Computational algorithm for solving singular Fredholm time-fractional partial integrodifferential equations with error estimates

In this article, we propose and analyze an efficient computational algorithm for the numerical solutions of singular Fredholm time-fractional partial integrodifferential equations subject to Dirichlet functions type. The algorithm provide appropriate representation of the solutions in infinite serie...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of applied mathematics & computing Ročník 59; číslo 1-2; s. 227 - 243
Hlavní autor: Abu Arqub, Omar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 15.02.2019
Springer Nature B.V
Témata:
ISSN:1598-5865, 1865-2085
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article, we propose and analyze an efficient computational algorithm for the numerical solutions of singular Fredholm time-fractional partial integrodifferential equations subject to Dirichlet functions type. The algorithm provide appropriate representation of the solutions in infinite series formula with accurately computable structures. By interrupting the n -term of exact solutions, numerical solutions of linear and nonlinear time-fractional equations of nonhomogeneous function type are studied from mathematical viewpoint. Convergence analysis, error estimations, and error bounds under some hypotheses which provide the theoretical basis of the proposed algorithm are also discussed. The dynamical properties of these numerical solutions are discussed and the profiles of several representative numerical solutions are illustrated. Finally, the utilized results show that the present algorithm and simulated annealing provide a good scheduling methodology to such integrodifferential equations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1598-5865
1865-2085
DOI:10.1007/s12190-018-1176-x