Symbolic–numeric computation of orthogonal polynomials and Gaussian quadratures with respect to the cardinal B-spline
The first 60 coefficients in the three-term recurrence relation for monic polynomials orthogonal with respect to cardinal B -splines φ m as the weight functions on [0, m ] ( m ∈ ℕ) are obtained in a symbolic form. They enable calculation of parameters, nodes, and weights, in the corresponding Gaussi...
Uložené v:
| Vydané v: | Numerical algorithms Ročník 76; číslo 2; s. 333 - 347 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.10.2017
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The first 60 coefficients in the three-term recurrence relation for monic polynomials orthogonal with respect to cardinal
B
-splines
φ
m
as the weight functions on [0,
m
] (
m
∈ ℕ) are obtained in a symbolic form. They enable calculation of parameters, nodes, and weights, in the corresponding Gaussian quadrature up to 60 nodes. The efficiency of these Gaussian quadratures is shown in some numerical examples. Finally, two interesting conjectures are stated. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-016-0256-y |