Symbolic–numeric computation of orthogonal polynomials and Gaussian quadratures with respect to the cardinal B-spline
The first 60 coefficients in the three-term recurrence relation for monic polynomials orthogonal with respect to cardinal B -splines φ m as the weight functions on [0, m ] ( m ∈ ℕ) are obtained in a symbolic form. They enable calculation of parameters, nodes, and weights, in the corresponding Gaussi...
Gespeichert in:
| Veröffentlicht in: | Numerical algorithms Jg. 76; H. 2; S. 333 - 347 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.10.2017
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1017-1398, 1572-9265 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The first 60 coefficients in the three-term recurrence relation for monic polynomials orthogonal with respect to cardinal
B
-splines
φ
m
as the weight functions on [0,
m
] (
m
∈ ℕ) are obtained in a symbolic form. They enable calculation of parameters, nodes, and weights, in the corresponding Gaussian quadrature up to 60 nodes. The efficiency of these Gaussian quadratures is shown in some numerical examples. Finally, two interesting conjectures are stated. |
|---|---|
| AbstractList | The first 60 coefficients in the three-term recurrence relation for monic polynomials orthogonal with respect to cardinal
B
-splines
φ
m
as the weight functions on [0,
m
] (
m
∈ ℕ) are obtained in a symbolic form. They enable calculation of parameters, nodes, and weights, in the corresponding Gaussian quadrature up to 60 nodes. The efficiency of these Gaussian quadratures is shown in some numerical examples. Finally, two interesting conjectures are stated. The first 60 coefficients in the three-term recurrence relation for monic polynomials orthogonal with respect to cardinal B-splines φm as the weight functions on [0, m] (m ∈ ℕ) are obtained in a symbolic form. They enable calculation of parameters, nodes, and weights, in the corresponding Gaussian quadrature up to 60 nodes. The efficiency of these Gaussian quadratures is shown in some numerical examples. Finally, two interesting conjectures are stated. |
| Author | Milovanović, Gradimir V. |
| Author_xml | – sequence: 1 givenname: Gradimir V. orcidid: 0000-0002-3255-8127 surname: Milovanović fullname: Milovanović, Gradimir V. email: gvm@mi.sanu.ac.rs organization: Serbian Academy of Sciences and Arts, State University of Novi Pazar |
| BookMark | eNp9kE1q3TAUhUVJIX9dQGaCjNXqypYlD5vQvhQCGbQZC1mW8xRsyZFkgmfZQ3aYlVQPFwqFdHTP4HyHy3eKjnzwFqELoJ-BUvElAVDBCYWGUMYbsn5AJ8AFIy1r-FHJFASBqpXH6DSlR0oLxcQJev65Tl0YnXl7efXLZKMz2IRpXrLOLngcBhxi3oeH4PWI5zCuPkxOjwlr3-OdXlJy2uOnRfdR5yXahJ9d3uMSZmsyzgHnvcVGx94dFq5Imkfn7Tn6OJQV--nPPUP337_9ur4ht3e7H9dfb4mpoMnE9lwOrewraTilXIpK1rrWIKEXtm-hq-u2Y6ylPW-GWld1Bw00UnZAOz4MpjpDl9vuHMPTYlNWj2GJ5ZOkWAuybpkQUFpia5kYUop2UMZtAnLUblRA1cGy2iyrYlkdLKu1kPAPOUc36bj-l2Ebk0rXP9j496f3od9rYpTk |
| CitedBy_id | crossref_primary_10_1155_2018_4967613 |
| Cites_doi | 10.1137/1.9780898719727 10.1016/0771-050X(81)90008-5 10.1007/978-4-431-54919-2 10.1016/j.amc.2015.06.006 10.2307/2005948 10.1016/S0021-9800(69)80045-1 10.1090/S0025-5718-69-99647-1 10.1016/j.apnum.2014.11.010 10.1093/oso/9780198506720.001.0001 10.1145/174603.174605 10.1007/978-1-4614-7049-6_1 10.1007/978-3-540-68349-0 10.1007/s10543-008-0168-x 10.1137/1.9781611974300 10.1090/S0025-5718-06-01855-2 10.1137/0903018 10.1007/BF02437506 10.1006/acha.1999.0306 10.1016/j.aml.2010.06.029 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2016 Springer Science+Business Media New York 2016. |
| Copyright_xml | – notice: Springer Science+Business Media New York 2016 – notice: Springer Science+Business Media New York 2016. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.1007/s11075-016-0256-y |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering collection |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics Computer Science |
| EISSN | 1572-9265 |
| EndPage | 347 |
| ExternalDocumentID | 10_1007_s11075_016_0256_y |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c316t-ed58f98d38c500587384a4a181d7ed91b449b2290d56f4a34b161688b10b5ffc3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411622000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1017-1398 |
| IngestDate | Wed Nov 05 01:56:51 EST 2025 Sat Nov 29 01:34:42 EST 2025 Tue Nov 18 22:24:17 EST 2025 Fri Feb 21 02:32:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | 41A55 65D30 Moment Recurrence relation Gaussian quadrature formula Cardinal 65D32 spline Symbolic computation 41A15 Orthogonal polynomial 42C05 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-ed58f98d38c500587384a4a181d7ed91b449b2290d56f4a34b161688b10b5ffc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3255-8127 |
| PQID | 2918492771 |
| PQPubID | 2043837 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2918492771 crossref_citationtrail_10_1007_s11075_016_0256_y crossref_primary_10_1007_s11075_016_0256_y springer_journals_10_1007_s11075_016_0256_y |
| PublicationCentury | 2000 |
| PublicationDate | 20171000 2017-10-00 20171001 |
| PublicationDateYYYYMMDD | 2017-10-01 |
| PublicationDate_xml | – month: 10 year: 2017 text: 20171000 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Numerical algorithms |
| PublicationTitleAbbrev | Numer Algor |
| PublicationYear | 2017 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | GolubGWelschJHCalculation of Gauss quadrature rulesMath. Comp.19692322123024520110.1090/S0025-5718-69-99647-10179.21901 MilovanovićGVUdovičićZCalculation of coefficients of a cardinal B–splineAppl. Math. Lett.20102313461350271850910.1016/j.aml.2010.06.0291197.65021 NeumanEMoments and Fourier transform of B-splinesJ. Comput. Appl. Math.19817516261195110.1016/0771-050X(81)90008-50452.42006 RennieBCDobsonAJOn Stirling numbers of the second kindJ. Comb. Theory1969711612124131010.1016/S0021-9800(69)80045-10174.04002 CvetkovićASMilovanovićGVThe Mathematica package “OrthogonalPolynomials”Facta Univ. Ser. Math. Inform.20049173621227521081.33001 CalabròFCorbo EspositoAManticaGRadiceTRefinable functions, functionals, and iterated function systemsAppl. Math. Comput.20162721992073418124 ChuiCWavelets: A Mathematical Tool for Signal Analysis1997PhiladelphiaSIAM10.1137/1.97808987197270903.94007 GautschiWOrthogonal Polynomials: Computation and Approximation2004OxfordClarendon Press1130.42300 MastroianniGMilovanovićGVInterpolation Processes: Basic Theory and Applications2008BerlinSpringer Monographs in Mathematics, Springer-Verlag10.1007/978-3-540-68349-01154.41001 GautschiWAlgorithm 726: ORTHPOL—a package of routines for generating orthogonal polynomials and Gauss-type quadrature rulesACM Trans. Math. Softw.199420216210.1145/174603.1746050888.65013 ChuiCAn Introduction to Wavelets1992BostonAcademic Press0925.42016 ManticaGA stable Stieltjes technique for computing orthogonal polynomials and Jacobi matrices associated with a class of singular measuresConstr. Approx.199612509530141219710.1007/BF024375060878.42014 LaurieDDe VilliersJOrthogonal polynomials for refinable linear functionalsMath. Comput.20067518911903224064010.1090/S0025-5718-06-01855-21107.65130 Feller, W.: An Introduction to Probability Theory and Its Applications, vol. I. Wiley, New York (1950) CalabròFCorbo EspositoAAn efficient and reliable quadrature algorithm for integration with respect to binomial measuresBIT Numer. Math.200848473491244798110.1007/s10543-008-0168-x1155.65022 GautschiWOrthogonal Polynomials in Matlab: Exercises and Solutions, Software–Environments–Tools2016Philadelphia, PASIAM06589760 Milovanović, G. V.: Chapter 11: Orthogonal polynomials on the real line. In: Brezinski, C., Sameh, A. (eds.) Walter Gautschi: Selected Works and Commentaries, vol. 2, pp 3–16, Birkhäuser, Basel (2014) GautschiWGoriLPitolliFGauss quadrature for refinable weight functionsAppl. Comput. Harmon. Anal.200083249257175492610.1006/acha.1999.03060954.65018 ArakawaTIbukiyamaTKanekoMBernoulli Numbers and Zeta Functions. Springer Monographs in Mathematics2014TokyoSpringer1312.11015 CalabròFManniCPitolliFComputation of quadrature rules for integration with respect to refinable functions on assigned nodesAppl. Numer. Math.201590168189330090110.1016/j.apnum.2014.11.0101326.65032 PhillipsJLHansonRJGauss quadrature rules with B-spline weight functionsMath. Comp.197418Rewiew 2866634355110.2307/2005948[Loose microfiche suppl. A1–C4] GautschiWOn generating orthogonal polynomialsSIAM J. Sci. Statist. Comput.1982328931766782910.1137/09030180482.65011 MilovanovićGVCvetkovićASSpecial classes of orthogonal polynomials and corresponding quadratures of Gaussian typeMath. Balkanica20122616918429770321272.33013 G Mantica (256_CR16) 1996; 12 AS Cvetković (256_CR7) 2004; 9 256_CR18 W Gautschi (256_CR9) 2000; 8 E Neuman (256_CR21) 1981; 7 F Calabrò (256_CR4) 2016; 272 C Chui (256_CR6) 1997 GV Milovanović (256_CR20) 2010; 23 F Calabrò (256_CR3) 2015; 90 256_CR8 W Gautschi (256_CR10) 1982; 3 F Calabrò (256_CR2) 2008; 48 T Arakawa (256_CR1) 2014 G Golub (256_CR15) 1969; 23 GV Milovanović (256_CR19) 2012; 26 W Gautschi (256_CR12) 2004 BC Rennie (256_CR23) 1969; 7 D Laurie (256_CR14) 2006; 75 JL Phillips (256_CR22) 1974; 18 G Mastroianni (256_CR17) 2008 C Chui (256_CR5) 1992 W Gautschi (256_CR11) 1994; 20 W Gautschi (256_CR13) 2016 |
| References_xml | – reference: MastroianniGMilovanovićGVInterpolation Processes: Basic Theory and Applications2008BerlinSpringer Monographs in Mathematics, Springer-Verlag10.1007/978-3-540-68349-01154.41001 – reference: GautschiWAlgorithm 726: ORTHPOL—a package of routines for generating orthogonal polynomials and Gauss-type quadrature rulesACM Trans. Math. Softw.199420216210.1145/174603.1746050888.65013 – reference: GautschiWOn generating orthogonal polynomialsSIAM J. Sci. Statist. Comput.1982328931766782910.1137/09030180482.65011 – reference: MilovanovićGVUdovičićZCalculation of coefficients of a cardinal B–splineAppl. Math. Lett.20102313461350271850910.1016/j.aml.2010.06.0291197.65021 – reference: RennieBCDobsonAJOn Stirling numbers of the second kindJ. Comb. Theory1969711612124131010.1016/S0021-9800(69)80045-10174.04002 – reference: ChuiCAn Introduction to Wavelets1992BostonAcademic Press0925.42016 – reference: Milovanović, G. V.: Chapter 11: Orthogonal polynomials on the real line. In: Brezinski, C., Sameh, A. (eds.) Walter Gautschi: Selected Works and Commentaries, vol. 2, pp 3–16, Birkhäuser, Basel (2014) – reference: CalabròFCorbo EspositoAAn efficient and reliable quadrature algorithm for integration with respect to binomial measuresBIT Numer. Math.200848473491244798110.1007/s10543-008-0168-x1155.65022 – reference: MilovanovićGVCvetkovićASSpecial classes of orthogonal polynomials and corresponding quadratures of Gaussian typeMath. Balkanica20122616918429770321272.33013 – reference: CvetkovićASMilovanovićGVThe Mathematica package “OrthogonalPolynomials”Facta Univ. Ser. Math. Inform.20049173621227521081.33001 – reference: LaurieDDe VilliersJOrthogonal polynomials for refinable linear functionalsMath. Comput.20067518911903224064010.1090/S0025-5718-06-01855-21107.65130 – reference: GolubGWelschJHCalculation of Gauss quadrature rulesMath. Comp.19692322123024520110.1090/S0025-5718-69-99647-10179.21901 – reference: ArakawaTIbukiyamaTKanekoMBernoulli Numbers and Zeta Functions. Springer Monographs in Mathematics2014TokyoSpringer1312.11015 – reference: CalabròFCorbo EspositoAManticaGRadiceTRefinable functions, functionals, and iterated function systemsAppl. Math. Comput.20162721992073418124 – reference: ManticaGA stable Stieltjes technique for computing orthogonal polynomials and Jacobi matrices associated with a class of singular measuresConstr. Approx.199612509530141219710.1007/BF024375060878.42014 – reference: PhillipsJLHansonRJGauss quadrature rules with B-spline weight functionsMath. Comp.197418Rewiew 2866634355110.2307/2005948[Loose microfiche suppl. A1–C4] – reference: GautschiWGoriLPitolliFGauss quadrature for refinable weight functionsAppl. Comput. Harmon. Anal.200083249257175492610.1006/acha.1999.03060954.65018 – reference: NeumanEMoments and Fourier transform of B-splinesJ. Comput. Appl. Math.19817516261195110.1016/0771-050X(81)90008-50452.42006 – reference: CalabròFManniCPitolliFComputation of quadrature rules for integration with respect to refinable functions on assigned nodesAppl. Numer. Math.201590168189330090110.1016/j.apnum.2014.11.0101326.65032 – reference: GautschiWOrthogonal Polynomials: Computation and Approximation2004OxfordClarendon Press1130.42300 – reference: GautschiWOrthogonal Polynomials in Matlab: Exercises and Solutions, Software–Environments–Tools2016Philadelphia, PASIAM06589760 – reference: ChuiCWavelets: A Mathematical Tool for Signal Analysis1997PhiladelphiaSIAM10.1137/1.97808987197270903.94007 – reference: Feller, W.: An Introduction to Probability Theory and Its Applications, vol. I. Wiley, New York (1950) – volume-title: Wavelets: A Mathematical Tool for Signal Analysis year: 1997 ident: 256_CR6 doi: 10.1137/1.9780898719727 – volume: 7 start-page: 51 year: 1981 ident: 256_CR21 publication-title: J. Comput. Appl. Math. doi: 10.1016/0771-050X(81)90008-5 – volume-title: Bernoulli Numbers and Zeta Functions. Springer Monographs in Mathematics year: 2014 ident: 256_CR1 doi: 10.1007/978-4-431-54919-2 – volume: 272 start-page: 199 year: 2016 ident: 256_CR4 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2015.06.006 – volume: 18 start-page: 666 issue: Rewiew 28 year: 1974 ident: 256_CR22 publication-title: Math. Comp. doi: 10.2307/2005948 – volume: 7 start-page: 116 year: 1969 ident: 256_CR23 publication-title: J. Comb. Theory doi: 10.1016/S0021-9800(69)80045-1 – volume-title: An Introduction to Wavelets year: 1992 ident: 256_CR5 – volume: 23 start-page: 221 year: 1969 ident: 256_CR15 publication-title: Math. Comp. doi: 10.1090/S0025-5718-69-99647-1 – volume: 90 start-page: 168 year: 2015 ident: 256_CR3 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2014.11.010 – volume-title: Orthogonal Polynomials: Computation and Approximation year: 2004 ident: 256_CR12 doi: 10.1093/oso/9780198506720.001.0001 – volume: 20 start-page: 21 year: 1994 ident: 256_CR11 publication-title: ACM Trans. Math. Softw. doi: 10.1145/174603.174605 – ident: 256_CR18 doi: 10.1007/978-1-4614-7049-6_1 – volume: 26 start-page: 169 year: 2012 ident: 256_CR19 publication-title: Math. Balkanica – volume-title: Interpolation Processes: Basic Theory and Applications year: 2008 ident: 256_CR17 doi: 10.1007/978-3-540-68349-0 – ident: 256_CR8 – volume: 9 start-page: 17 year: 2004 ident: 256_CR7 publication-title: Facta Univ. Ser. Math. Inform. – volume: 48 start-page: 473 year: 2008 ident: 256_CR2 publication-title: BIT Numer. Math. doi: 10.1007/s10543-008-0168-x – volume-title: Orthogonal Polynomials in Matlab: Exercises and Solutions, Software–Environments–Tools year: 2016 ident: 256_CR13 doi: 10.1137/1.9781611974300 – volume: 75 start-page: 1891 year: 2006 ident: 256_CR14 publication-title: Math. Comput. doi: 10.1090/S0025-5718-06-01855-2 – volume: 3 start-page: 289 year: 1982 ident: 256_CR10 publication-title: SIAM J. Sci. Statist. Comput. doi: 10.1137/0903018 – volume: 12 start-page: 509 year: 1996 ident: 256_CR16 publication-title: Constr. Approx. doi: 10.1007/BF02437506 – volume: 8 start-page: 249 issue: 3 year: 2000 ident: 256_CR9 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1006/acha.1999.0306 – volume: 23 start-page: 1346 year: 2010 ident: 256_CR20 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2010.06.029 |
| SSID | ssj0010027 |
| Score | 2.1179087 |
| Snippet | The first 60 coefficients in the three-term recurrence relation for monic polynomials orthogonal with respect to cardinal
B
-splines
φ
m
as the weight... The first 60 coefficients in the three-term recurrence relation for monic polynomials orthogonal with respect to cardinal B-splines φm as the weight functions... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 333 |
| SubjectTerms | Algebra Algorithms Approximation B spline functions Computer Science Eigenvalues Nodes Numeric Computing Numerical Analysis Original Paper Polynomials Quadratures Theory of Computation Weighting functions |
| SummonAdditionalLinks | – databaseName: Springer Nature - Connect here FIRST to enable access dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAH3-L6IgdPSmHbpm1yVPFx0EVYlb2VvCqCtmp3lb35H_yH_hIz2XYXRQW9lTRJS2aSftOZ-QZgR0sLu4WKPM25xhJmwmORij0_sQNaVAdh5qqWnCXtNut2-UWVx13W0e61S9Kd1ONkN2upYKAZBs1GsTeYhKkIyWbQRO9cj1wHaGg5F6c9fi28YbUr87spPn-Mxgjzi1PUfWuO5__1lgswV0FLsj_UhUWYMPkSzFcwk1SbuLRNdSWHum0JZs9H7K3lMrx0BvcS-YLfX9_yvnPpEOXGODGSIiPo7SluEMWTh-JugLnNVo-JyDU5Ef0SMzPJY1_oIWNzSfB3L7EXmNdJegWxTyMKlRNnOPBKzAs2K3B1fHR5eOpVBRo8FfpxzzM6YhlnOmQqwvqESciooMKCBp0YzX1JKZdIKK-jOKMipNLiy5gx6bdklGUqXIVGXuRmDYiWCTLjGy0sHjUskbFhAc2oUVxSGQdNaNWSSlXFXo5FNO7SMe8yrnyKEWu48umgCbujIQ9D6o7fOm_W4k-rXVymAbf2Lw-SxG_CXi3u8e0fJ1v_U-8NmAmcsmKE4CY0ek99swXT6rl3Wz5tO-X-AHhi96E priority: 102 providerName: Springer Nature |
| Title | Symbolic–numeric computation of orthogonal polynomials and Gaussian quadratures with respect to the cardinal B-spline |
| URI | https://link.springer.com/article/10.1007/s11075-016-0256-y https://www.proquest.com/docview/2918492771 |
| Volume | 76 |
| WOSCitedRecordID | wos000411622000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010027 issn: 1017-1398 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB31gwM9tFBA3basfOBUZLFJnNg-obZqQSqsqm5BvUX-CkIqybbZbbU3_gP_kF9Sj9fZFUj0wiWKlNiJNGP72TPzHsAbqz3sVianVkqLEmaKitwUNOG-wYDZNKuCasknPhyKqyt5Hg_c2phW2c2JYaK2jcEz8nep9HsRmXKevB_fUFSNwuhqlNBYhXVkKvN-vn50Mjy_WMQRcNcV4p1-LvZYR3RxzVA853c-mLiGSbh5QWd_rkxLuPlXhDQsPKdb__vLz2AzQk5yOPeR57Di6m3YivCTxMHdbsPG5wWFa_sC7kezHxpJg3___FVPQ1yHmCABEWxJmopgyKf5hlCejJvrGRY4e2cmqrbkg5q2WJ5JbqbKzmmbW4JnvsTfYHEnmTTEf40Y9FDs4Yi2WBzsXsKX05PL4480qjRQkyXFhDqbi0oKmwmTo0ghzwRTTHnkYLmzMtGMSY2s8jYvKqYypj3ILITQyUDnVWWyV7BWN7XbAWI1R3p8Z5UHpU5wXTiRsoo5IzXTRdqDQWeh0kQKc1TSuC6X5Mto1BLT1tCo5awHB4sm4zl_x2Mv73eGLONQbsulFXvwtnOF5eN_drb7eGd78DQNXol5gfuwNrmdutfwxNxNvre3_ejHfVg947SPCakjf70YfX0Aq0f_eQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fT9RAEJ_gYaI8gCLGQ9B90BfNhmu7bXcfjOGvEI4LUUx4K_uvxgTbg95J-uZ34Hv4ofgk7Oy1d9FE3njwrUm706T9zezMzsxvAN4Y5dxuqWNqhDA4wkxSHuuEBqlb0GMmjHI_taSfDgb89FQcz8HvthcGyypbm-gNtSk1npFvhMLFIiJM0-Dj8ILi1CjMrrYjNCawOLT1lQvZqg8HO-7_vg3Dvd2T7X3aTBWgOgqSEbUm5rngJuI6xqF6acSZZNLtdCa1RgSKMaGQBd3ESc5kxJRzihLOVdBTcZ7ryMl9APMsYkncgfmt3cHx52neAqM8n191tt_5VrzNo_pmPRdpYaEcFv3GCa3_3Aln7u1fGVm_0e0t_W-f6AksNi412ZzowFOYs8UyLDXuNWmMV7UMC0dTitrqGVx9qX8oJEW--XVdjH3eimg_4sJjlZQ5wZRW-Q1DFTIsz2ts4HbKSmRhyCc5rrD9lFyMpZnQUlcEz7SJu8DmVTIqiXsb0aiBKGGLVtj8bFfg6718jOfQKcrCvgBiVIr0_9ZI53RbnqrE8pDlzGqhmErCLvRaRGS6oWjHSSHn2YxcGkGUYVkegiiru_BuumQ44Se56-G1FjhZY6qqbIaaLrxvoTe7_U9hq3cLew2P9k-O-ln_YHD4Eh6HXiOwBnINOqPLsV2Hh_rn6Ht1-arRIQJn943JW3lFV7E |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT9swFL1iZZrYA2UMtEIZftgTU0STOIn9yFcZoqsQbBNvkb-CkLqkaxJQ3_gP_EN-Cb5p0mrTNmnaW-TYTmRfx8c5954L8EFLC7uFChzNucYUZsJhgQodN7INelR7flJlLRlEwyG7vuYXdZ7TvPF2byjJWUwDqjSlxf5YJ_uLwDd7akGnM3SgDUJn-gKWqS1Cn67Lq29zGgEPXRXdaT_FFuqwhtb8XRc_b0wLtPkLQVrtO_32f7_xGqzWkJMczGzkDSyZdB3aNfwk9eLObVGT4aEpW4fXn-eqrvlbuL-afpeoI_z08JiWFdVDVNWmml6SJQRZoOwG0T0ZZ6Mpxjxb-yYi1eRUlDlGbJIfpdAzJeec4G9gYi8w3pMUGbFPIwqNFns4dHKMFzYb8LV_8uXok1MnbnCU74aFY3TAEs60z1SAeQsjn1FBhQUTOjKau5JSLlFoXgdhQoVPpcWdIWPS7ckgSZS_Ca00S807IFpGqJhvtLA41bBIhoZ5NKFGcUll6HWg18xarGpVc0yuMYoXesw48jF6suHIx9MO7M2bjGeSHn-r3G1MIa5Xdx573J6LuRdFbgc-NlO_uP3Hzrb-qfYuvLo47seDs-H5Nqx4lQ2jE2EXWsWkNDvwUt0Vt_nkfWXzz9PxA3g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Symbolic%E2%80%93numeric+computation+of+orthogonal+polynomials+and+Gaussian+quadratures+with+respect+to+the+cardinal+B-spline&rft.jtitle=Numerical+algorithms&rft.au=Milovanovi%C4%87%2C+Gradimir+V&rft.date=2017-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=76&rft.issue=2&rft.spage=333&rft.epage=347&rft_id=info:doi/10.1007%2Fs11075-016-0256-y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon |