Computational algorithm for solving singular Fredholm time-fractional partial integrodifferential equations with error estimates

In this article, we propose and analyze an efficient computational algorithm for the numerical solutions of singular Fredholm time-fractional partial integrodifferential equations subject to Dirichlet functions type. The algorithm provide appropriate representation of the solutions in infinite serie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics & computing Jg. 59; H. 1-2; S. 227 - 243
1. Verfasser: Abu Arqub, Omar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 15.02.2019
Springer Nature B.V
Schlagworte:
ISSN:1598-5865, 1865-2085
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this article, we propose and analyze an efficient computational algorithm for the numerical solutions of singular Fredholm time-fractional partial integrodifferential equations subject to Dirichlet functions type. The algorithm provide appropriate representation of the solutions in infinite series formula with accurately computable structures. By interrupting the n -term of exact solutions, numerical solutions of linear and nonlinear time-fractional equations of nonhomogeneous function type are studied from mathematical viewpoint. Convergence analysis, error estimations, and error bounds under some hypotheses which provide the theoretical basis of the proposed algorithm are also discussed. The dynamical properties of these numerical solutions are discussed and the profiles of several representative numerical solutions are illustrated. Finally, the utilized results show that the present algorithm and simulated annealing provide a good scheduling methodology to such integrodifferential equations.
AbstractList In this article, we propose and analyze an efficient computational algorithm for the numerical solutions of singular Fredholm time-fractional partial integrodifferential equations subject to Dirichlet functions type. The algorithm provide appropriate representation of the solutions in infinite series formula with accurately computable structures. By interrupting the n-term of exact solutions, numerical solutions of linear and nonlinear time-fractional equations of nonhomogeneous function type are studied from mathematical viewpoint. Convergence analysis, error estimations, and error bounds under some hypotheses which provide the theoretical basis of the proposed algorithm are also discussed. The dynamical properties of these numerical solutions are discussed and the profiles of several representative numerical solutions are illustrated. Finally, the utilized results show that the present algorithm and simulated annealing provide a good scheduling methodology to such integrodifferential equations.
In this article, we propose and analyze an efficient computational algorithm for the numerical solutions of singular Fredholm time-fractional partial integrodifferential equations subject to Dirichlet functions type. The algorithm provide appropriate representation of the solutions in infinite series formula with accurately computable structures. By interrupting the n -term of exact solutions, numerical solutions of linear and nonlinear time-fractional equations of nonhomogeneous function type are studied from mathematical viewpoint. Convergence analysis, error estimations, and error bounds under some hypotheses which provide the theoretical basis of the proposed algorithm are also discussed. The dynamical properties of these numerical solutions are discussed and the profiles of several representative numerical solutions are illustrated. Finally, the utilized results show that the present algorithm and simulated annealing provide a good scheduling methodology to such integrodifferential equations.
Author Abu Arqub, Omar
Author_xml – sequence: 1
  givenname: Omar
  orcidid: 0000-0001-9526-6095
  surname: Abu Arqub
  fullname: Abu Arqub, Omar
  email: o.abuarqub@bau.edu.jo
  organization: Department of Mathematics, Faculty of Science, Al-Balqa Applied University
BookMark eNp9UEtLAzEQDqLg8wd4W_AczaTd11GKVaHgRc8hzU7alO2mTrI-bv50025BEJRAJgzfK98pO-x8h4xdgrgGIcqbABJqwQVUHKAs-McBO4GqyLkUVX6Y3nld8TwtjtlpCCshirIW9Qn7mvj1po86Ot_pNtPtwpOLy3VmPWXBt2-uW2QhXX2rKZsSNkvfrrPo1sgtabPnbTRFl6brIi7IN85aJOx2O3ztd_Ihe0_KGRIlaQxJQkcM5-zI6jbgxX6esZfp3fPkgc-e7h8ntzNuRlBEjno-zwtsmlwaHJu5RCPMXBeItoBGSiPHdWnr9P8qBwE5VNZo0NBYjSXY8eiMXQ26G_KvfbJXK99Tyh6UTPhieyChYEAZ8iEQWrWhlJM-FQi1LVoNRatkpLZFq4_EKX9xjBsKjaRd-y9TDsyQXLoF0k-mv0nfKr2aOQ
CitedBy_id crossref_primary_10_1515_phys_2024_0094
crossref_primary_10_1007_s40435_025_01800_9
crossref_primary_10_1155_2024_9363509
crossref_primary_10_3390_fractalfract5040261
crossref_primary_10_1007_s11071_025_10869_y
crossref_primary_10_1016_j_amc_2021_126440
crossref_primary_10_1016_j_padiff_2025_101119
crossref_primary_10_1016_j_compeleceng_2021_107217
crossref_primary_10_1007_s11071_021_06920_3
crossref_primary_10_1016_j_matcom_2022_07_020
crossref_primary_10_1177_16878140211034392
crossref_primary_10_1007_s11071_021_06524_x
crossref_primary_10_1016_j_apnum_2021_06_009
crossref_primary_10_1016_j_ins_2022_02_034
crossref_primary_10_1016_j_enganabound_2025_106119
crossref_primary_10_1142_S0218127425501457
crossref_primary_10_3389_fams_2022_912674
crossref_primary_10_1007_s40819_021_01169_1
crossref_primary_10_1080_00207721_2025_2490623
crossref_primary_10_1371_journal_pone_0302520
crossref_primary_10_1016_j_chaos_2022_111985
crossref_primary_10_1002_jnm_70061
crossref_primary_10_1016_j_chaos_2021_111127
crossref_primary_10_1142_S0218348X25500318
crossref_primary_10_1016_j_apnum_2021_10_008
crossref_primary_10_1177_16878140221074301
crossref_primary_10_1016_j_eswa_2022_117843
crossref_primary_10_1088_1402_4896_ac0867
crossref_primary_10_1007_s10092_018_0274_3
crossref_primary_10_1007_s10237_022_01600_6
crossref_primary_10_1016_j_chaos_2019_109478
crossref_primary_10_1007_s12190_024_02343_6
crossref_primary_10_1007_s40819_022_01386_2
crossref_primary_10_1155_2024_6066821
crossref_primary_10_1007_s12190_024_02144_x
crossref_primary_10_1016_j_sciaf_2023_e01874
crossref_primary_10_1016_j_enganabound_2022_06_019
crossref_primary_10_1140_epjs_s11734_023_00910_9
crossref_primary_10_1016_j_enganabound_2022_09_035
crossref_primary_10_1155_2024_5924082
crossref_primary_10_1016_j_egyr_2021_08_028
crossref_primary_10_1007_s40819_021_01237_6
crossref_primary_10_1016_j_jtice_2021_03_042
crossref_primary_10_1016_j_ins_2021_04_101
crossref_primary_10_1002_mma_7305
crossref_primary_10_1002_mma_7825
crossref_primary_10_1016_j_chaos_2024_114723
crossref_primary_10_1615_JPorMedia_2022039740
crossref_primary_10_1186_s43088_022_00282_4
crossref_primary_10_1016_j_enganabound_2021_08_023
crossref_primary_10_1016_j_physa_2019_123494
crossref_primary_10_1007_s11082_022_03617_8
crossref_primary_10_1007_s12591_024_00697_8
crossref_primary_10_1016_j_egyr_2021_10_106
crossref_primary_10_1007_s11071_021_06593_y
crossref_primary_10_1007_s12190_021_01681_z
crossref_primary_10_1016_j_enganabound_2024_105973
crossref_primary_10_1016_j_enganabound_2024_106026
crossref_primary_10_1016_j_chaos_2022_112291
crossref_primary_10_1007_s12190_024_02233_x
crossref_primary_10_1177_16878140211070937
crossref_primary_10_1007_s12190_022_01750_x
crossref_primary_10_1007_s40435_025_01602_z
crossref_primary_10_1080_10407790_2024_2353794
crossref_primary_10_1080_19942060_2021_1990134
crossref_primary_10_1016_j_enganabound_2021_06_023
Cites_doi 10.1007/s00500-015-1707-4
10.1016/S0165-1684(03)00181-6
10.1007/s00521-016-2484-4
10.1016/j.amc.2014.04.057
10.1007/s00521-017-2845-7
10.1016/j.aml.2013.05.006
10.1007/s00009-017-0904-z
10.1002/num.22153
10.1016/j.camwa.2006.02.011
10.1007/s00500-016-2262-3
10.1007/s00521-015-2110-x
10.1016/j.cam.2013.04.040
10.1002/num.22209
10.1016/j.camwa.2016.11.032
10.1016/j.amc.2013.03.123
10.1016/j.aml.2011.10.025
10.1090/S0002-9947-1950-0051437-7
10.1002/num.21809
10.1155/2014/162896
10.1186/s13662-017-1085-6
10.1016/j.jcp.2014.08.004
10.1002/num.22236
10.1142/p614
10.1002/mma.3884
10.1016/j.amc.2014.12.121
10.1016/j.camwa.2016.01.001
10.1016/j.amc.2015.11.057
10.1016/j.amc.2013.03.006
10.1016/j.jcp.2014.09.034
10.1016/j.camwa.2011.03.037
10.1155/2014/431965
10.1016/j.amc.2014.06.063
10.1016/j.apm.2015.01.021
10.1016/j.cam.2009.01.012
10.1016/j.aml.2005.10.010
10.1108/HFF-07-2016-0278
10.1007/978-1-4419-9096-9
ContentType Journal Article
Copyright Korean Society for Computational and Applied Mathematics 2018
Journal of Applied Mathematics and Computing is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Korean Society for Computational and Applied Mathematics 2018
– notice: Journal of Applied Mathematics and Computing is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AL
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s12190-018-1176-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1865-2085
EndPage 243
ExternalDocumentID 10_1007_s12190_018_1176_x
GroupedDBID -52
-5D
-5G
-BR
-EM
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29J
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
3V.
4.4
406
408
40D
40E
5VS
6NX
7WY
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BENPR
BEZIV
BGNMA
BPHCQ
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IZQ
I~X
J-C
J0Z
JBSCW
JZLTJ
K60
K6~
K7-
KOV
LLZTM
M0C
M2O
M2P
M4Y
MA-
N9A
NF0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
P19
P9R
PF0
PROAC
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
-Y2
2.D
2VQ
88I
8FE
8FG
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABQSL
ABRTQ
ABUWG
ACBXY
ACSTC
ADHKG
ADKPE
AEBTG
AEZWR
AFDZB
AFFHD
AFGCZ
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ARAPS
ATHPR
AYFIA
AZQEC
BDATZ
BGLVJ
CAG
CCPQU
CITATION
COF
DWQXO
FINBP
FRNLG
FSGXE
GNUQQ
H13
K6V
L6V
M7S
N2Q
NDZJH
O9-
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PTHSS
RHV
S1Z
S26
S28
SCLPG
T16
ZWQNP
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
M0N
MBDVC
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c316t-eabb56edd52ce4cb2ec0cba6eef61d22c2497f901885101518fca1a1dfae71f43
IEDL.DBID RSV
ISICitedReferencesCount 117
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000463773000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1598-5865
IngestDate Wed Sep 17 23:57:32 EDT 2025
Tue Nov 18 20:24:46 EST 2025
Sat Nov 29 06:16:18 EST 2025
Fri Feb 21 02:37:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Fredholm operator
Reproducing kernel algorithm
Fractional calculus theory
Singular partial integrodifferential equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-eabb56edd52ce4cb2ec0cba6eef61d22c2497f901885101518fca1a1dfae71f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9526-6095
PQID 2015656561
PQPubID 54415
PageCount 17
ParticipantIDs proquest_journals_2015656561
crossref_primary_10_1007_s12190_018_1176_x
crossref_citationtrail_10_1007_s12190_018_1176_x
springer_journals_10_1007_s12190_018_1176_x
PublicationCentury 2000
PublicationDate 20190215
PublicationDateYYYYMMDD 2019-02-15
PublicationDate_xml – month: 2
  year: 2019
  text: 20190215
  day: 15
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Journal of applied mathematics & computing
PublicationTitleAbbrev J. Appl. Math. Comput
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References GengFZQianSPModified reproducing kernel method for singularly perturbed boundary value problems with a delayAppl. Math. Model.20153955925597337609210.1016/j.apm.2015.01.021
MomaniSQarallehRAn efficient method for solving systems of fractional integro-differential equationsComput. Math Appl.200652459470226351410.1016/j.camwa.2006.02.0111137.65072
YangLHLinYReproducing kernel methods for solving linear initial-boundary-value problemsElectron. J. Differ. Equ.2008200811123833921137.35328
AronszajnNTheory of reproducing kernelsTrans. Am. Math. Soc.1950683374045143710.1090/S0002-9947-1950-0051437-70037.20701
Abu ArqubOFitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditionsComput. Math Appl.20177312431261362311910.1016/j.camwa.2016.11.03207034630
DanielAReproducing Kernel Spaces and Applications2003BaselSpringer1021.00005
Abu ArqubOApproximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithmFund. Inf.201614623125435811191373.65051
GengFZQianSPLiSA numerical method for singularly perturbed turning point problems with an interior layerJ. Comput. Appl. Math.201425597105309340710.1016/j.cam.2013.04.0401291.65231
WeinertHLReproducing Kernel Hilbert Spaces: Applications in Statistical Signal Processing1982StroudsburgHutchinson Ross
Abu ArqubOAl-SmadiMShawagfehNSolving Fredholm integro-differential equations using reproducing kernel Hilbert space methodAppl. Math. Comput.20132198938894830477901288.65181
Tohidi, E., Ezadkhah, M.M., Shateyi, S.: Numerical solution of nonlinear fractional Volterra integro-differential equations via Bernoulli polynomials. Abstr. Appl. Anal. vol. 2014, Article ID 162896, 7 pages (2014). https://doi.org/10.1155/2014/162896
RostamiYMaleknejadKNumerical solution of partial integro-differential equations by using projection methodMediterr. J. Math.201714113363337310.1007/s00009-017-0904-z1376.65160
Abu ArqubOThe reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equationsMath. Methods Appl. Sci.20163945494562354941310.1002/mma.38841355.65106
Abu Arqub, O., Shawagfeh, N.: Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media. J. Porous Media (2017, In press)
WangYZhuLSolving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet methodAdv. Differ. Equ.2017201727360095310.1186/s13662-017-1085-606988610
El-AjouAAbu ArqubOMomaniSBaleanuDAlsaediAA novel expansion iterative method for solving linear partial differential equations of fractional orderAppl. Math. Comput.201525711913333206531339.65201
HuangLLiXFZhaoYDuanXYApproximate solution of fractional integro-differential equations by Taylor expansion methodComput. Math Appl.20116211271134282470110.1016/j.camwa.2011.03.0371228.65133
ZaslavskyGMHamiltonian Chaos and Fractional Dynamics2005OxfordOxford University Press1083.37002
Abu ArqubOAl-SmadiMNumerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditionsNumer. Methods Part. Differ. Equ.201707023971
Abu ArqubONumerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithmInt. J. Numer. Methods Heat Fluid Flow201707034630
Abu ArqubOEl-AjouAMomaniSConstructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equationsJ. Comput. Phys.2015293385399334247810.1016/j.jcp.2014.09.0341349.35394
Abu ArqubORashaidehHThe RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPsNeural Comput. Appl.2017
Mohammed, D.S.: Numerical solution of fractional integro-differential equations by least squares method and shifted Chebyshev polynomial. Math. Problems Eng. vol. 2014, Article ID 431965, 5 pages (2014). https://doi.org/10.1155/2014/431965
Abu ArqubOAl-SmadiMMomaniSHayatTApplication of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problemsSoft Comput.2017217191720610.1007/s00500-016-2262-306847773
GengFZQianSPReproducing kernel method for singularly perturbed turning point problems having twin boundary layersAppl. Math. Lett.2013269981004307898310.1016/j.aml.2013.05.0061312.65121
MainardiFFractional Calculus and Waves in Linear Viscoelasticity2010LondonImperial College Press10.1142/p6141210.26004
JiangWChenZA collocation method based on reproducing kernel for a modified anomalous subdiffusion equationNumer. Methods Part. Differ. Equ.201430289300314941210.1002/num.218091285.65065
SamkoSGKilbasAAMarichevOIFractional Integrals and Derivatives Theory and Applications1993New YorkGordon and Breach0818.26003
RaySSNew exact solutions of nonlinear fractional acoustic wave equations in ultrasoundComput. Math Appl.201671859868345738310.1016/j.camwa.2016.01.0011359.35218
ArshedSB-spline solution of fractional integro partial differential equation with a weakly singular kernelNumer. Methods Part. Differ. Equ.20173315651581368352210.1002/num.221531376.65152
Abu Arqub, O.: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput. Appl. (2015) 1–20. https://doi.org/10.1007/s00521-015-2110-x
El-AjouAAbu ArqubOMomaniSApproximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithmJ. Comput. Phys.20152938195334245810.1016/j.jcp.2014.08.0041349.65546
OrtigueiraMDMachadoJATFractional signal processing and applicationsSignal Process2003832285228610.1016/S0165-1684(03)00181-6
WangYZhuLSCW method for solving the fractional integro-differential equations with a weakly singular kernelAppl. Math. Comput.20162757280343769007038400
CuiMLinYNonlinear Numerical Analysis in the Reproducing Kernel Space2009New YorkNova Science1165.65300
Abu ArqubOAl-SmadiMNumerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equationsAppl. Math. Comput.201424391192232445381337.65083
KilbasASrivastavaHTrujilloJTheory and Applications of Fractional Differential Equations2006AmsterdamElsevier1092.45003
ZhouaYCuiMLinYNumerical algorithm for parabolic problems with non-classical conditionsJ. Comput. Appl. Math.2009230770780253600610.1016/j.cam.2009.01.0121190.65136
GengFZCuiMA reproducing kernel method for solving nonlocal fractional boundary value problemsAppl. Math. Lett.201225818823288807910.1016/j.aml.2011.10.0251242.65144
ZarembaSL’equation biharminique et une class remarquable defonctionsfoundamentals harmoniquesBull. Int. l’Acad. Sci. Cracovie190739147196
Abu ArqubOAl-SmadiMMomaniSHayatTNumerical solutions of fuzzy differential equations using reproducing kernel Hilbert space methodSoft Comput.2016203283330210.1007/s00500-015-1707-41377.65079
Abu ArqubOMaayahBSolutions of Bagley-Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithmNeural Comput. Appl.2016
MomaniSAbu ArqubOHayatTAl-SulamiHA computational method for solving periodic boundary value problems for integro-differential equations of Fredholm–Voltera typeAppl. Math. Comput.201424022923932136871337.65091
BerlinetAAgnanCTReproducing Kernel Hilbert Space in Probability and Statistics2004BostonKluwer Academic Publishers10.1007/978-1-4419-9096-91145.62002
LinYCuiMYangLRepresentation of the exact solution for a kind of nonlinear partial differential equationsApplied Mathematics Letters200619808813223225910.1016/j.aml.2005.10.0101116.35309
AbuOArqub, Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert spaceNumer. Methods Part. Differ. Equ.2017
JiangWChenZSolving a system of linear Volterra integral equations using the new reproducing kernel methodAppl. Math. Comput.2013219102251023030567231293.65170
PodlubnyIFractional Differential Equations1999San DiegoAcademic Press0924.34008
F Mainardi (1176_CR1) 2010
1176_CR9
L Huang (1176_CR8) 2011; 62
1176_CR41
S Momani (1176_CR34) 2014; 240
O Abu Arqub (1176_CR28) 2017
O Abu Arqub (1176_CR35) 2016; 20
HL Weinert (1176_CR24) 1982
O Abu Arqub (1176_CR29) 2017; 73
O Abu Arqub (1176_CR33) 2014; 243
S Arshed (1176_CR6) 2017; 33
W Jiang (1176_CR44) 2014; 30
W Jiang (1176_CR47) 2013; 219
O Abu Arqub (1176_CR36) 2017; 21
O Abu Arqub (1176_CR38) 2016; 146
I Podlubny (1176_CR3) 1999
O Abu Arqub (1176_CR14) 2015; 293
A Berlinet (1176_CR22) 2004
FZ Geng (1176_CR45) 2014; 255
GM Zaslavsky (1176_CR2) 2005
M Cui (1176_CR21) 2009
FZ Geng (1176_CR46) 2012; 25
Y Wang (1176_CR13) 2016; 275
Y Wang (1176_CR12) 2017; 2017
FZ Geng (1176_CR48) 2015; 39
SS Ray (1176_CR17) 2016; 71
1176_CR11
S Zaremba (1176_CR19) 1907; 39
LH Yang (1176_CR27) 2008; 2008
N Aronszajn (1176_CR20) 1950; 68
O Abu Arqub (1176_CR30) 2017
O Abu Arqub (1176_CR39) 2016
O Abu Arqub (1176_CR40) 2017
MD Ortigueira (1176_CR18) 2003; 83
O Abu Arqub (1176_CR32) 2013; 219
Y Rostami (1176_CR7) 2017; 14
A El-Ajou (1176_CR16) 2015; 293
A Daniel (1176_CR23) 2003
O Abu Arqub (1176_CR31) 2016; 39
S Momani (1176_CR10) 2006; 52
Y Lin (1176_CR25) 2006; 19
Y Zhoua (1176_CR26) 2009; 230
FZ Geng (1176_CR43) 2013; 26
A El-Ajou (1176_CR15) 2015; 257
1176_CR37
A Kilbas (1176_CR5) 2006
O Abu (1176_CR42) 2017
SG Samko (1176_CR4) 1993
References_xml – reference: MomaniSQarallehRAn efficient method for solving systems of fractional integro-differential equationsComput. Math Appl.200652459470226351410.1016/j.camwa.2006.02.0111137.65072
– reference: Abu ArqubOApproximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithmFund. Inf.201614623125435811191373.65051
– reference: GengFZQianSPReproducing kernel method for singularly perturbed turning point problems having twin boundary layersAppl. Math. Lett.2013269981004307898310.1016/j.aml.2013.05.0061312.65121
– reference: WangYZhuLSCW method for solving the fractional integro-differential equations with a weakly singular kernelAppl. Math. Comput.20162757280343769007038400
– reference: Abu Arqub, O.: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput. Appl. (2015) 1–20. https://doi.org/10.1007/s00521-015-2110-x
– reference: PodlubnyIFractional Differential Equations1999San DiegoAcademic Press0924.34008
– reference: KilbasASrivastavaHTrujilloJTheory and Applications of Fractional Differential Equations2006AmsterdamElsevier1092.45003
– reference: Abu ArqubOAl-SmadiMNumerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equationsAppl. Math. Comput.201424391192232445381337.65083
– reference: CuiMLinYNonlinear Numerical Analysis in the Reproducing Kernel Space2009New YorkNova Science1165.65300
– reference: ZaslavskyGMHamiltonian Chaos and Fractional Dynamics2005OxfordOxford University Press1083.37002
– reference: MomaniSAbu ArqubOHayatTAl-SulamiHA computational method for solving periodic boundary value problems for integro-differential equations of Fredholm–Voltera typeAppl. Math. Comput.201424022923932136871337.65091
– reference: OrtigueiraMDMachadoJATFractional signal processing and applicationsSignal Process2003832285228610.1016/S0165-1684(03)00181-6
– reference: Abu ArqubOThe reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equationsMath. Methods Appl. Sci.20163945494562354941310.1002/mma.38841355.65106
– reference: Abu ArqubOFitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditionsComput. Math Appl.20177312431261362311910.1016/j.camwa.2016.11.03207034630
– reference: LinYCuiMYangLRepresentation of the exact solution for a kind of nonlinear partial differential equationsApplied Mathematics Letters200619808813223225910.1016/j.aml.2005.10.0101116.35309
– reference: RostamiYMaleknejadKNumerical solution of partial integro-differential equations by using projection methodMediterr. J. Math.201714113363337310.1007/s00009-017-0904-z1376.65160
– reference: El-AjouAAbu ArqubOMomaniSBaleanuDAlsaediAA novel expansion iterative method for solving linear partial differential equations of fractional orderAppl. Math. Comput.201525711913333206531339.65201
– reference: GengFZQianSPLiSA numerical method for singularly perturbed turning point problems with an interior layerJ. Comput. Appl. Math.201425597105309340710.1016/j.cam.2013.04.0401291.65231
– reference: Abu ArqubOAl-SmadiMShawagfehNSolving Fredholm integro-differential equations using reproducing kernel Hilbert space methodAppl. Math. Comput.20132198938894830477901288.65181
– reference: ZhouaYCuiMLinYNumerical algorithm for parabolic problems with non-classical conditionsJ. Comput. Appl. Math.2009230770780253600610.1016/j.cam.2009.01.0121190.65136
– reference: Abu ArqubOEl-AjouAMomaniSConstructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equationsJ. Comput. Phys.2015293385399334247810.1016/j.jcp.2014.09.0341349.35394
– reference: RaySSNew exact solutions of nonlinear fractional acoustic wave equations in ultrasoundComput. Math Appl.201671859868345738310.1016/j.camwa.2016.01.0011359.35218
– reference: HuangLLiXFZhaoYDuanXYApproximate solution of fractional integro-differential equations by Taylor expansion methodComput. Math Appl.20116211271134282470110.1016/j.camwa.2011.03.0371228.65133
– reference: Mohammed, D.S.: Numerical solution of fractional integro-differential equations by least squares method and shifted Chebyshev polynomial. Math. Problems Eng. vol. 2014, Article ID 431965, 5 pages (2014). https://doi.org/10.1155/2014/431965
– reference: WangYZhuLSolving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet methodAdv. Differ. Equ.2017201727360095310.1186/s13662-017-1085-606988610
– reference: Abu ArqubOAl-SmadiMMomaniSHayatTNumerical solutions of fuzzy differential equations using reproducing kernel Hilbert space methodSoft Comput.2016203283330210.1007/s00500-015-1707-41377.65079
– reference: DanielAReproducing Kernel Spaces and Applications2003BaselSpringer1021.00005
– reference: GengFZCuiMA reproducing kernel method for solving nonlocal fractional boundary value problemsAppl. Math. Lett.201225818823288807910.1016/j.aml.2011.10.0251242.65144
– reference: AronszajnNTheory of reproducing kernelsTrans. Am. Math. Soc.1950683374045143710.1090/S0002-9947-1950-0051437-70037.20701
– reference: JiangWChenZSolving a system of linear Volterra integral equations using the new reproducing kernel methodAppl. Math. Comput.2013219102251023030567231293.65170
– reference: ArshedSB-spline solution of fractional integro partial differential equation with a weakly singular kernelNumer. Methods Part. Differ. Equ.20173315651581368352210.1002/num.221531376.65152
– reference: Tohidi, E., Ezadkhah, M.M., Shateyi, S.: Numerical solution of nonlinear fractional Volterra integro-differential equations via Bernoulli polynomials. Abstr. Appl. Anal. vol. 2014, Article ID 162896, 7 pages (2014). https://doi.org/10.1155/2014/162896
– reference: GengFZQianSPModified reproducing kernel method for singularly perturbed boundary value problems with a delayAppl. Math. Model.20153955925597337609210.1016/j.apm.2015.01.021
– reference: YangLHLinYReproducing kernel methods for solving linear initial-boundary-value problemsElectron. J. Differ. Equ.2008200811123833921137.35328
– reference: AbuOArqub, Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert spaceNumer. Methods Part. Differ. Equ.2017
– reference: Abu ArqubOAl-SmadiMNumerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditionsNumer. Methods Part. Differ. Equ.201707023971
– reference: Abu Arqub, O., Shawagfeh, N.: Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media. J. Porous Media (2017, In press)
– reference: BerlinetAAgnanCTReproducing Kernel Hilbert Space in Probability and Statistics2004BostonKluwer Academic Publishers10.1007/978-1-4419-9096-91145.62002
– reference: Abu ArqubORashaidehHThe RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPsNeural Comput. Appl.2017
– reference: Abu ArqubOAl-SmadiMMomaniSHayatTApplication of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problemsSoft Comput.2017217191720610.1007/s00500-016-2262-306847773
– reference: JiangWChenZA collocation method based on reproducing kernel for a modified anomalous subdiffusion equationNumer. Methods Part. Differ. Equ.201430289300314941210.1002/num.218091285.65065
– reference: El-AjouAAbu ArqubOMomaniSApproximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithmJ. Comput. Phys.20152938195334245810.1016/j.jcp.2014.08.0041349.65546
– reference: Abu ArqubONumerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithmInt. J. Numer. Methods Heat Fluid Flow201707034630
– reference: SamkoSGKilbasAAMarichevOIFractional Integrals and Derivatives Theory and Applications1993New YorkGordon and Breach0818.26003
– reference: ZarembaSL’equation biharminique et une class remarquable defonctionsfoundamentals harmoniquesBull. Int. l’Acad. Sci. Cracovie190739147196
– reference: WeinertHLReproducing Kernel Hilbert Spaces: Applications in Statistical Signal Processing1982StroudsburgHutchinson Ross
– reference: Abu ArqubOMaayahBSolutions of Bagley-Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithmNeural Comput. Appl.2016
– reference: MainardiFFractional Calculus and Waves in Linear Viscoelasticity2010LondonImperial College Press10.1142/p6141210.26004
– volume: 20
  start-page: 3283
  year: 2016
  ident: 1176_CR35
  publication-title: Soft Comput.
  doi: 10.1007/s00500-015-1707-4
– volume-title: Nonlinear Numerical Analysis in the Reproducing Kernel Space
  year: 2009
  ident: 1176_CR21
– volume: 83
  start-page: 2285
  year: 2003
  ident: 1176_CR18
  publication-title: Signal Process
  doi: 10.1016/S0165-1684(03)00181-6
– year: 2016
  ident: 1176_CR39
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2484-4
– volume: 240
  start-page: 229
  year: 2014
  ident: 1176_CR34
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.04.057
– volume-title: Reproducing Kernel Spaces and Applications
  year: 2003
  ident: 1176_CR23
– year: 2017
  ident: 1176_CR30
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2845-7
– volume: 26
  start-page: 998
  year: 2013
  ident: 1176_CR43
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2013.05.006
– volume: 14
  start-page: 113
  year: 2017
  ident: 1176_CR7
  publication-title: Mediterr. J. Math.
  doi: 10.1007/s00009-017-0904-z
– volume: 33
  start-page: 1565
  year: 2017
  ident: 1176_CR6
  publication-title: Numer. Methods Part. Differ. Equ.
  doi: 10.1002/num.22153
– volume: 52
  start-page: 459
  year: 2006
  ident: 1176_CR10
  publication-title: Comput. Math Appl.
  doi: 10.1016/j.camwa.2006.02.011
– volume: 21
  start-page: 7191
  year: 2017
  ident: 1176_CR36
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2262-3
– ident: 1176_CR37
  doi: 10.1007/s00521-015-2110-x
– volume: 255
  start-page: 97
  year: 2014
  ident: 1176_CR45
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2013.04.040
– year: 2017
  ident: 1176_CR28
  publication-title: Numer. Methods Part. Differ. Equ.
  doi: 10.1002/num.22209
– volume: 73
  start-page: 1243
  year: 2017
  ident: 1176_CR29
  publication-title: Comput. Math Appl.
  doi: 10.1016/j.camwa.2016.11.032
– volume: 2008
  start-page: 1
  year: 2008
  ident: 1176_CR27
  publication-title: Electron. J. Differ. Equ.
– volume: 219
  start-page: 10225
  year: 2013
  ident: 1176_CR47
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2013.03.123
– volume: 25
  start-page: 818
  year: 2012
  ident: 1176_CR46
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2011.10.025
– volume-title: Theory and Applications of Fractional Differential Equations
  year: 2006
  ident: 1176_CR5
– volume: 39
  start-page: 147
  year: 1907
  ident: 1176_CR19
  publication-title: Bull. Int. l’Acad. Sci. Cracovie
– volume: 68
  start-page: 337
  year: 1950
  ident: 1176_CR20
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1950-0051437-7
– volume: 30
  start-page: 289
  year: 2014
  ident: 1176_CR44
  publication-title: Numer. Methods Part. Differ. Equ.
  doi: 10.1002/num.21809
– volume-title: Fractional Differential Equations
  year: 1999
  ident: 1176_CR3
– ident: 1176_CR11
  doi: 10.1155/2014/162896
– volume: 2017
  start-page: 27
  year: 2017
  ident: 1176_CR12
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-017-1085-6
– volume: 293
  start-page: 81
  year: 2015
  ident: 1176_CR16
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.08.004
– year: 2017
  ident: 1176_CR42
  publication-title: Numer. Methods Part. Differ. Equ.
  doi: 10.1002/num.22236
– volume-title: Fractional Calculus and Waves in Linear Viscoelasticity
  year: 2010
  ident: 1176_CR1
  doi: 10.1142/p614
– volume: 39
  start-page: 4549
  year: 2016
  ident: 1176_CR31
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.3884
– volume: 146
  start-page: 231
  year: 2016
  ident: 1176_CR38
  publication-title: Fund. Inf.
– volume: 257
  start-page: 119
  year: 2015
  ident: 1176_CR15
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.12.121
– volume: 71
  start-page: 859
  year: 2016
  ident: 1176_CR17
  publication-title: Comput. Math Appl.
  doi: 10.1016/j.camwa.2016.01.001
– volume-title: Reproducing Kernel Hilbert Spaces: Applications in Statistical Signal Processing
  year: 1982
  ident: 1176_CR24
– volume-title: Hamiltonian Chaos and Fractional Dynamics
  year: 2005
  ident: 1176_CR2
– volume: 275
  start-page: 72
  year: 2016
  ident: 1176_CR13
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.11.057
– volume: 219
  start-page: 8938
  year: 2013
  ident: 1176_CR32
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2013.03.006
– volume: 293
  start-page: 385
  year: 2015
  ident: 1176_CR14
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.09.034
– volume: 62
  start-page: 1127
  year: 2011
  ident: 1176_CR8
  publication-title: Comput. Math Appl.
  doi: 10.1016/j.camwa.2011.03.037
– volume-title: Fractional Integrals and Derivatives Theory and Applications
  year: 1993
  ident: 1176_CR4
– ident: 1176_CR9
  doi: 10.1155/2014/431965
– volume: 243
  start-page: 911
  year: 2014
  ident: 1176_CR33
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.06.063
– volume: 39
  start-page: 5592
  year: 2015
  ident: 1176_CR48
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2015.01.021
– volume: 230
  start-page: 770
  year: 2009
  ident: 1176_CR26
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2009.01.012
– volume: 19
  start-page: 808
  year: 2006
  ident: 1176_CR25
  publication-title: Applied Mathematics Letters
  doi: 10.1016/j.aml.2005.10.010
– year: 2017
  ident: 1176_CR40
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-07-2016-0278
– volume-title: Reproducing Kernel Hilbert Space in Probability and Statistics
  year: 2004
  ident: 1176_CR22
  doi: 10.1007/978-1-4419-9096-9
– ident: 1176_CR41
SSID ssj0067909
Score 2.4868224
Snippet In this article, we propose and analyze an efficient computational algorithm for the numerical solutions of singular Fredholm time-fractional partial...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 227
SubjectTerms Algorithms
Applied mathematics
Computational Mathematics and Numerical Analysis
Computer simulation
Dirichlet problem
Error analysis
Infinite series
Mathematical and Computational Engineering
Mathematics
Mathematics and Statistics
Mathematics of Computing
Nonlinear equations
Original Research
Simulated annealing
Theory of Computation
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-wwEA8-9aAHv8X1ixw8KYEm26TtSURcBHHx8B54K2ky8T3Q3bVdZY_-6c70w0VBL-9U-pUWZpL5zWRmfoydaIuoOERe2KBTEUuIRRYyJUKQNtZeq9j4mmwiGQ7T-_vsrg24VW1aZbcm1gu1HzuKkaOTLgl7oLk_nzwLYo2i3dWWQuMXW5JKSdLzm0R0K7FJsjrFAy02VRcZ3e1q1qVzioqoI4k-lEyMmH22S3Ow-WV_tDY7g_X__eENttYCTn7RaMgmW4DRFlu9_ejWWm2zt4baoQ0Lcvv4gONM_z5xBLQcdZNiDpxiCpSyygcleAqlcqKlF6FsKiPwvQlpIR6bDhTjjnqlvgbPTUvxilPgl0NZ4tDU4OOJsO4O-zO4-n15LVpmBuH60kwF2KLQBjzK0kHsCgUucoU1AMFIr5RDpy4JCDXSlOa8lmlwVlrpg4VEhri_yxZH4xHsMQ4KMY7TzhY2Je-riEPU9wDO9hHsKNdjUSeX3LVty4k94zGfN1wmUeb4MepcbvJZj51-vDJpenb89PBhJ768nb5VPpddj511CjC__e1g-z8PdsBW8CSjpG-pD9nitHyBI7bsXqf_qvK41t13ycv56g
  priority: 102
  providerName: ProQuest
Title Computational algorithm for solving singular Fredholm time-fractional partial integrodifferential equations with error estimates
URI https://link.springer.com/article/10.1007/s12190-018-1176-x
https://www.proquest.com/docview/2015656561
Volume 59
WOSCitedRecordID wos000463773000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1865-2085
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067909
  issn: 1598-5865
  databaseCode: RSV
  dateStart: 20020901
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB610EN7APpALNCVDz21shR7Yyc5UsQKqWK7gj5oL5HjjFsk2KXJgjj2pzOTB6tWLVKrSBPlYTvK2J7P43kAvDKOUHGISumCSWWsMJZZyLQMQbnYlEbHtmySTSSTSXp6mk07P-66t3bvtySbmXrp7KbZ7TlStOpRiZUEHFdJ2qU8Go9PPvXTr02yxq6DxDS7FFnTb2X-qYpfhdESYf62KdrImvH6f33lBqx10FLstX3hKTzA2TN4cnQXl7V-Dj_bJA6dAlC482_z6mzx_UIQdBXUC1m7IFh7wMapYlxhyUpTwQnoZahaHwgqd8n9jc5trIl5n2SluYc_2uDhtWAVr8Cqoqo5lMcFo9oX8HF88GH_UHY5GKQfKbuQ6IrCWCyJax5jX2j0kS-cRQxWlVp7Wr4lgUBFmvLoNioN3imnyuAwUSEebcLKbD7DLRCoCc14413hUl5nFXGIRiWidyOCNdoPIOqZkfsuQDnnyTjPl6GV-efm1BjHKLf5zQBe3xW5bKNz3Pfybs_hvBuoda7ZlZwPNYA3PUeXj_9a2fY_vb0Dj6mhjK29ldmFlUV1hS_hkb9enNXVEB4mn78MYfXtwWR6TFfvEkn0KNpnqt83dMo0OSE6NV-HTY-_BZjG-Js
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceKMuFPABLiBLsTfO44AQKqxatV1xKFJvwXHGpVL30SSFcuMX8RuZSeKuQKK3HjhFSuKJ5cyMvxnPA-ClsYSKfVRJ600mY4WxzH2upffKxqYyOk6qrtlEOp1mh4f5pzX4FXJhOKwy6MROUVcLxz5yMtIVYw_a7t8tTyV3jeLT1dBCo2eLXfzxnUy25u3OB_q_r7SefDzY2pZDVwHpxippJdqyNAlWNA-HsSs1usiVNkH0iaq0dmSQpJ62ySxjfjUq884qqypvMVU-HhPda3A9jkkcOFQw2gqaP0nzLqSEEAJnMyUmnKJ2qXqak7aJqlQqTeT5n_vgCtz-dR7bbXOTu__bAt2DOwOgFu97CbgPazh_ALf3L6rRNg_hZ9-6YnB7CntyRPNuv84EAXZBssc-FcE-Ew7JFZMaK3YVi_Z4htLXfeYHjVuylNG1r7CxCK1lunt42pdMbwQ7tgXWNZHmAiYzxvKP4POVLMFjWJ8v5rgBAjVhOGecLW3G1mUZ-2hcITo7JjCn3QiiwAeFG8qyc3eQk2JVUJpZp6CPcWX2pDgfweuLIcu-JsllL28GdikG9dQUK14ZwZvAcKvH_yT25HJiL-Dm9sH-XrG3M919CrfoQc4B7spswnpbn-EzuOG-tcdN_byTGwFfrpoPfwOVSlpW
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhCaU9JOmLbrNNdeipRawlW7J9DG1MQ9ploQ_2ZmRplC7sK7YTesxPj8aPXRraQik-GGxZMp6R9c1o5htC3kjtUbELLNNOJiziELHUpYI5x3UkrRSRsk2xiXg8TqbTdNLVOa36aPd-S7LNaUCWpmU9Wls32ia-CUyBDri3gHismAeRexHWDEJz_cv3_les4rSJ8fBLNqYXKdlva_6ui18Xpi3avLdB2qw72eF_v_EROeggJz1tdeQx2YHlE_Lo84avtXpKbtviDp1jkOr55aqc1T8W1ENa6rUTvQ4UvQoYtEqzEiw6UykWpmeubHMj_HNr1EN_bjkoVn3xleYaXLWk4hVF1y-FsvRdI8XHAtHuM_ItO_v6_iPrajMwE3JVM9BFIRVYL00DkSkEmMAUWgE4xa0Qxpt1sfNgI0lw1kueOKO55tZpiLmLwudkd7lawgtCQXiUY6TRhU7Q_ioiF4QWwOjQwx1hBiToBZObjrgc62fM8y3lMn7c3A-G3OUq_zkgbzePrFvWjr81HvbSzrsJXOUCU8zx4APyrpfu9vYfO3v5T61fkweTD1n-6Xx8cUwe-jFTDAjnckh26_IaXpF9c1PPqvKkUes718n8OQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+algorithm+for+solving+singular+Fredholm+time-fractional+partial+integrodifferential+equations+with+error+estimates&rft.jtitle=Journal+of+applied+mathematics+%26+computing&rft.au=Abu+Arqub%2C+Omar&rft.date=2019-02-15&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1598-5865&rft.eissn=1865-2085&rft.volume=59&rft.issue=1-2&rft.spage=227&rft.epage=243&rft_id=info:doi/10.1007%2Fs12190-018-1176-x&rft.externalDocID=10_1007_s12190_018_1176_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-5865&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-5865&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-5865&client=summon