Symbolic–numeric computation of orthogonal polynomials and Gaussian quadratures with respect to the cardinal B-spline
The first 60 coefficients in the three-term recurrence relation for monic polynomials orthogonal with respect to cardinal B -splines φ m as the weight functions on [0, m ] ( m ∈ ℕ) are obtained in a symbolic form. They enable calculation of parameters, nodes, and weights, in the corresponding Gaussi...
Uloženo v:
| Vydáno v: | Numerical algorithms Ročník 76; číslo 2; s. 333 - 347 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.10.2017
Springer Nature B.V |
| Témata: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The first 60 coefficients in the three-term recurrence relation for monic polynomials orthogonal with respect to cardinal
B
-splines
φ
m
as the weight functions on [0,
m
] (
m
∈ ℕ) are obtained in a symbolic form. They enable calculation of parameters, nodes, and weights, in the corresponding Gaussian quadrature up to 60 nodes. The efficiency of these Gaussian quadratures is shown in some numerical examples. Finally, two interesting conjectures are stated. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-016-0256-y |