mechanics and Its Applications
  doi: 10.1016/j.physa.2017.04.113
– volume: 8
  start-page: 1105
  year: 2008
  ident: 7022_CR2
  publication-title: J. Appl. Soft Comput
  doi: 10.1016/j.asoc.2007.05.017
– volume: 40
  start-page: 96
  year: 2013
  ident: 7022_CR13
  publication-title: J. Expert Syst. Appl
  doi: 10.1016/j.eswa.2012.07.032
– volume: 35
  start-page: 82
  year: 2008
  ident: 7022_CR26
  publication-title: J. Expert Syst. Appl
  doi: 10.1016/j.eswa.2007.06.004
SSID ssj0010044
Score 2.3618445
Snippet Machine learning is used as an effective support system in health diagnosis which contains large volume of data. More commonly, analyzing such a large volume...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 388
SubjectTerms Algorithms
Artificial Intelligence
Cardiovascular disease
Classification
Classifiers
Computer Science
Datasets
Genetic algorithms
Heart diseases
Heuristic methods
Machine learning
Medical records
Operating Systems
Particle swarm optimization
Performance evaluation
Software Engineering
Software Engineering/Programming and Operating Systems
Support systems
Support vector machines
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLDwRpSXbmACWSRxnMeEKqBi4FGpgBBLFDsOqgShpCn8IX4oZ8dpEQgWlgyObUW5s-_z3fk-QvYzHnmhSDkNnDilvi8Ujf3MoVzKMECE7QepKeJ6EV5dRff3cc863EY2rbLZE81Gnb1I7SM_8mK0LGjNWXw8fKWaNUpHVy2FxiyZ01USNHVDjz9Mogg6WlnHKl2KsDqyUU2X-Ud93ajb3EhXJDEI84tdmoLNb_FRY3a6S__94GWyaAEndGoNWSEzqlglSw2ZA9i1vUY-OnBpEisV2Jqrj9BtMrcAoS1otDguFfQNdQ7KEwYFnGPfCk7rMA8Yik2dfGTkDSYfAWq_hcqgZ9UU-u9p-QzXuFs922ugoP3BoClG8TgAdyaUMPmeZlZVrpPb7tnNyTm1FA5UMjeoaO6IkEvBHSfPOAuzIJOKowXEP-8x6efKlSr3RSoYlzxSeF7LmXBiJYQX8tRVbIO0ipdCbRLwWJCyFLUpw4eHY3BzUoKh6DjLEVa2idMIMJG2vrmm2XhKzDmH-ckPmbfJwWTIsC7u8VfnnUbOiV3no2Qq5DY5bDRl-vrXybb-nmybLCAwi-o7jzukVZVjtUvm5Vs1GJV7Rsk_AerwAss
  priority: 102
  providerName: ProQuest
Title A Machine Learning Framework for Feature Selection in Heart Disease Classification Using Improved Particle Swarm Optimization with Support Vector Machine Classifier
URI https://link.springer.com/article/10.1134/S0361768818060129
https://www.proquest.com/docview/2918583939
Volume 44
WOSCitedRecordID wos000460668600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1608-3261
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0010044
  issn: 0361-7688
  databaseCode: P5Z
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1608-3261
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0010044
  issn: 0361-7688
  databaseCode: K7-
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1608-3261
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0010044
  issn: 0361-7688
  databaseCode: BENPR
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1608-3261
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010044
  issn: 0361-7688
  databaseCode: RSV
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7xOnChy0vAQjUHTiCLJI7zOJZHhQSUigJCXKLYcRDS0kVpgT_ED92x4xTtLiDBxRc_ZHnGM589L4DtQiRBLHPBIi_NWRhKzdKw8JhQKo4IYYdRbpO4nsa9XnJzk_ZdHPeo8XZvTJJWUtd1R8K9Aclan8CxCU6OzPfJNMyStktMvYaLwfXEdGBMlLWB0mdmuDNlvrvE38roDWH-YxS1uqbb-tYuf8CCg5bYqXlhEab0cAlaTdkGdLd4GV47eGZdKDW67Kp32G18tJBALBpc-FRpHNgiOUQ5vB_iMY0d42Ft0EFbTNO4GVnKovU8wPqHQhfYdwyJg5e8esBzkksPLuATzc8vmmKiBPzx2hoNJvtpVtXVClx1jy4Pjpkr1sAU96MxKz0ZCyWF55WF4HERFUoL0nV0FgFXYal9pctQ5pILJRJNL7OSSy_VUgaxyH3NV2Fm-Huo1wADHuU8J74pqAloDokhevPTYQpeEoBcB6-hWqZcJnNTUONXZl80PMz-o8I67EymPNZpPD4bvNmwQuZu9CgLUkI2hCY5de82pH_r_nCxjS-N_gnzhMiSOthxE2bG1ZPegjn1PL4fVW2Y3T_q9S_aMH0SM2r74rZtmf8PPRT6tw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggSXllfFQoE5wAVkNYntPA4IVZTVVrtdKm1BvYXYcVAlui3ZbSv-D-f-xo4dexeB6K0HLjk49ihyvhl_9oxnAF7VMk8yVUmWRkXFhFCGFaKOmNQ6S4lhi7RySVxH2XicHx4W-ytwGe7C2LDKYBOdoa5PtD0j30oKWlloNefF-9MfzFaNst7VUEKjg8XQ_LygLdvs3e4O_d_XSdL_ePBhwHxVAaZ5nM5ZE6lMaiWjqKklz-q01kaSUSbenXAtGhNr0whVKS61zA1tIRquosIolWSyig0nubfgtuB5ZvVqmLGF18J6RzvfaMxIXO69qDEXWxPbaNvi3GZAcYz2t3VwSW7_8Me6Za6__r9N0H1Y84QatzsNeAArZvoQ1kOxCvS26xH82sY9Fzhq0OeU_Yb9EJmGRN3RsuGz1uDElQYivOLRFAfUd447nRsLXQlRG1zl8Iwu3gK7cxlT475XQ5xcVO0xfiJrfOyvuaI970ZbQpW2O_jFuUoW3xOkmvYxfL6RudqA1enJ1DwBTHha8Yq0paZHQmPI-BrFCSqSN0SbexAFwJTa52-3ZUS-l24fx0X5F8Z68GYx5LRLXnJd582Aq9LbsVm5BFUP3gZkLl__U9jT64W9hLuDg71ROdodD5_BPSKheXe_cxNW5-2ZeQ539Pn8aNa-cAqG8PWmAXsFSbxhOQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66inhxfeLbOXhSim2TtNvjoi6Kui6sirfSpKksaJVu1T_kD3WSprv4BPHSSx6EziT5Jt88CNlNecsPRcKdwI0ShzGhnIilrsOlDANE2CxITBLX87Dbbd3eRj1b53RYe7vXlGQV06CzNOXlwVOa2Rok7KCP566HQFkHKgf6KWWSTDHtR6_N9f7NiEbQdGVFVnqO7m5pzW-n-HgxjdHmJ4LU3Dud5r9XPE_mLOSEdqUjC2RC5YukWZdzALu7l8hbGy6Ma6UCm3X1Djq17xYguAWNF58LBX1TPAclCoMcTrBvCUcV0QOmyKZ2PzISB-ORANXLhUqhZxUV-q9J8QCXeF492EBQ0C_CoIuMokEAN4ZMGK2nnlUVy-S6c3x1eOLYIg6OpF5QOpkrQi4Fd90s5TRMg1Qqjncg_gufSpYpT6qMiURQLnlLocWWUeFGSgg_5Imn6App5I-5WiXg0yChCepTih8fx-DxpATFn8lphsByjbi1BGNpM5zrQhv3sbF0KIu_SGGN7I2GPFXpPX7rvFmrRWx3-jD2I0Q8iDIpNu_XajBu_nGy9T_13iEzvaNOfH7aPdsgswjaWlU85CZplMWz2iLT8qUcDItto__vfSQDJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine+Learning+Framework+for+Feature+Selection+in+Heart+Disease+Classification+Using+Improved+Particle+Swarm+Optimization+with+Support+Vector+Machine+Classifier&rft.jtitle=Programming+and+computer+software&rft.au=Vijayashree%2C+J.&rft.au=Sultana%2C+H.+Parveen&rft.date=2018-11-01&rft.pub=Pleiades+Publishing&rft.issn=0361-7688&rft.eissn=1608-3261&rft.volume=44&rft.issue=6&rft.spage=388&rft.epage=397&rft_id=info:doi/10.1134%2FS0361768818060129&rft.externalDocID=10_1134_S0361768818060129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-7688&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-7688&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-7688&client=summon