Subdivision and Spline Spaces
A standard construction in approximation theory is mesh refinement. For a simplicial or polyhedral mesh Δ ⊆ R k , we study the subdivision Δ ′ obtained by subdividing a maximal cell of Δ . We give sufficient conditions for the module of splines on Δ ′ to split as the direct sum of splines on Δ and s...
Uloženo v:
| Vydáno v: | Constructive approximation Ročník 47; číslo 2; s. 237 - 247 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.04.2018
Springer Nature B.V |
| Témata: | |
| ISSN: | 0176-4276, 1432-0940 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A standard construction in approximation theory is mesh refinement. For a simplicial or polyhedral mesh
Δ
⊆
R
k
, we study the subdivision
Δ
′
obtained by subdividing a maximal cell of
Δ
. We give sufficient conditions for the module of splines on
Δ
′
to split as the direct sum of splines on
Δ
and splines on the subdivided cell. As a consequence, we obtain dimension formulas and explicit bases for several commonly used subdivisions and their multivariate generalizations. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0176-4276 1432-0940 |
| DOI: | 10.1007/s00365-017-9367-5 |