Symbolic–numeric computation of orthogonal polynomials and Gaussian quadratures with respect to the cardinal B-spline

The first 60 coefficients in the three-term recurrence relation for monic polynomials orthogonal with respect to cardinal B -splines φ m as the weight functions on [0, m ] ( m ∈ ℕ) are obtained in a symbolic form. They enable calculation of parameters, nodes, and weights, in the corresponding Gaussi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms Jg. 76; H. 2; S. 333 - 347
1. Verfasser: Milovanović, Gradimir V.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.10.2017
Springer Nature B.V
Schlagworte:
ISSN:1017-1398, 1572-9265
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The first 60 coefficients in the three-term recurrence relation for monic polynomials orthogonal with respect to cardinal B -splines φ m as the weight functions on [0, m ] ( m ∈ ℕ) are obtained in a symbolic form. They enable calculation of parameters, nodes, and weights, in the corresponding Gaussian quadrature up to 60 nodes. The efficiency of these Gaussian quadratures is shown in some numerical examples. Finally, two interesting conjectures are stated.
AbstractList The first 60 coefficients in the three-term recurrence relation for monic polynomials orthogonal with respect to cardinal B -splines φ m as the weight functions on [0, m ] ( m ∈ ℕ) are obtained in a symbolic form. They enable calculation of parameters, nodes, and weights, in the corresponding Gaussian quadrature up to 60 nodes. The efficiency of these Gaussian quadratures is shown in some numerical examples. Finally, two interesting conjectures are stated.
The first 60 coefficients in the three-term recurrence relation for monic polynomials orthogonal with respect to cardinal B-splines φm as the weight functions on [0, m] (m ∈ ℕ) are obtained in a symbolic form. They enable calculation of parameters, nodes, and weights, in the corresponding Gaussian quadrature up to 60 nodes. The efficiency of these Gaussian quadratures is shown in some numerical examples. Finally, two interesting conjectures are stated.
Author Milovanović, Gradimir V.
Author_xml – sequence: 1
  givenname: Gradimir V.
  orcidid: 0000-0002-3255-8127
  surname: Milovanović
  fullname: Milovanović, Gradimir V.
  email: gvm@mi.sanu.ac.rs
  organization: Serbian Academy of Sciences and Arts, State University of Novi Pazar
BookMark eNp9kE1q3TAUhUVJIX9dQGaCjNXqypYlD5vQvhQCGbQZC1mW8xRsyZFkgmfZQ3aYlVQPFwqFdHTP4HyHy3eKjnzwFqELoJ-BUvElAVDBCYWGUMYbsn5AJ8AFIy1r-FHJFASBqpXH6DSlR0oLxcQJev65Tl0YnXl7efXLZKMz2IRpXrLOLngcBhxi3oeH4PWI5zCuPkxOjwlr3-OdXlJy2uOnRfdR5yXahJ9d3uMSZmsyzgHnvcVGx94dFq5Imkfn7Tn6OJQV--nPPUP337_9ur4ht3e7H9dfb4mpoMnE9lwOrewraTilXIpK1rrWIKEXtm-hq-u2Y6ylPW-GWld1Bw00UnZAOz4MpjpDl9vuHMPTYlNWj2GJ5ZOkWAuybpkQUFpia5kYUop2UMZtAnLUblRA1cGy2iyrYlkdLKu1kPAPOUc36bj-l2Ebk0rXP9j496f3od9rYpTk
CitedBy_id crossref_primary_10_1155_2018_4967613
Cites_doi 10.1137/1.9780898719727
10.1016/0771-050X(81)90008-5
10.1007/978-4-431-54919-2
10.1016/j.amc.2015.06.006
10.2307/2005948
10.1016/S0021-9800(69)80045-1
10.1090/S0025-5718-69-99647-1
10.1016/j.apnum.2014.11.010
10.1093/oso/9780198506720.001.0001
10.1145/174603.174605
10.1007/978-1-4614-7049-6_1
10.1007/978-3-540-68349-0
10.1007/s10543-008-0168-x
10.1137/1.9781611974300
10.1090/S0025-5718-06-01855-2
10.1137/0903018
10.1007/BF02437506
10.1006/acha.1999.0306
10.1016/j.aml.2010.06.029
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
Springer Science+Business Media New York 2016.
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: Springer Science+Business Media New York 2016.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s11075-016-0256-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering collection
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 347
ExternalDocumentID 10_1007_s11075_016_0256_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-ed58f98d38c500587384a4a181d7ed91b449b2290d56f4a34b161688b10b5ffc3
IEDL.DBID BENPR
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411622000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1017-1398
IngestDate Wed Nov 05 01:56:51 EST 2025
Sat Nov 29 01:34:42 EST 2025
Tue Nov 18 22:24:17 EST 2025
Fri Feb 21 02:32:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 41A55
65D30
Moment
Recurrence relation
Gaussian quadrature formula
Cardinal
65D32
spline
Symbolic computation
41A15
Orthogonal polynomial
42C05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-ed58f98d38c500587384a4a181d7ed91b449b2290d56f4a34b161688b10b5ffc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3255-8127
PQID 2918492771
PQPubID 2043837
PageCount 15
ParticipantIDs proquest_journals_2918492771
crossref_citationtrail_10_1007_s11075_016_0256_y
crossref_primary_10_1007_s11075_016_0256_y
springer_journals_10_1007_s11075_016_0256_y
PublicationCentury 2000
PublicationDate 20171000
2017-10-00
20171001
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 20171000
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References GolubGWelschJHCalculation of Gauss quadrature rulesMath. Comp.19692322123024520110.1090/S0025-5718-69-99647-10179.21901
MilovanovićGVUdovičićZCalculation of coefficients of a cardinal B–splineAppl. Math. Lett.20102313461350271850910.1016/j.aml.2010.06.0291197.65021
NeumanEMoments and Fourier transform of B-splinesJ. Comput. Appl. Math.19817516261195110.1016/0771-050X(81)90008-50452.42006
RennieBCDobsonAJOn Stirling numbers of the second kindJ. Comb. Theory1969711612124131010.1016/S0021-9800(69)80045-10174.04002
CvetkovićASMilovanovićGVThe Mathematica package “OrthogonalPolynomials”Facta Univ. Ser. Math. Inform.20049173621227521081.33001
CalabròFCorbo EspositoAManticaGRadiceTRefinable functions, functionals, and iterated function systemsAppl. Math. Comput.20162721992073418124
ChuiCWavelets: A Mathematical Tool for Signal Analysis1997PhiladelphiaSIAM10.1137/1.97808987197270903.94007
GautschiWOrthogonal Polynomials: Computation and Approximation2004OxfordClarendon Press1130.42300
MastroianniGMilovanovićGVInterpolation Processes: Basic Theory and Applications2008BerlinSpringer Monographs in Mathematics, Springer-Verlag10.1007/978-3-540-68349-01154.41001
GautschiWAlgorithm 726: ORTHPOL—a package of routines for generating orthogonal polynomials and Gauss-type quadrature rulesACM Trans. Math. Softw.199420216210.1145/174603.1746050888.65013
ChuiCAn Introduction to Wavelets1992BostonAcademic Press0925.42016
ManticaGA stable Stieltjes technique for computing orthogonal polynomials and Jacobi matrices associated with a class of singular measuresConstr. Approx.199612509530141219710.1007/BF024375060878.42014
LaurieDDe VilliersJOrthogonal polynomials for refinable linear functionalsMath. Comput.20067518911903224064010.1090/S0025-5718-06-01855-21107.65130
Feller, W.: An Introduction to Probability Theory and Its Applications, vol. I. Wiley, New York (1950)
CalabròFCorbo EspositoAAn efficient and reliable quadrature algorithm for integration with respect to binomial measuresBIT Numer. Math.200848473491244798110.1007/s10543-008-0168-x1155.65022
GautschiWOrthogonal Polynomials in Matlab: Exercises and Solutions, Software–Environments–Tools2016Philadelphia, PASIAM06589760
Milovanović, G. V.: Chapter 11: Orthogonal polynomials on the real line. In: Brezinski, C., Sameh, A. (eds.) Walter Gautschi: Selected Works and Commentaries, vol. 2, pp 3–16, Birkhäuser, Basel (2014)
GautschiWGoriLPitolliFGauss quadrature for refinable weight functionsAppl. Comput. Harmon. Anal.200083249257175492610.1006/acha.1999.03060954.65018
ArakawaTIbukiyamaTKanekoMBernoulli Numbers and Zeta Functions. Springer Monographs in Mathematics2014TokyoSpringer1312.11015
CalabròFManniCPitolliFComputation of quadrature rules for integration with respect to refinable functions on assigned nodesAppl. Numer. Math.201590168189330090110.1016/j.apnum.2014.11.0101326.65032
PhillipsJLHansonRJGauss quadrature rules with B-spline weight functionsMath. Comp.197418Rewiew 2866634355110.2307/2005948[Loose microfiche suppl. A1–C4]
GautschiWOn generating orthogonal polynomialsSIAM J. Sci. Statist. Comput.1982328931766782910.1137/09030180482.65011
MilovanovićGVCvetkovićASSpecial classes of orthogonal polynomials and corresponding quadratures of Gaussian typeMath. Balkanica20122616918429770321272.33013
G Mantica (256_CR16) 1996; 12
AS Cvetković (256_CR7) 2004; 9
256_CR18
W Gautschi (256_CR9) 2000; 8
E Neuman (256_CR21) 1981; 7
F Calabrò (256_CR4) 2016; 272
C Chui (256_CR6) 1997
GV Milovanović (256_CR20) 2010; 23
F Calabrò (256_CR3) 2015; 90
256_CR8
W Gautschi (256_CR10) 1982; 3
F Calabrò (256_CR2) 2008; 48
T Arakawa (256_CR1) 2014
G Golub (256_CR15) 1969; 23
GV Milovanović (256_CR19) 2012; 26
W Gautschi (256_CR12) 2004
BC Rennie (256_CR23) 1969; 7
D Laurie (256_CR14) 2006; 75
JL Phillips (256_CR22) 1974; 18
G Mastroianni (256_CR17) 2008
C Chui (256_CR5) 1992
W Gautschi (256_CR11) 1994; 20
W Gautschi (256_CR13) 2016
References_xml – reference: MastroianniGMilovanovićGVInterpolation Processes: Basic Theory and Applications2008BerlinSpringer Monographs in Mathematics, Springer-Verlag10.1007/978-3-540-68349-01154.41001
– reference: GautschiWAlgorithm 726: ORTHPOL—a package of routines for generating orthogonal polynomials and Gauss-type quadrature rulesACM Trans. Math. Softw.199420216210.1145/174603.1746050888.65013
– reference: GautschiWOn generating orthogonal polynomialsSIAM J. Sci. Statist. Comput.1982328931766782910.1137/09030180482.65011
– reference: MilovanovićGVUdovičićZCalculation of coefficients of a cardinal B–splineAppl. Math. Lett.20102313461350271850910.1016/j.aml.2010.06.0291197.65021
– reference: RennieBCDobsonAJOn Stirling numbers of the second kindJ. Comb. Theory1969711612124131010.1016/S0021-9800(69)80045-10174.04002
– reference: ChuiCAn Introduction to Wavelets1992BostonAcademic Press0925.42016
– reference: Milovanović, G. V.: Chapter 11: Orthogonal polynomials on the real line. In: Brezinski, C., Sameh, A. (eds.) Walter Gautschi: Selected Works and Commentaries, vol. 2, pp 3–16, Birkhäuser, Basel (2014)
– reference: CalabròFCorbo EspositoAAn efficient and reliable quadrature algorithm for integration with respect to binomial measuresBIT Numer. Math.200848473491244798110.1007/s10543-008-0168-x1155.65022
– reference: MilovanovićGVCvetkovićASSpecial classes of orthogonal polynomials and corresponding quadratures of Gaussian typeMath. Balkanica20122616918429770321272.33013
– reference: CvetkovićASMilovanovićGVThe Mathematica package “OrthogonalPolynomials”Facta Univ. Ser. Math. Inform.20049173621227521081.33001
– reference: LaurieDDe VilliersJOrthogonal polynomials for refinable linear functionalsMath. Comput.20067518911903224064010.1090/S0025-5718-06-01855-21107.65130
– reference: GolubGWelschJHCalculation of Gauss quadrature rulesMath. Comp.19692322123024520110.1090/S0025-5718-69-99647-10179.21901
– reference: ArakawaTIbukiyamaTKanekoMBernoulli Numbers and Zeta Functions. Springer Monographs in Mathematics2014TokyoSpringer1312.11015
– reference: CalabròFCorbo EspositoAManticaGRadiceTRefinable functions, functionals, and iterated function systemsAppl. Math. Comput.20162721992073418124
– reference: ManticaGA stable Stieltjes technique for computing orthogonal polynomials and Jacobi matrices associated with a class of singular measuresConstr. Approx.199612509530141219710.1007/BF024375060878.42014
– reference: PhillipsJLHansonRJGauss quadrature rules with B-spline weight functionsMath. Comp.197418Rewiew 2866634355110.2307/2005948[Loose microfiche suppl. A1–C4]
– reference: GautschiWGoriLPitolliFGauss quadrature for refinable weight functionsAppl. Comput. Harmon. Anal.200083249257175492610.1006/acha.1999.03060954.65018
– reference: NeumanEMoments and Fourier transform of B-splinesJ. Comput. Appl. Math.19817516261195110.1016/0771-050X(81)90008-50452.42006
– reference: CalabròFManniCPitolliFComputation of quadrature rules for integration with respect to refinable functions on assigned nodesAppl. Numer. Math.201590168189330090110.1016/j.apnum.2014.11.0101326.65032
– reference: GautschiWOrthogonal Polynomials: Computation and Approximation2004OxfordClarendon Press1130.42300
– reference: GautschiWOrthogonal Polynomials in Matlab: Exercises and Solutions, Software–Environments–Tools2016Philadelphia, PASIAM06589760
– reference: ChuiCWavelets: A Mathematical Tool for Signal Analysis1997PhiladelphiaSIAM10.1137/1.97808987197270903.94007
– reference: Feller, W.: An Introduction to Probability Theory and Its Applications, vol. I. Wiley, New York (1950)
– volume-title: Wavelets: A Mathematical Tool for Signal Analysis
  year: 1997
  ident: 256_CR6
  doi: 10.1137/1.9780898719727
– volume: 7
  start-page: 51
  year: 1981
  ident: 256_CR21
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0771-050X(81)90008-5
– volume-title: Bernoulli Numbers and Zeta Functions. Springer Monographs in Mathematics
  year: 2014
  ident: 256_CR1
  doi: 10.1007/978-4-431-54919-2
– volume: 272
  start-page: 199
  year: 2016
  ident: 256_CR4
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.06.006
– volume: 18
  start-page: 666
  issue: Rewiew 28
  year: 1974
  ident: 256_CR22
  publication-title: Math. Comp.
  doi: 10.2307/2005948
– volume: 7
  start-page: 116
  year: 1969
  ident: 256_CR23
  publication-title: J. Comb. Theory
  doi: 10.1016/S0021-9800(69)80045-1
– volume-title: An Introduction to Wavelets
  year: 1992
  ident: 256_CR5
– volume: 23
  start-page: 221
  year: 1969
  ident: 256_CR15
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-69-99647-1
– volume: 90
  start-page: 168
  year: 2015
  ident: 256_CR3
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2014.11.010
– volume-title: Orthogonal Polynomials: Computation and Approximation
  year: 2004
  ident: 256_CR12
  doi: 10.1093/oso/9780198506720.001.0001
– volume: 20
  start-page: 21
  year: 1994
  ident: 256_CR11
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/174603.174605
– ident: 256_CR18
  doi: 10.1007/978-1-4614-7049-6_1
– volume: 26
  start-page: 169
  year: 2012
  ident: 256_CR19
  publication-title: Math. Balkanica
– volume-title: Interpolation Processes: Basic Theory and Applications
  year: 2008
  ident: 256_CR17
  doi: 10.1007/978-3-540-68349-0
– ident: 256_CR8
– volume: 9
  start-page: 17
  year: 2004
  ident: 256_CR7
  publication-title: Facta Univ. Ser. Math. Inform.
– volume: 48
  start-page: 473
  year: 2008
  ident: 256_CR2
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-008-0168-x
– volume-title: Orthogonal Polynomials in Matlab: Exercises and Solutions, Software–Environments–Tools
  year: 2016
  ident: 256_CR13
  doi: 10.1137/1.9781611974300
– volume: 75
  start-page: 1891
  year: 2006
  ident: 256_CR14
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-06-01855-2
– volume: 3
  start-page: 289
  year: 1982
  ident: 256_CR10
  publication-title: SIAM J. Sci. Statist. Comput.
  doi: 10.1137/0903018
– volume: 12
  start-page: 509
  year: 1996
  ident: 256_CR16
  publication-title: Constr. Approx.
  doi: 10.1007/BF02437506
– volume: 8
  start-page: 249
  issue: 3
  year: 2000
  ident: 256_CR9
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1006/acha.1999.0306
– volume: 23
  start-page: 1346
  year: 2010
  ident: 256_CR20
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2010.06.029
SSID ssj0010027
Score 2.1179087
Snippet The first 60 coefficients in the three-term recurrence relation for monic polynomials orthogonal with respect to cardinal B -splines φ m as the weight...
The first 60 coefficients in the three-term recurrence relation for monic polynomials orthogonal with respect to cardinal B-splines φm as the weight functions...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 333
SubjectTerms Algebra
Algorithms
Approximation
B spline functions
Computer Science
Eigenvalues
Nodes
Numeric Computing
Numerical Analysis
Original Paper
Polynomials
Quadratures
Theory of Computation
Weighting functions
SummonAdditionalLinks – databaseName: Springer Nature - Connect here FIRST to enable access
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAH3-L6IgdPSmHbpm1yVPFx0EVYlb2VvCqCtmp3lb35H_yH_hIz2XYXRQW9lTRJS2aSftOZ-QZgR0sLu4WKPM25xhJmwmORij0_sQNaVAdh5qqWnCXtNut2-UWVx13W0e61S9Kd1ONkN2upYKAZBs1GsTeYhKkIyWbQRO9cj1wHaGg5F6c9fi28YbUr87spPn-Mxgjzi1PUfWuO5__1lgswV0FLsj_UhUWYMPkSzFcwk1SbuLRNdSWHum0JZs9H7K3lMrx0BvcS-YLfX9_yvnPpEOXGODGSIiPo7SluEMWTh-JugLnNVo-JyDU5Ef0SMzPJY1_oIWNzSfB3L7EXmNdJegWxTyMKlRNnOPBKzAs2K3B1fHR5eOpVBRo8FfpxzzM6YhlnOmQqwvqESciooMKCBp0YzX1JKZdIKK-jOKMipNLiy5gx6bdklGUqXIVGXuRmDYiWCTLjGy0sHjUskbFhAc2oUVxSGQdNaNWSSlXFXo5FNO7SMe8yrnyKEWu48umgCbujIQ9D6o7fOm_W4k-rXVymAbf2Lw-SxG_CXi3u8e0fJ1v_U-8NmAmcsmKE4CY0ek99swXT6rl3Wz5tO-X-AHhi96E
  priority: 102
  providerName: Springer Nature
Title Symbolic–numeric computation of orthogonal polynomials and Gaussian quadratures with respect to the cardinal B-spline
URI https://link.springer.com/article/10.1007/s11075-016-0256-y
https://www.proquest.com/docview/2918492771
Volume 76
WOSCitedRecordID wos000411622000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB31gwM9tFBA3basfOBUZLFJnNg-obZqQSqsqm5BvUX-CkIqybbZbbU3_gP_kF9Sj9fZFUj0wiWKlNiJNGP72TPzHsAbqz3sVianVkqLEmaKitwUNOG-wYDZNKuCasknPhyKqyt5Hg_c2phW2c2JYaK2jcEz8nep9HsRmXKevB_fUFSNwuhqlNBYhXVkKvN-vn50Mjy_WMQRcNcV4p1-LvZYR3RxzVA853c-mLiGSbh5QWd_rkxLuPlXhDQsPKdb__vLz2AzQk5yOPeR57Di6m3YivCTxMHdbsPG5wWFa_sC7kezHxpJg3___FVPQ1yHmCABEWxJmopgyKf5hlCejJvrGRY4e2cmqrbkg5q2WJ5JbqbKzmmbW4JnvsTfYHEnmTTEf40Y9FDs4Yi2WBzsXsKX05PL4480qjRQkyXFhDqbi0oKmwmTo0ghzwRTTHnkYLmzMtGMSY2s8jYvKqYypj3ILITQyUDnVWWyV7BWN7XbAWI1R3p8Z5UHpU5wXTiRsoo5IzXTRdqDQWeh0kQKc1TSuC6X5Mto1BLT1tCo5awHB4sm4zl_x2Mv73eGLONQbsulFXvwtnOF5eN_drb7eGd78DQNXol5gfuwNrmdutfwxNxNvre3_ejHfVg947SPCakjf70YfX0Aq0f_eQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fT9RAEJ_gYaI8gCLGQ9B90BfNhmu7bXcfjOGvEI4LUUx4K_uvxgTbg95J-uZ34Hv4ofgk7Oy1d9FE3njwrUm706T9zezMzsxvAN4Y5dxuqWNqhDA4wkxSHuuEBqlb0GMmjHI_taSfDgb89FQcz8HvthcGyypbm-gNtSk1npFvhMLFIiJM0-Dj8ILi1CjMrrYjNCawOLT1lQvZqg8HO-7_vg3Dvd2T7X3aTBWgOgqSEbUm5rngJuI6xqF6acSZZNLtdCa1RgSKMaGQBd3ESc5kxJRzihLOVdBTcZ7ryMl9APMsYkncgfmt3cHx52neAqM8n191tt_5VrzNo_pmPRdpYaEcFv3GCa3_3Aln7u1fGVm_0e0t_W-f6AksNi412ZzowFOYs8UyLDXuNWmMV7UMC0dTitrqGVx9qX8oJEW--XVdjH3eimg_4sJjlZQ5wZRW-Q1DFTIsz2ts4HbKSmRhyCc5rrD9lFyMpZnQUlcEz7SJu8DmVTIqiXsb0aiBKGGLVtj8bFfg6718jOfQKcrCvgBiVIr0_9ZI53RbnqrE8pDlzGqhmErCLvRaRGS6oWjHSSHn2YxcGkGUYVkegiiru_BuumQ44Se56-G1FjhZY6qqbIaaLrxvoTe7_U9hq3cLew2P9k-O-ln_YHD4Eh6HXiOwBnINOqPLsV2Hh_rn6Ht1-arRIQJn943JW3lFV7E
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT9swFL1iZZrYA2UMtEIZftgTU0STOIn9yFcZoqsQbBNvkb-CkLqkaxJQ3_gP_EN-Cb5p0mrTNmnaW-TYTmRfx8c5954L8EFLC7uFChzNucYUZsJhgQodN7INelR7flJlLRlEwyG7vuYXdZ7TvPF2byjJWUwDqjSlxf5YJ_uLwDd7akGnM3SgDUJn-gKWqS1Cn67Lq29zGgEPXRXdaT_FFuqwhtb8XRc_b0wLtPkLQVrtO_32f7_xGqzWkJMczGzkDSyZdB3aNfwk9eLObVGT4aEpW4fXn-eqrvlbuL-afpeoI_z08JiWFdVDVNWmml6SJQRZoOwG0T0ZZ6Mpxjxb-yYi1eRUlDlGbJIfpdAzJeec4G9gYi8w3pMUGbFPIwqNFns4dHKMFzYb8LV_8uXok1MnbnCU74aFY3TAEs60z1SAeQsjn1FBhQUTOjKau5JSLlFoXgdhQoVPpcWdIWPS7ckgSZS_Ca00S807IFpGqJhvtLA41bBIhoZ5NKFGcUll6HWg18xarGpVc0yuMYoXesw48jF6suHIx9MO7M2bjGeSHn-r3G1MIa5Xdx573J6LuRdFbgc-NlO_uP3Hzrb-qfYuvLo47seDs-H5Nqx4lQ2jE2EXWsWkNDvwUt0Vt_nkfWXzz9PxA3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Symbolic%E2%80%93numeric+computation+of+orthogonal+polynomials+and+Gaussian+quadratures+with+respect+to+the+cardinal+B-spline&rft.jtitle=Numerical+algorithms&rft.au=Milovanovi%C4%87%2C+Gradimir+V&rft.date=2017-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=76&rft.issue=2&rft.spage=333&rft.epage=347&rft_id=info:doi/10.1007%2Fs11075-016-0256-y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon