Incremental Deterministic Public-Key Encryption

Motivated by applications in large storage systems, we initiate the study of incremental deterministic public-key encryption. Deterministic public-key encryption, introduced by Bellare, Boldyreva, and O’Neill (CRYPTO ’07), provides an alternative to randomized public-key encryption in various scenar...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cryptology Vol. 31; no. 1; pp. 134 - 161
Main Authors: Mironov, Ilya, Pandey, Omkant, Reingold, Omer, Segev, Gil
Format: Journal Article
Language:English
Published: New York Springer US 01.01.2018
Springer Nature B.V
Subjects:
ISSN:0933-2790, 1432-1378
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Motivated by applications in large storage systems, we initiate the study of incremental deterministic public-key encryption. Deterministic public-key encryption, introduced by Bellare, Boldyreva, and O’Neill (CRYPTO ’07), provides an alternative to randomized public-key encryption in various scenarios where the latter exhibits inherent drawbacks. A deterministic encryption algorithm, however, cannot satisfy any meaningful notion of security for low-entropy plaintexts distributions, but Bellare et al. demonstrated that a strong notion of security can in fact be realized for relatively high-entropy plaintext distributions. In order to achieve a meaningful level of security, a deterministic encryption algorithm should be typically used for encrypting rather long plaintexts for ensuring a sufficient amount of entropy. This requirement may be at odds with efficiency constraints, such as communication complexity and computation complexity in the presence of small updates. Thus, a highly desirable property of deterministic encryption algorithms is incrementality: Small changes in the plaintext translate into small changes in the corresponding ciphertext. We present a framework for modeling the incrementality of deterministic public-key encryption. Our framework extends the study of the incrementality of cryptography primitives initiated by Bellare, Goldreich and Goldwasser (CRYPTO ’94). Within our framework, we propose two schemes, which we prove to enjoy an optimal tradeoff between their security and incrementality up to lower-order factors. Our first scheme is a generic method which can be based on any deterministic public-key encryption scheme, and, in particular, can be instantiated with any semantically secure (randomized) public-key encryption scheme in the random-oracle model. Our second scheme is based on the Decisional Diffie–Hellman assumption in the standard model. The approach underpinning our schemes is inspired by the fundamental “sample-then-extract” technique due to Nisan and Zuckerman (JCSS ’96) and refined by Vadhan (J. Cryptology ’04), and by the closely related notion of “locally computable extractors” due to Vadhan. Most notably, whereas Vadhan used such extractors to construct private-key encryption schemes in the bounded-storage model, we show that techniques along these lines can also be used to construct incremental public-key encryption schemes.
AbstractList Motivated by applications in large storage systems, we initiate the study of incremental deterministic public-key encryption. Deterministic public-key encryption, introduced by Bellare, Boldyreva, and O’Neill (CRYPTO ’07), provides an alternative to randomized public-key encryption in various scenarios where the latter exhibits inherent drawbacks. A deterministic encryption algorithm, however, cannot satisfy any meaningful notion of security for low-entropy plaintexts distributions, but Bellare et al. demonstrated that a strong notion of security can in fact be realized for relatively high-entropy plaintext distributions. In order to achieve a meaningful level of security, a deterministic encryption algorithm should be typically used for encrypting rather long plaintexts for ensuring a sufficient amount of entropy. This requirement may be at odds with efficiency constraints, such as communication complexity and computation complexity in the presence of small updates. Thus, a highly desirable property of deterministic encryption algorithms is incrementality: Small changes in the plaintext translate into small changes in the corresponding ciphertext. We present a framework for modeling the incrementality of deterministic public-key encryption. Our framework extends the study of the incrementality of cryptography primitives initiated by Bellare, Goldreich and Goldwasser (CRYPTO ’94). Within our framework, we propose two schemes, which we prove to enjoy an optimal tradeoff between their security and incrementality up to lower-order factors. Our first scheme is a generic method which can be based on any deterministic public-key encryption scheme, and, in particular, can be instantiated with any semantically secure (randomized) public-key encryption scheme in the random-oracle model. Our second scheme is based on the Decisional Diffie–Hellman assumption in the standard model. The approach underpinning our schemes is inspired by the fundamental “sample-then-extract” technique due to Nisan and Zuckerman (JCSS ’96) and refined by Vadhan (J. Cryptology ’04), and by the closely related notion of “locally computable extractors” due to Vadhan. Most notably, whereas Vadhan used such extractors to construct private-key encryption schemes in the bounded-storage model, we show that techniques along these lines can also be used to construct incremental public-key encryption schemes.
Motivated by applications in large storage systems, we initiate the study of incremental deterministic public-key encryption. Deterministic public-key encryption, introduced by Bellare, Boldyreva, and O’Neill (CRYPTO ’07), provides an alternative to randomized public-key encryption in various scenarios where the latter exhibits inherent drawbacks. A deterministic encryption algorithm, however, cannot satisfy any meaningful notion of security for low-entropy plaintexts distributions, but Bellare et al. demonstrated that a strong notion of security can in fact be realized for relatively high-entropy plaintext distributions. In order to achieve a meaningful level of security, a deterministic encryption algorithm should be typically used for encrypting rather long plaintexts for ensuring a sufficient amount of entropy. This requirement may be at odds with efficiency constraints, such as communication complexity and computation complexity in the presence of small updates. Thus, a highly desirable property of deterministic encryption algorithms is incrementality: Small changes in the plaintext translate into small changes in the corresponding ciphertext. We present a framework for modeling the incrementality of deterministic public-key encryption. Our framework extends the study of the incrementality of cryptography primitives initiated by Bellare, Goldreich and Goldwasser (CRYPTO ’94). Within our framework, we propose two schemes, which we prove to enjoy an optimal tradeoff between their security and incrementality up to lower-order factors. Our first scheme is a generic method which can be based on any deterministic public-key encryption scheme, and, in particular, can be instantiated with any semantically secure (randomized) public-key encryption scheme in the random-oracle model. Our second scheme is based on the Decisional Diffie–Hellman assumption in the standard model. The approach underpinning our schemes is inspired by the fundamental “sample-then-extract” technique due to Nisan and Zuckerman (JCSS ’96) and refined by Vadhan (J. Cryptology ’04), and by the closely related notion of “locally computable extractors” due to Vadhan. Most notably, whereas Vadhan used such extractors to construct private-key encryption schemes in the bounded-storage model, we show that techniques along these lines can also be used to construct incremental public-key encryption schemes.
Author Mironov, Ilya
Pandey, Omkant
Reingold, Omer
Segev, Gil
Author_xml – sequence: 1
  givenname: Ilya
  surname: Mironov
  fullname: Mironov, Ilya
  organization: Google
– sequence: 2
  givenname: Omkant
  surname: Pandey
  fullname: Pandey, Omkant
  organization: Stony Brook University
– sequence: 3
  givenname: Omer
  surname: Reingold
  fullname: Reingold, Omer
  organization: Stanford University
– sequence: 4
  givenname: Gil
  surname: Segev
  fullname: Segev, Gil
  email: segev@cs.huji.ac.il
  organization: School of Computer Science and Engineering, Hebrew University of Jerusalem
BookMark eNp9UE1LAzEQDVLBtvoDvBU8x2aSzWZzlFq1WNCDnkOazUrKNluT7KH_3izrQQQ9zTC8N-9jhia-8xahayC3QIhYRkKg4JiAwJJyiuEMTaFgeWGimqApkYxhKiS5QLMY9xktuGBTtNx4E-zB-qTbxb1NNhycdzE5s3jtd60z-NmeFusMOh2T6_wlOm90G-3V95yj94f12-oJb18eN6u7LTYMyoTtThe6lLo2WZ_VYETJIUs2xa6gdQFcW6pZQy1hLN9NTeqKG6JLLpmREtgc3Yx_j6H77G1Mat_1wWdJBbIqRFXR7H-OYESZ0MUYbKOOwR10OCkgauhFjb2oHFcNvajhs_jFMS7pIVsK2rX_MunIjFnFf9jww9OfpC89c3di
CitedBy_id crossref_primary_10_1016_j_tcs_2021_06_014
crossref_primary_10_1016_j_future_2020_07_039
crossref_primary_10_1109_ACCESS_2019_2898717
crossref_primary_10_1109_ACCESS_2020_2994007
crossref_primary_10_1515_libri_2018_0148
crossref_primary_10_1109_ACCESS_2019_2891075
Cites_doi 10.1006/jcss.1996.0004
10.1007/978-3-540-74143-5_30
10.1137/080733954
10.1007/3-540-69053-0_13
10.1007/978-3-540-85174-5_19
10.1007/978-3-540-85174-5_20
10.1007/3-540-69053-0_27
10.1137/060651380
10.1137/100813464
10.1007/978-3-642-40041-4_21
10.1145/225058.225080
10.1007/3-540-45473-X_9
10.1145/258533.258638
10.1007/978-3-642-28914-9_33
10.1016/0022-0000(84)90070-9
10.1007/978-3-540-85174-5_7
10.1109/SFCS.1997.646132
10.1007/978-3-642-38348-9_6
10.1109/ICDCS.2002.1022312
10.1137/S0097539793244708
10.1007/s00145-003-0237-x
10.1007/s00145-011-9112-3
10.1137/S0097539705446950
10.1007/978-3-642-38348-9_18
10.1109/TIT.2005.864438
10.1007/978-3-642-22792-9_31
10.1007/978-3-642-29011-4_16
10.1007/978-3-642-10366-7_14
10.1007/3-540-48658-5_22
10.1007/978-3-540-30576-7_30
ContentType Journal Article
Copyright International Association for Cryptologic Research 2017
International Association for Cryptologic Research 2017.
Copyright_xml – notice: International Association for Cryptologic Research 2017
– notice: International Association for Cryptologic Research 2017.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00145-017-9252-1
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Education
Computer Science
EISSN 1432-1378
EndPage 161
ExternalDocumentID 10_1007_s00145_017_9252_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
28-
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EIS
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8M
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c316t-eba4a69adc1373d1c7651175f4b42d415ae2a3f2e033117cd0d85c0a6593c9913
IEDL.DBID RSV
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000419451900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0933-2790
IngestDate Thu Sep 18 00:00:11 EDT 2025
Sat Nov 29 07:49:51 EST 2025
Tue Nov 18 22:18:18 EST 2025
Fri Feb 21 02:32:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Public-key encryption
Deterministic encryption
Incremental cryptography
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-eba4a69adc1373d1c7651175f4b42d415ae2a3f2e033117cd0d85c0a6593c9913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://dx.doi.org/10.1007/s00145-017-9252-1
PQID 1984788257
PQPubID 2043756
PageCount 28
ParticipantIDs proquest_journals_1984788257
crossref_primary_10_1007_s00145_017_9252_1
crossref_citationtrail_10_1007_s00145_017_9252_1
springer_journals_10_1007_s00145_017_9252_1
PublicationCentury 2000
PublicationDate 20180100
2018-1-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 1
  year: 2018
  text: 20180100
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of cryptology
PublicationTitleAbbrev J Cryptol
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References GoldwasserSMicaliSProbabilistic encryptionJournal of Computer and System Sciences198428227029976054810.1016/0022-0000(84)90070-90563.94013
D. Micciancio. Oblivious data structures: applications to cryptography. In Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, pp. 456–464, 1997.
RussellAWangHHow to fool an unbounded adversary with a short keyIEEE Transactions on Information Theory200652311301140223807510.1109/TIT.2005.8644381317.94133
PeikertCWatersBLossy trapdoor functions and their applicationsSIAM Journal on Computing201140618031844286319510.1137/0807339541236.94063
VadhanSPConstructing locally computable extractors and cryptosystems in the bounded-storage modelJounal of Cryptology20041714377204284510.1007/s00145-003-0237-x1071.94016
M. Fischlin. Lower bounds for the signature size of incremental schemes. In Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer Science, pp. 438–447, 1997.
NisanNZuckermanDRandomness is linear in spaceJournal of Computer and System Sciences19965214352137580310.1006/jcss.1996.00040846.68041
A. Boldyreva, S. Fehr, and A. O’Neill. On notions of security for deterministic encryption, and efficient constructions without random oracles. In Advances in Cryptology—CRYPTO ’08, pp. 335–359, 2008.
M. Bellare and D. Micciancio. A new paradigm for collision-free hashing: Incrementality at reduced cost. In Advances in Cryptology—EUROCRYPT ’97, pp. 163–192, 1997.
DodisYOstrovskyRReyzinLSmithAFuzzy extractors: how to generate strong keys from biometrics and other noisy dataSIAM Journal on Computing200838197139239952110.1137/0606513801165.94326
ApplebaumBIshaiYKushilevitzECryptography in NC0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{NC}^{{0}}$$\end{document}SIAM Journal on Computing2006364845888227226710.1137/S00975397054469501126.94014
Y. Dodis and A. Smith. Entropic security and the encryption of high entropy messages. In Proceedings of the 2nd Theory of Cryptography Conference, pp. 556–577, 2005.
J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer. Reclaiming space from duplicate files in a serverless distributed file system. In Proceedings of the 22nd International Conference on Distributed Computing Systems, pp. 617–624, 2002.
B. Fuller, A. O’Neill, and L. Reyzin. A unified approach to deterministic encryption: new constructions and a connection to computational entropy. In Proceedings of the 9th Theory of Cryptography Conference, pp. 582–599, 2012.
HåstadJImpagliazzoRLevinLALubyMA pseudorandom generator from any one-way functionSIAM Journal on Computing199928413641396168108510.1137/S00975397932447080940.68048
H. Wee. Dual projective hashing and its applications—lossy trapdoor functions and more. In Advances in Cryptology—EUROCRYPT ’12, pp. 246–262, 2012.
M. Bellare, M. Fischlin, A. O’Neill, and T. Ristenpart. Deterministic encryption: definitional equivalences and constructions without random oracles. In Advances in Cryptology—CRYPTO ’08, pp. 360–378, 2008.
D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure encryption from Decision Diffie–Hellman. In Advances in Cryptology—CRYPTO ’08, pp. 108–125, 2008.
A. Raghunathan, G. Segev, and S. Vadhan. Deterministic public-key encryption for adaptively chosen plaintext distributions. In Advances in Crytology—EUROCRYPT ’13, pp. 93–110, 2013.
M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-locked encryption and secure deduplication. In Advances in Cryptology—EUROCRYPT ’13, pp. 296–312, 2013.
FreemanDMGoldreichOKiltzERosenASegevGMore constructions of lossy and correlation-secure trapdoor functionsJournal of Cryptology20132613974301682210.1007/s00145-011-9112-31291.94083
NaorMSegevGPublic-key cryptosystems resilient to key leakageSIAM Journal on Computing2012414772814297475310.1137/1008134641273.94355
M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptography: the case of hashing and signing. In Advances in Cryptology—CRYPTO ’94, pp. 216–233, 1994.
Z. Brakerski and G. Segev. Better security for deterministic public-key encryption: The auxiliary-input setting. In Advances in Cryptology—CRYPTO ’11, pp. 543–560, 2011.
M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and G. Segev. Message-locked encryption for lock-dependent messages. In Advances in Cryptology—RYPTO ’13, pp. 374–391, 2013.
M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H. Shacham, and S. Yilek. Hedged public-key encryption: how to protect against bad randomness. In Advances in Cryptology—ASIACRYPT ’09, pp. 232–249, 2009.
M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptography and application to virus protection. In Proceedings of the 27th Annual ACM Symposium on Theory of Computing, pp. 45–56, 1995.
M. Fischlin. Incremental cryptography and memory checkers. In Advances in Cryptology—EUROCRYPT ’97, pp. 293–408, 1997.
M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable encryption. In Advances in Cryptology—CRYPTO ’07, pp. 535–552, 2007.
E. Buonanno, J. Katz, and M. Yung. Incremental unforgeable encryption. In Proceedings of the 8th International Workshop on Fast Software Encryption, pp. 109–124, 2001.
B Applebaum (9252_CR2) 2006; 36
9252_CR19
SP Vadhan (9252_CR29) 2004; 17
N Nisan (9252_CR25) 1996; 52
9252_CR27
DM Freeman (9252_CR17) 2013; 26
9252_CR23
9252_CR8
9252_CR20
9252_CR9
9252_CR1
9252_CR3
9252_CR4
9252_CR5
9252_CR6
9252_CR7
Y Dodis (9252_CR15) 2008; 38
A Russell (9252_CR28) 2006; 52
C Peikert (9252_CR26) 2011; 40
M Naor (9252_CR24) 2012; 41
9252_CR18
9252_CR16
9252_CR13
9252_CR14
9252_CR11
9252_CR12
9252_CR10
S Goldwasser (9252_CR21) 1984; 28
J Håstad (9252_CR22) 1999; 28
9252_CR30
References_xml – reference: ApplebaumBIshaiYKushilevitzECryptography in NC0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{NC}^{{0}}$$\end{document}SIAM Journal on Computing2006364845888227226710.1137/S00975397054469501126.94014
– reference: H. Wee. Dual projective hashing and its applications—lossy trapdoor functions and more. In Advances in Cryptology—EUROCRYPT ’12, pp. 246–262, 2012.
– reference: M. Fischlin. Lower bounds for the signature size of incremental schemes. In Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer Science, pp. 438–447, 1997.
– reference: A. Raghunathan, G. Segev, and S. Vadhan. Deterministic public-key encryption for adaptively chosen plaintext distributions. In Advances in Crytology—EUROCRYPT ’13, pp. 93–110, 2013.
– reference: J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer. Reclaiming space from duplicate files in a serverless distributed file system. In Proceedings of the 22nd International Conference on Distributed Computing Systems, pp. 617–624, 2002.
– reference: B. Fuller, A. O’Neill, and L. Reyzin. A unified approach to deterministic encryption: new constructions and a connection to computational entropy. In Proceedings of the 9th Theory of Cryptography Conference, pp. 582–599, 2012.
– reference: M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptography and application to virus protection. In Proceedings of the 27th Annual ACM Symposium on Theory of Computing, pp. 45–56, 1995.
– reference: FreemanDMGoldreichOKiltzERosenASegevGMore constructions of lossy and correlation-secure trapdoor functionsJournal of Cryptology20132613974301682210.1007/s00145-011-9112-31291.94083
– reference: D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure encryption from Decision Diffie–Hellman. In Advances in Cryptology—CRYPTO ’08, pp. 108–125, 2008.
– reference: M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-locked encryption and secure deduplication. In Advances in Cryptology—EUROCRYPT ’13, pp. 296–312, 2013.
– reference: DodisYOstrovskyRReyzinLSmithAFuzzy extractors: how to generate strong keys from biometrics and other noisy dataSIAM Journal on Computing200838197139239952110.1137/0606513801165.94326
– reference: PeikertCWatersBLossy trapdoor functions and their applicationsSIAM Journal on Computing201140618031844286319510.1137/0807339541236.94063
– reference: M. Bellare, M. Fischlin, A. O’Neill, and T. Ristenpart. Deterministic encryption: definitional equivalences and constructions without random oracles. In Advances in Cryptology—CRYPTO ’08, pp. 360–378, 2008.
– reference: M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable encryption. In Advances in Cryptology—CRYPTO ’07, pp. 535–552, 2007.
– reference: E. Buonanno, J. Katz, and M. Yung. Incremental unforgeable encryption. In Proceedings of the 8th International Workshop on Fast Software Encryption, pp. 109–124, 2001.
– reference: M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptography: the case of hashing and signing. In Advances in Cryptology—CRYPTO ’94, pp. 216–233, 1994.
– reference: M. Bellare and D. Micciancio. A new paradigm for collision-free hashing: Incrementality at reduced cost. In Advances in Cryptology—EUROCRYPT ’97, pp. 163–192, 1997.
– reference: Y. Dodis and A. Smith. Entropic security and the encryption of high entropy messages. In Proceedings of the 2nd Theory of Cryptography Conference, pp. 556–577, 2005.
– reference: GoldwasserSMicaliSProbabilistic encryptionJournal of Computer and System Sciences198428227029976054810.1016/0022-0000(84)90070-90563.94013
– reference: VadhanSPConstructing locally computable extractors and cryptosystems in the bounded-storage modelJounal of Cryptology20041714377204284510.1007/s00145-003-0237-x1071.94016
– reference: A. Boldyreva, S. Fehr, and A. O’Neill. On notions of security for deterministic encryption, and efficient constructions without random oracles. In Advances in Cryptology—CRYPTO ’08, pp. 335–359, 2008.
– reference: Z. Brakerski and G. Segev. Better security for deterministic public-key encryption: The auxiliary-input setting. In Advances in Cryptology—CRYPTO ’11, pp. 543–560, 2011.
– reference: RussellAWangHHow to fool an unbounded adversary with a short keyIEEE Transactions on Information Theory200652311301140223807510.1109/TIT.2005.8644381317.94133
– reference: M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H. Shacham, and S. Yilek. Hedged public-key encryption: how to protect against bad randomness. In Advances in Cryptology—ASIACRYPT ’09, pp. 232–249, 2009.
– reference: M. Fischlin. Incremental cryptography and memory checkers. In Advances in Cryptology—EUROCRYPT ’97, pp. 293–408, 1997.
– reference: M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and G. Segev. Message-locked encryption for lock-dependent messages. In Advances in Cryptology—RYPTO ’13, pp. 374–391, 2013.
– reference: D. Micciancio. Oblivious data structures: applications to cryptography. In Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, pp. 456–464, 1997.
– reference: HåstadJImpagliazzoRLevinLALubyMA pseudorandom generator from any one-way functionSIAM Journal on Computing199928413641396168108510.1137/S00975397932447080940.68048
– reference: NaorMSegevGPublic-key cryptosystems resilient to key leakageSIAM Journal on Computing2012414772814297475310.1137/1008134641273.94355
– reference: NisanNZuckermanDRandomness is linear in spaceJournal of Computer and System Sciences19965214352137580310.1006/jcss.1996.00040846.68041
– volume: 52
  start-page: 43
  issue: 1
  year: 1996
  ident: 9252_CR25
  publication-title: Journal of Computer and System Sciences
  doi: 10.1006/jcss.1996.0004
– ident: 9252_CR4
  doi: 10.1007/978-3-540-74143-5_30
– volume: 40
  start-page: 1803
  issue: 6
  year: 2011
  ident: 9252_CR26
  publication-title: SIAM Journal on Computing
  doi: 10.1137/080733954
– ident: 9252_CR12
  doi: 10.1007/3-540-69053-0_13
– ident: 9252_CR6
  doi: 10.1007/978-3-540-85174-5_19
– ident: 9252_CR5
  doi: 10.1007/978-3-540-85174-5_20
– ident: 9252_CR18
  doi: 10.1007/3-540-69053-0_27
– volume: 38
  start-page: 97
  issue: 1
  year: 2008
  ident: 9252_CR15
  publication-title: SIAM Journal on Computing
  doi: 10.1137/060651380
– volume: 41
  start-page: 772
  issue: 4
  year: 2012
  ident: 9252_CR24
  publication-title: SIAM Journal on Computing
  doi: 10.1137/100813464
– ident: 9252_CR1
  doi: 10.1007/978-3-642-40041-4_21
– ident: 9252_CR8
  doi: 10.1145/225058.225080
– ident: 9252_CR11
  doi: 10.1007/3-540-45473-X_9
– ident: 9252_CR23
  doi: 10.1145/258533.258638
– ident: 9252_CR20
  doi: 10.1007/978-3-642-28914-9_33
– volume: 28
  start-page: 270
  issue: 2
  year: 1984
  ident: 9252_CR21
  publication-title: Journal of Computer and System Sciences
  doi: 10.1016/0022-0000(84)90070-9
– ident: 9252_CR9
  doi: 10.1007/978-3-540-85174-5_7
– ident: 9252_CR19
  doi: 10.1109/SFCS.1997.646132
– ident: 9252_CR27
  doi: 10.1007/978-3-642-38348-9_6
– ident: 9252_CR14
  doi: 10.1109/ICDCS.2002.1022312
– volume: 28
  start-page: 1364
  issue: 4
  year: 1999
  ident: 9252_CR22
  publication-title: SIAM Journal on Computing
  doi: 10.1137/S0097539793244708
– volume: 17
  start-page: 43
  issue: 1
  year: 2004
  ident: 9252_CR29
  publication-title: Jounal of Cryptology
  doi: 10.1007/s00145-003-0237-x
– volume: 26
  start-page: 39
  issue: 1
  year: 2013
  ident: 9252_CR17
  publication-title: Journal of Cryptology
  doi: 10.1007/s00145-011-9112-3
– volume: 36
  start-page: 845
  issue: 4
  year: 2006
  ident: 9252_CR2
  publication-title: SIAM Journal on Computing
  doi: 10.1137/S0097539705446950
– ident: 9252_CR10
  doi: 10.1007/978-3-642-38348-9_18
– volume: 52
  start-page: 1130
  issue: 3
  year: 2006
  ident: 9252_CR28
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2005.864438
– ident: 9252_CR13
  doi: 10.1007/978-3-642-22792-9_31
– ident: 9252_CR30
  doi: 10.1007/978-3-642-29011-4_16
– ident: 9252_CR3
  doi: 10.1007/978-3-642-10366-7_14
– ident: 9252_CR7
  doi: 10.1007/3-540-48658-5_22
– ident: 9252_CR16
  doi: 10.1007/978-3-540-30576-7_30
SSID ssj0017573
Score 2.2362912
Snippet Motivated by applications in large storage systems, we initiate the study of incremental deterministic public-key encryption. Deterministic public-key...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 134
SubjectTerms Algorithms
Coding and Information Theory
Combinatorics
Communications Engineering
Complexity
Computational Mathematics and Numerical Analysis
Computer Science
Cryptography
Data encryption
Encryption
Entropy
Extractors
Networks
Probability Theory and Stochastic Processes
Public Key Infrastructure
Randomization
Security
Storage systems
Title Incremental Deterministic Public-Key Encryption
URI https://link.springer.com/article/10.1007/s00145-017-9252-1
https://www.proquest.com/docview/1984788257
Volume 31
WOSCitedRecordID wos000419451900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-1378
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017573
  issn: 0933-2790
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5k9eDF1VVxdZUePCnBJmmb5ii6iyAs4ou9hTRJQZBVdquw_94kTesDFfTaPGgnyczXmcl8AIc64cyiBIwwLQxKFNbI4mSKilg7KvjEoRBPNsHG43wy4VfhHve8yXZvQpJeU7eX3Ryad4lmDHGSEmR_eZattcsdX8P1zX0bOmBpHVbmjqSM8TaU-d0Un43RO8L8EhT1tmbU_ddbrsNagJbRab0XNmDJTHvQbWgbonCKe46oOSR1bMKJ1Q-1h9COPA-pMb52c1Q79NClWURD22nhdcsW3I2Gt2cXKHAoIEVxViFTyERmXGqFKaMaK5alrjpnmRQJ0dZ6S0MkLYmJKbXPlY51nqpYZimnymJHug2d6dPU7EAkc65TXhJFTJlgU-ZM00Kmyn6nLojifYgbYQoVCow7notH0ZZG9sIRVjjCCUfgPhy1Q57r6hq_dR40KyTCQZsLzHNHAGAVTx-OmxX50PzTZLt_6r0HqxYo5bXrZQCdavZi9mFFvVYP89mB339vOsXRfg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9EBX1xOhWnU_vgkxJsPro2j6Ibk80hOmVvIU1SEGTKNoX99yZtWj9QQV-bD9pLcvfr3eV-AEea8diiBIwwTQ1iCmtkcTJFaagdFTxzKCQnm4gHg2Q04tf-Hve0zHYvQ5K5pq4uuzk07xLNYsRJRJD95Vli1mC5gvk3t_dV6CCOirAydyRlMa9Cmd9N8dkYvSPML0HR3NZ0av96y3VY89AyOCv2wgYsmHEdaiVtQ-BPcd0RNfukjk04tfqh8BDakRc-NSav3RwUDj3UM_OgbTvNc92yBXed9vC8izyHAlIUt2bIpJLJFpdaYRpTjVXcilx1zoyljGhrvaUhkmbEhJTa50qHOolUKFsRp8piR7oNi-OnsdmBQCZcRzwjipiMYZMlsaapjJT9Tp0SxRsQlsIUyhcYdzwXj6IqjZwLR1jhCCccgRtwXA15Lqpr_Na5Wa6Q8AdtKjBPHAGAVTwNOClX5EPzT5Pt_qn3Iax0h1d90b8c9PZg1YKmpHDDNGFxNnkx-7CsXmcP08lBvhffABYc1GI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yRXxxOhWnU_vgkxLWfHRpHsVtKJMx8IO9hTRJQZA6tirsvzdp0_qBCuJrm4T2ktz9cne5HwCnmnJmUQKCiCQGUoU0tDiZwCTUjgqeOhRSkE2w8TieTvnE85wuqmz3KiRZ3mlwVZqyvDvTabe--OaQvUs6Y5DjCEN7_FmlLo_eHddvH-owAovKEDN3hGWM12HN74b4bJje0eaXAGlhd4bNf3_xFtj0kDO4KNfINlgxWQs0KzqHwO_uliNw9skeO6Br9UbpObQ9-z5lpqjpHJSOPjgyy2BgGy0LnbML7oeDu8sr6LkVoCKol0OTSCp7XGqFCCMaKdaLXNXOlCYUa2vVpcGSpNiEhNjnSoc6jlQoexEnymJKsgca2XNm9kEgY64jnmKFTUqRSWOmSSIjZf9TJ1jxNggrwQrlC487_osnUZdMLoQjrHCEE45AbXBWd5mVVTd-a9ypZkv4DbgQiMeOGMAqpDY4r2bnw-ufBjv4U-sTsD7pD8XN9Xh0CDYslopL70wHNPL5izkCa-o1f1zMj4tl-QZ1u91G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incremental+Deterministic+Public-Key+Encryption&rft.jtitle=Journal+of+cryptology&rft.au=Mironov%2C+Ilya&rft.au=Pandey%2C+Omkant&rft.au=Reingold%2C+Omer&rft.au=Segev%2C+Gil&rft.date=2018-01-01&rft.pub=Springer+US&rft.issn=0933-2790&rft.eissn=1432-1378&rft.volume=31&rft.issue=1&rft.spage=134&rft.epage=161&rft_id=info:doi/10.1007%2Fs00145-017-9252-1&rft.externalDocID=10_1007_s00145_017_9252_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-2790&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-2790&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-2790&client=summon