Computational algorithm for solving singular Fredholm time-fractional partial integrodifferential equations with error estimates
In this article, we propose and analyze an efficient computational algorithm for the numerical solutions of singular Fredholm time-fractional partial integrodifferential equations subject to Dirichlet functions type. The algorithm provide appropriate representation of the solutions in infinite serie...
Uložené v:
| Vydané v: | Journal of applied mathematics & computing Ročník 59; číslo 1-2; s. 227 - 243 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
15.02.2019
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1598-5865, 1865-2085 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this article, we propose and analyze an efficient computational algorithm for the numerical solutions of singular Fredholm time-fractional partial integrodifferential equations subject to Dirichlet functions type. The algorithm provide appropriate representation of the solutions in infinite series formula with accurately computable structures. By interrupting the
n
-term of exact solutions, numerical solutions of linear and nonlinear time-fractional equations of nonhomogeneous function type are studied from mathematical viewpoint. Convergence analysis, error estimations, and error bounds under some hypotheses which provide the theoretical basis of the proposed algorithm are also discussed. The dynamical properties of these numerical solutions are discussed and the profiles of several representative numerical solutions are illustrated. Finally, the utilized results show that the present algorithm and simulated annealing provide a good scheduling methodology to such integrodifferential equations. |
|---|---|
| AbstractList | In this article, we propose and analyze an efficient computational algorithm for the numerical solutions of singular Fredholm time-fractional partial integrodifferential equations subject to Dirichlet functions type. The algorithm provide appropriate representation of the solutions in infinite series formula with accurately computable structures. By interrupting the n-term of exact solutions, numerical solutions of linear and nonlinear time-fractional equations of nonhomogeneous function type are studied from mathematical viewpoint. Convergence analysis, error estimations, and error bounds under some hypotheses which provide the theoretical basis of the proposed algorithm are also discussed. The dynamical properties of these numerical solutions are discussed and the profiles of several representative numerical solutions are illustrated. Finally, the utilized results show that the present algorithm and simulated annealing provide a good scheduling methodology to such integrodifferential equations. In this article, we propose and analyze an efficient computational algorithm for the numerical solutions of singular Fredholm time-fractional partial integrodifferential equations subject to Dirichlet functions type. The algorithm provide appropriate representation of the solutions in infinite series formula with accurately computable structures. By interrupting the n -term of exact solutions, numerical solutions of linear and nonlinear time-fractional equations of nonhomogeneous function type are studied from mathematical viewpoint. Convergence analysis, error estimations, and error bounds under some hypotheses which provide the theoretical basis of the proposed algorithm are also discussed. The dynamical properties of these numerical solutions are discussed and the profiles of several representative numerical solutions are illustrated. Finally, the utilized results show that the present algorithm and simulated annealing provide a good scheduling methodology to such integrodifferential equations. |
| Author | Abu Arqub, Omar |
| Author_xml | – sequence: 1 givenname: Omar orcidid: 0000-0001-9526-6095 surname: Abu Arqub fullname: Abu Arqub, Omar email: o.abuarqub@bau.edu.jo organization: Department of Mathematics, Faculty of Science, Al-Balqa Applied University |
| BookMark | eNp9UEtLAzEQDqLg8wd4W_AczaTd11GKVaHgRc8hzU7alO2mTrI-bv50025BEJRAJgzfK98pO-x8h4xdgrgGIcqbABJqwQVUHKAs-McBO4GqyLkUVX6Y3nld8TwtjtlpCCshirIW9Qn7mvj1po86Ot_pNtPtwpOLy3VmPWXBt2-uW2QhXX2rKZsSNkvfrrPo1sgtabPnbTRFl6brIi7IN85aJOx2O3ztd_Ihe0_KGRIlaQxJQkcM5-zI6jbgxX6esZfp3fPkgc-e7h8ntzNuRlBEjno-zwtsmlwaHJu5RCPMXBeItoBGSiPHdWnr9P8qBwE5VNZo0NBYjSXY8eiMXQ26G_KvfbJXK99Tyh6UTPhieyChYEAZ8iEQWrWhlJM-FQi1LVoNRatkpLZFq4_EKX9xjBsKjaRd-y9TDsyQXLoF0k-mv0nfKr2aOQ |
| CitedBy_id | crossref_primary_10_1515_phys_2024_0094 crossref_primary_10_1007_s40435_025_01800_9 crossref_primary_10_1155_2024_9363509 crossref_primary_10_3390_fractalfract5040261 crossref_primary_10_1007_s11071_025_10869_y crossref_primary_10_1016_j_amc_2021_126440 crossref_primary_10_1016_j_padiff_2025_101119 crossref_primary_10_1016_j_compeleceng_2021_107217 crossref_primary_10_1007_s11071_021_06920_3 crossref_primary_10_1016_j_matcom_2022_07_020 crossref_primary_10_1177_16878140211034392 crossref_primary_10_1007_s11071_021_06524_x crossref_primary_10_1016_j_apnum_2021_06_009 crossref_primary_10_1016_j_ins_2022_02_034 crossref_primary_10_1016_j_enganabound_2025_106119 crossref_primary_10_1142_S0218127425501457 crossref_primary_10_3389_fams_2022_912674 crossref_primary_10_1007_s40819_021_01169_1 crossref_primary_10_1080_00207721_2025_2490623 crossref_primary_10_1371_journal_pone_0302520 crossref_primary_10_1016_j_chaos_2022_111985 crossref_primary_10_1002_jnm_70061 crossref_primary_10_1016_j_chaos_2021_111127 crossref_primary_10_1142_S0218348X25500318 crossref_primary_10_1016_j_apnum_2021_10_008 crossref_primary_10_1177_16878140221074301 crossref_primary_10_1016_j_eswa_2022_117843 crossref_primary_10_1088_1402_4896_ac0867 crossref_primary_10_1007_s10092_018_0274_3 crossref_primary_10_1007_s10237_022_01600_6 crossref_primary_10_1016_j_chaos_2019_109478 crossref_primary_10_1007_s12190_024_02343_6 crossref_primary_10_1007_s40819_022_01386_2 crossref_primary_10_1155_2024_6066821 crossref_primary_10_1007_s12190_024_02144_x crossref_primary_10_1016_j_sciaf_2023_e01874 crossref_primary_10_1016_j_enganabound_2022_06_019 crossref_primary_10_1140_epjs_s11734_023_00910_9 crossref_primary_10_1016_j_enganabound_2022_09_035 crossref_primary_10_1155_2024_5924082 crossref_primary_10_1016_j_egyr_2021_08_028 crossref_primary_10_1007_s40819_021_01237_6 crossref_primary_10_1016_j_jtice_2021_03_042 crossref_primary_10_1016_j_ins_2021_04_101 crossref_primary_10_1002_mma_7305 crossref_primary_10_1002_mma_7825 crossref_primary_10_1016_j_chaos_2024_114723 crossref_primary_10_1615_JPorMedia_2022039740 crossref_primary_10_1186_s43088_022_00282_4 crossref_primary_10_1016_j_enganabound_2021_08_023 crossref_primary_10_1016_j_physa_2019_123494 crossref_primary_10_1007_s11082_022_03617_8 crossref_primary_10_1007_s12591_024_00697_8 crossref_primary_10_1016_j_egyr_2021_10_106 crossref_primary_10_1007_s11071_021_06593_y crossref_primary_10_1007_s12190_021_01681_z crossref_primary_10_1016_j_enganabound_2024_105973 crossref_primary_10_1016_j_enganabound_2024_106026 crossref_primary_10_1016_j_chaos_2022_112291 crossref_primary_10_1007_s12190_024_02233_x crossref_primary_10_1177_16878140211070937 crossref_primary_10_1007_s12190_022_01750_x crossref_primary_10_1007_s40435_025_01602_z crossref_primary_10_1080_10407790_2024_2353794 crossref_primary_10_1080_19942060_2021_1990134 crossref_primary_10_1016_j_enganabound_2021_06_023 |
| Cites_doi | 10.1007/s00500-015-1707-4 10.1016/S0165-1684(03)00181-6 10.1007/s00521-016-2484-4 10.1016/j.amc.2014.04.057 10.1007/s00521-017-2845-7 10.1016/j.aml.2013.05.006 10.1007/s00009-017-0904-z 10.1002/num.22153 10.1016/j.camwa.2006.02.011 10.1007/s00500-016-2262-3 10.1007/s00521-015-2110-x 10.1016/j.cam.2013.04.040 10.1002/num.22209 10.1016/j.camwa.2016.11.032 10.1016/j.amc.2013.03.123 10.1016/j.aml.2011.10.025 10.1090/S0002-9947-1950-0051437-7 10.1002/num.21809 10.1155/2014/162896 10.1186/s13662-017-1085-6 10.1016/j.jcp.2014.08.004 10.1002/num.22236 10.1142/p614 10.1002/mma.3884 10.1016/j.amc.2014.12.121 10.1016/j.camwa.2016.01.001 10.1016/j.amc.2015.11.057 10.1016/j.amc.2013.03.006 10.1016/j.jcp.2014.09.034 10.1016/j.camwa.2011.03.037 10.1155/2014/431965 10.1016/j.amc.2014.06.063 10.1016/j.apm.2015.01.021 10.1016/j.cam.2009.01.012 10.1016/j.aml.2005.10.010 10.1108/HFF-07-2016-0278 10.1007/978-1-4419-9096-9 |
| ContentType | Journal Article |
| Copyright | Korean Society for Computational and Applied Mathematics 2018 Journal of Applied Mathematics and Computing is a copyright of Springer, (2018). All Rights Reserved. |
| Copyright_xml | – notice: Korean Society for Computational and Applied Mathematics 2018 – notice: Journal of Applied Mathematics and Computing is a copyright of Springer, (2018). All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88I 8AL 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KR7 L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s12190-018-1176-x |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database ProQuest Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1865-2085 |
| EndPage | 243 |
| ExternalDocumentID | 10_1007_s12190_018_1176_x |
| GroupedDBID | -52 -5D -5G -BR -EM -~C .86 .VR 06D 0R~ 0VY 1N0 203 29J 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 3V. 4.4 406 408 40D 40E 5VS 6NX 7WY 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BENPR BEZIV BGNMA BPHCQ CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IZQ I~X J-C J0Z JBSCW JZLTJ K60 K6~ K7- KOV LLZTM M0C M2O M2P M4Y MA- N9A NF0 NPVJJ NQJWS NU0 O93 O9G O9I O9J P19 P9R PF0 PROAC PT4 PT5 Q2X QOK QOS R89 R9I RNS ROL RPX RSV S16 S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR -Y2 2.D 2VQ 88I 8FE 8FG AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABJCF ABQSL ABRTQ ABUWG ACBXY ACSTC ADHKG ADKPE AEBTG AEZWR AFDZB AFFHD AFGCZ AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP AJBLW ARAPS ATHPR AYFIA AZQEC BDATZ BGLVJ CAG CCPQU CITATION COF DWQXO FINBP FRNLG FSGXE GNUQQ H13 K6V L6V M7S N2Q NDZJH O9- P62 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PTHSS RHV S1Z S26 S28 SCLPG T16 ZWQNP 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L.- L7M L~C L~D M0N MBDVC PKEHL PQEST PQUKI PRINS PUEGO Q9U |
| ID | FETCH-LOGICAL-c316t-eabb56edd52ce4cb2ec0cba6eef61d22c2497f901885101518fca1a1dfae71f43 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 117 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000463773000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1598-5865 |
| IngestDate | Wed Sep 17 23:57:32 EDT 2025 Tue Nov 18 20:24:46 EST 2025 Sat Nov 29 06:16:18 EST 2025 Fri Feb 21 02:37:14 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | Fredholm operator Reproducing kernel algorithm Fractional calculus theory Singular partial integrodifferential equation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-eabb56edd52ce4cb2ec0cba6eef61d22c2497f901885101518fca1a1dfae71f43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9526-6095 |
| PQID | 2015656561 |
| PQPubID | 54415 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2015656561 crossref_primary_10_1007_s12190_018_1176_x crossref_citationtrail_10_1007_s12190_018_1176_x springer_journals_10_1007_s12190_018_1176_x |
| PublicationCentury | 2000 |
| PublicationDate | 20190215 |
| PublicationDateYYYYMMDD | 2019-02-15 |
| PublicationDate_xml | – month: 2 year: 2019 text: 20190215 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
| PublicationTitle | Journal of applied mathematics & computing |
| PublicationTitleAbbrev | J. Appl. Math. Comput |
| PublicationYear | 2019 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | GengFZQianSPModified reproducing kernel method for singularly perturbed boundary value problems with a delayAppl. Math. Model.20153955925597337609210.1016/j.apm.2015.01.021 MomaniSQarallehRAn efficient method for solving systems of fractional integro-differential equationsComput. Math Appl.200652459470226351410.1016/j.camwa.2006.02.0111137.65072 YangLHLinYReproducing kernel methods for solving linear initial-boundary-value problemsElectron. J. Differ. Equ.2008200811123833921137.35328 AronszajnNTheory of reproducing kernelsTrans. Am. Math. Soc.1950683374045143710.1090/S0002-9947-1950-0051437-70037.20701 Abu ArqubOFitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditionsComput. Math Appl.20177312431261362311910.1016/j.camwa.2016.11.03207034630 DanielAReproducing Kernel Spaces and Applications2003BaselSpringer1021.00005 Abu ArqubOApproximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithmFund. Inf.201614623125435811191373.65051 GengFZQianSPLiSA numerical method for singularly perturbed turning point problems with an interior layerJ. Comput. Appl. Math.201425597105309340710.1016/j.cam.2013.04.0401291.65231 WeinertHLReproducing Kernel Hilbert Spaces: Applications in Statistical Signal Processing1982StroudsburgHutchinson Ross Abu ArqubOAl-SmadiMShawagfehNSolving Fredholm integro-differential equations using reproducing kernel Hilbert space methodAppl. Math. Comput.20132198938894830477901288.65181 Tohidi, E., Ezadkhah, M.M., Shateyi, S.: Numerical solution of nonlinear fractional Volterra integro-differential equations via Bernoulli polynomials. Abstr. Appl. Anal. vol. 2014, Article ID 162896, 7 pages (2014). https://doi.org/10.1155/2014/162896 RostamiYMaleknejadKNumerical solution of partial integro-differential equations by using projection methodMediterr. J. Math.201714113363337310.1007/s00009-017-0904-z1376.65160 Abu ArqubOThe reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equationsMath. Methods Appl. Sci.20163945494562354941310.1002/mma.38841355.65106 Abu Arqub, O., Shawagfeh, N.: Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media. J. Porous Media (2017, In press) WangYZhuLSolving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet methodAdv. Differ. Equ.2017201727360095310.1186/s13662-017-1085-606988610 El-AjouAAbu ArqubOMomaniSBaleanuDAlsaediAA novel expansion iterative method for solving linear partial differential equations of fractional orderAppl. Math. Comput.201525711913333206531339.65201 HuangLLiXFZhaoYDuanXYApproximate solution of fractional integro-differential equations by Taylor expansion methodComput. Math Appl.20116211271134282470110.1016/j.camwa.2011.03.0371228.65133 ZaslavskyGMHamiltonian Chaos and Fractional Dynamics2005OxfordOxford University Press1083.37002 Abu ArqubOAl-SmadiMNumerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditionsNumer. Methods Part. Differ. Equ.201707023971 Abu ArqubONumerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithmInt. J. Numer. Methods Heat Fluid Flow201707034630 Abu ArqubOEl-AjouAMomaniSConstructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equationsJ. Comput. Phys.2015293385399334247810.1016/j.jcp.2014.09.0341349.35394 Abu ArqubORashaidehHThe RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPsNeural Comput. Appl.2017 Mohammed, D.S.: Numerical solution of fractional integro-differential equations by least squares method and shifted Chebyshev polynomial. Math. Problems Eng. vol. 2014, Article ID 431965, 5 pages (2014). https://doi.org/10.1155/2014/431965 Abu ArqubOAl-SmadiMMomaniSHayatTApplication of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problemsSoft Comput.2017217191720610.1007/s00500-016-2262-306847773 GengFZQianSPReproducing kernel method for singularly perturbed turning point problems having twin boundary layersAppl. Math. Lett.2013269981004307898310.1016/j.aml.2013.05.0061312.65121 MainardiFFractional Calculus and Waves in Linear Viscoelasticity2010LondonImperial College Press10.1142/p6141210.26004 JiangWChenZA collocation method based on reproducing kernel for a modified anomalous subdiffusion equationNumer. Methods Part. Differ. Equ.201430289300314941210.1002/num.218091285.65065 SamkoSGKilbasAAMarichevOIFractional Integrals and Derivatives Theory and Applications1993New YorkGordon and Breach0818.26003 RaySSNew exact solutions of nonlinear fractional acoustic wave equations in ultrasoundComput. Math Appl.201671859868345738310.1016/j.camwa.2016.01.0011359.35218 ArshedSB-spline solution of fractional integro partial differential equation with a weakly singular kernelNumer. Methods Part. Differ. Equ.20173315651581368352210.1002/num.221531376.65152 Abu Arqub, O.: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput. Appl. (2015) 1–20. https://doi.org/10.1007/s00521-015-2110-x El-AjouAAbu ArqubOMomaniSApproximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithmJ. Comput. Phys.20152938195334245810.1016/j.jcp.2014.08.0041349.65546 OrtigueiraMDMachadoJATFractional signal processing and applicationsSignal Process2003832285228610.1016/S0165-1684(03)00181-6 WangYZhuLSCW method for solving the fractional integro-differential equations with a weakly singular kernelAppl. Math. Comput.20162757280343769007038400 CuiMLinYNonlinear Numerical Analysis in the Reproducing Kernel Space2009New YorkNova Science1165.65300 Abu ArqubOAl-SmadiMNumerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equationsAppl. Math. Comput.201424391192232445381337.65083 KilbasASrivastavaHTrujilloJTheory and Applications of Fractional Differential Equations2006AmsterdamElsevier1092.45003 ZhouaYCuiMLinYNumerical algorithm for parabolic problems with non-classical conditionsJ. Comput. Appl. Math.2009230770780253600610.1016/j.cam.2009.01.0121190.65136 GengFZCuiMA reproducing kernel method for solving nonlocal fractional boundary value problemsAppl. Math. Lett.201225818823288807910.1016/j.aml.2011.10.0251242.65144 ZarembaSL’equation biharminique et une class remarquable defonctionsfoundamentals harmoniquesBull. Int. l’Acad. Sci. Cracovie190739147196 Abu ArqubOAl-SmadiMMomaniSHayatTNumerical solutions of fuzzy differential equations using reproducing kernel Hilbert space methodSoft Comput.2016203283330210.1007/s00500-015-1707-41377.65079 Abu ArqubOMaayahBSolutions of Bagley-Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithmNeural Comput. Appl.2016 MomaniSAbu ArqubOHayatTAl-SulamiHA computational method for solving periodic boundary value problems for integro-differential equations of Fredholm–Voltera typeAppl. Math. Comput.201424022923932136871337.65091 BerlinetAAgnanCTReproducing Kernel Hilbert Space in Probability and Statistics2004BostonKluwer Academic Publishers10.1007/978-1-4419-9096-91145.62002 LinYCuiMYangLRepresentation of the exact solution for a kind of nonlinear partial differential equationsApplied Mathematics Letters200619808813223225910.1016/j.aml.2005.10.0101116.35309 AbuOArqub, Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert spaceNumer. Methods Part. Differ. Equ.2017 JiangWChenZSolving a system of linear Volterra integral equations using the new reproducing kernel methodAppl. Math. Comput.2013219102251023030567231293.65170 PodlubnyIFractional Differential Equations1999San DiegoAcademic Press0924.34008 F Mainardi (1176_CR1) 2010 1176_CR9 L Huang (1176_CR8) 2011; 62 1176_CR41 S Momani (1176_CR34) 2014; 240 O Abu Arqub (1176_CR28) 2017 O Abu Arqub (1176_CR35) 2016; 20 HL Weinert (1176_CR24) 1982 O Abu Arqub (1176_CR29) 2017; 73 O Abu Arqub (1176_CR33) 2014; 243 S Arshed (1176_CR6) 2017; 33 W Jiang (1176_CR44) 2014; 30 W Jiang (1176_CR47) 2013; 219 O Abu Arqub (1176_CR36) 2017; 21 O Abu Arqub (1176_CR38) 2016; 146 I Podlubny (1176_CR3) 1999 O Abu Arqub (1176_CR14) 2015; 293 A Berlinet (1176_CR22) 2004 FZ Geng (1176_CR45) 2014; 255 GM Zaslavsky (1176_CR2) 2005 M Cui (1176_CR21) 2009 FZ Geng (1176_CR46) 2012; 25 Y Wang (1176_CR13) 2016; 275 Y Wang (1176_CR12) 2017; 2017 FZ Geng (1176_CR48) 2015; 39 SS Ray (1176_CR17) 2016; 71 1176_CR11 S Zaremba (1176_CR19) 1907; 39 LH Yang (1176_CR27) 2008; 2008 N Aronszajn (1176_CR20) 1950; 68 O Abu Arqub (1176_CR30) 2017 O Abu Arqub (1176_CR39) 2016 O Abu Arqub (1176_CR40) 2017 MD Ortigueira (1176_CR18) 2003; 83 O Abu Arqub (1176_CR32) 2013; 219 Y Rostami (1176_CR7) 2017; 14 A El-Ajou (1176_CR16) 2015; 293 A Daniel (1176_CR23) 2003 O Abu Arqub (1176_CR31) 2016; 39 S Momani (1176_CR10) 2006; 52 Y Lin (1176_CR25) 2006; 19 Y Zhoua (1176_CR26) 2009; 230 FZ Geng (1176_CR43) 2013; 26 A El-Ajou (1176_CR15) 2015; 257 1176_CR37 A Kilbas (1176_CR5) 2006 O Abu (1176_CR42) 2017 SG Samko (1176_CR4) 1993 |
| References_xml | – reference: MomaniSQarallehRAn efficient method for solving systems of fractional integro-differential equationsComput. Math Appl.200652459470226351410.1016/j.camwa.2006.02.0111137.65072 – reference: Abu ArqubOApproximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithmFund. Inf.201614623125435811191373.65051 – reference: GengFZQianSPReproducing kernel method for singularly perturbed turning point problems having twin boundary layersAppl. Math. Lett.2013269981004307898310.1016/j.aml.2013.05.0061312.65121 – reference: WangYZhuLSCW method for solving the fractional integro-differential equations with a weakly singular kernelAppl. Math. Comput.20162757280343769007038400 – reference: Abu Arqub, O.: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput. Appl. (2015) 1–20. https://doi.org/10.1007/s00521-015-2110-x – reference: PodlubnyIFractional Differential Equations1999San DiegoAcademic Press0924.34008 – reference: KilbasASrivastavaHTrujilloJTheory and Applications of Fractional Differential Equations2006AmsterdamElsevier1092.45003 – reference: Abu ArqubOAl-SmadiMNumerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equationsAppl. Math. Comput.201424391192232445381337.65083 – reference: CuiMLinYNonlinear Numerical Analysis in the Reproducing Kernel Space2009New YorkNova Science1165.65300 – reference: ZaslavskyGMHamiltonian Chaos and Fractional Dynamics2005OxfordOxford University Press1083.37002 – reference: MomaniSAbu ArqubOHayatTAl-SulamiHA computational method for solving periodic boundary value problems for integro-differential equations of Fredholm–Voltera typeAppl. Math. Comput.201424022923932136871337.65091 – reference: OrtigueiraMDMachadoJATFractional signal processing and applicationsSignal Process2003832285228610.1016/S0165-1684(03)00181-6 – reference: Abu ArqubOThe reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equationsMath. Methods Appl. Sci.20163945494562354941310.1002/mma.38841355.65106 – reference: Abu ArqubOFitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditionsComput. Math Appl.20177312431261362311910.1016/j.camwa.2016.11.03207034630 – reference: LinYCuiMYangLRepresentation of the exact solution for a kind of nonlinear partial differential equationsApplied Mathematics Letters200619808813223225910.1016/j.aml.2005.10.0101116.35309 – reference: RostamiYMaleknejadKNumerical solution of partial integro-differential equations by using projection methodMediterr. J. Math.201714113363337310.1007/s00009-017-0904-z1376.65160 – reference: El-AjouAAbu ArqubOMomaniSBaleanuDAlsaediAA novel expansion iterative method for solving linear partial differential equations of fractional orderAppl. Math. Comput.201525711913333206531339.65201 – reference: GengFZQianSPLiSA numerical method for singularly perturbed turning point problems with an interior layerJ. Comput. Appl. Math.201425597105309340710.1016/j.cam.2013.04.0401291.65231 – reference: Abu ArqubOAl-SmadiMShawagfehNSolving Fredholm integro-differential equations using reproducing kernel Hilbert space methodAppl. Math. Comput.20132198938894830477901288.65181 – reference: ZhouaYCuiMLinYNumerical algorithm for parabolic problems with non-classical conditionsJ. Comput. Appl. Math.2009230770780253600610.1016/j.cam.2009.01.0121190.65136 – reference: Abu ArqubOEl-AjouAMomaniSConstructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equationsJ. Comput. Phys.2015293385399334247810.1016/j.jcp.2014.09.0341349.35394 – reference: RaySSNew exact solutions of nonlinear fractional acoustic wave equations in ultrasoundComput. Math Appl.201671859868345738310.1016/j.camwa.2016.01.0011359.35218 – reference: HuangLLiXFZhaoYDuanXYApproximate solution of fractional integro-differential equations by Taylor expansion methodComput. Math Appl.20116211271134282470110.1016/j.camwa.2011.03.0371228.65133 – reference: Mohammed, D.S.: Numerical solution of fractional integro-differential equations by least squares method and shifted Chebyshev polynomial. Math. Problems Eng. vol. 2014, Article ID 431965, 5 pages (2014). https://doi.org/10.1155/2014/431965 – reference: WangYZhuLSolving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet methodAdv. Differ. Equ.2017201727360095310.1186/s13662-017-1085-606988610 – reference: Abu ArqubOAl-SmadiMMomaniSHayatTNumerical solutions of fuzzy differential equations using reproducing kernel Hilbert space methodSoft Comput.2016203283330210.1007/s00500-015-1707-41377.65079 – reference: DanielAReproducing Kernel Spaces and Applications2003BaselSpringer1021.00005 – reference: GengFZCuiMA reproducing kernel method for solving nonlocal fractional boundary value problemsAppl. Math. Lett.201225818823288807910.1016/j.aml.2011.10.0251242.65144 – reference: AronszajnNTheory of reproducing kernelsTrans. Am. Math. Soc.1950683374045143710.1090/S0002-9947-1950-0051437-70037.20701 – reference: JiangWChenZSolving a system of linear Volterra integral equations using the new reproducing kernel methodAppl. Math. Comput.2013219102251023030567231293.65170 – reference: ArshedSB-spline solution of fractional integro partial differential equation with a weakly singular kernelNumer. Methods Part. Differ. Equ.20173315651581368352210.1002/num.221531376.65152 – reference: Tohidi, E., Ezadkhah, M.M., Shateyi, S.: Numerical solution of nonlinear fractional Volterra integro-differential equations via Bernoulli polynomials. Abstr. Appl. Anal. vol. 2014, Article ID 162896, 7 pages (2014). https://doi.org/10.1155/2014/162896 – reference: GengFZQianSPModified reproducing kernel method for singularly perturbed boundary value problems with a delayAppl. Math. Model.20153955925597337609210.1016/j.apm.2015.01.021 – reference: YangLHLinYReproducing kernel methods for solving linear initial-boundary-value problemsElectron. J. Differ. Equ.2008200811123833921137.35328 – reference: AbuOArqub, Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert spaceNumer. Methods Part. Differ. Equ.2017 – reference: Abu ArqubOAl-SmadiMNumerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditionsNumer. Methods Part. Differ. Equ.201707023971 – reference: Abu Arqub, O., Shawagfeh, N.: Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media. J. Porous Media (2017, In press) – reference: BerlinetAAgnanCTReproducing Kernel Hilbert Space in Probability and Statistics2004BostonKluwer Academic Publishers10.1007/978-1-4419-9096-91145.62002 – reference: Abu ArqubORashaidehHThe RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPsNeural Comput. Appl.2017 – reference: Abu ArqubOAl-SmadiMMomaniSHayatTApplication of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problemsSoft Comput.2017217191720610.1007/s00500-016-2262-306847773 – reference: JiangWChenZA collocation method based on reproducing kernel for a modified anomalous subdiffusion equationNumer. Methods Part. Differ. Equ.201430289300314941210.1002/num.218091285.65065 – reference: El-AjouAAbu ArqubOMomaniSApproximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithmJ. Comput. Phys.20152938195334245810.1016/j.jcp.2014.08.0041349.65546 – reference: Abu ArqubONumerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithmInt. J. Numer. Methods Heat Fluid Flow201707034630 – reference: SamkoSGKilbasAAMarichevOIFractional Integrals and Derivatives Theory and Applications1993New YorkGordon and Breach0818.26003 – reference: ZarembaSL’equation biharminique et une class remarquable defonctionsfoundamentals harmoniquesBull. Int. l’Acad. Sci. Cracovie190739147196 – reference: WeinertHLReproducing Kernel Hilbert Spaces: Applications in Statistical Signal Processing1982StroudsburgHutchinson Ross – reference: Abu ArqubOMaayahBSolutions of Bagley-Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithmNeural Comput. Appl.2016 – reference: MainardiFFractional Calculus and Waves in Linear Viscoelasticity2010LondonImperial College Press10.1142/p6141210.26004 – volume: 20 start-page: 3283 year: 2016 ident: 1176_CR35 publication-title: Soft Comput. doi: 10.1007/s00500-015-1707-4 – volume-title: Nonlinear Numerical Analysis in the Reproducing Kernel Space year: 2009 ident: 1176_CR21 – volume: 83 start-page: 2285 year: 2003 ident: 1176_CR18 publication-title: Signal Process doi: 10.1016/S0165-1684(03)00181-6 – year: 2016 ident: 1176_CR39 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2484-4 – volume: 240 start-page: 229 year: 2014 ident: 1176_CR34 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2014.04.057 – volume-title: Reproducing Kernel Spaces and Applications year: 2003 ident: 1176_CR23 – year: 2017 ident: 1176_CR30 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-2845-7 – volume: 26 start-page: 998 year: 2013 ident: 1176_CR43 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2013.05.006 – volume: 14 start-page: 113 year: 2017 ident: 1176_CR7 publication-title: Mediterr. J. Math. doi: 10.1007/s00009-017-0904-z – volume: 33 start-page: 1565 year: 2017 ident: 1176_CR6 publication-title: Numer. Methods Part. Differ. Equ. doi: 10.1002/num.22153 – volume: 52 start-page: 459 year: 2006 ident: 1176_CR10 publication-title: Comput. Math Appl. doi: 10.1016/j.camwa.2006.02.011 – volume: 21 start-page: 7191 year: 2017 ident: 1176_CR36 publication-title: Soft Comput. doi: 10.1007/s00500-016-2262-3 – ident: 1176_CR37 doi: 10.1007/s00521-015-2110-x – volume: 255 start-page: 97 year: 2014 ident: 1176_CR45 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2013.04.040 – year: 2017 ident: 1176_CR28 publication-title: Numer. Methods Part. Differ. Equ. doi: 10.1002/num.22209 – volume: 73 start-page: 1243 year: 2017 ident: 1176_CR29 publication-title: Comput. Math Appl. doi: 10.1016/j.camwa.2016.11.032 – volume: 2008 start-page: 1 year: 2008 ident: 1176_CR27 publication-title: Electron. J. Differ. Equ. – volume: 219 start-page: 10225 year: 2013 ident: 1176_CR47 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2013.03.123 – volume: 25 start-page: 818 year: 2012 ident: 1176_CR46 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2011.10.025 – volume-title: Theory and Applications of Fractional Differential Equations year: 2006 ident: 1176_CR5 – volume: 39 start-page: 147 year: 1907 ident: 1176_CR19 publication-title: Bull. Int. l’Acad. Sci. Cracovie – volume: 68 start-page: 337 year: 1950 ident: 1176_CR20 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1950-0051437-7 – volume: 30 start-page: 289 year: 2014 ident: 1176_CR44 publication-title: Numer. Methods Part. Differ. Equ. doi: 10.1002/num.21809 – volume-title: Fractional Differential Equations year: 1999 ident: 1176_CR3 – ident: 1176_CR11 doi: 10.1155/2014/162896 – volume: 2017 start-page: 27 year: 2017 ident: 1176_CR12 publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-017-1085-6 – volume: 293 start-page: 81 year: 2015 ident: 1176_CR16 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.08.004 – year: 2017 ident: 1176_CR42 publication-title: Numer. Methods Part. Differ. Equ. doi: 10.1002/num.22236 – volume-title: Fractional Calculus and Waves in Linear Viscoelasticity year: 2010 ident: 1176_CR1 doi: 10.1142/p614 – volume: 39 start-page: 4549 year: 2016 ident: 1176_CR31 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.3884 – volume: 146 start-page: 231 year: 2016 ident: 1176_CR38 publication-title: Fund. Inf. – volume: 257 start-page: 119 year: 2015 ident: 1176_CR15 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2014.12.121 – volume: 71 start-page: 859 year: 2016 ident: 1176_CR17 publication-title: Comput. Math Appl. doi: 10.1016/j.camwa.2016.01.001 – volume-title: Reproducing Kernel Hilbert Spaces: Applications in Statistical Signal Processing year: 1982 ident: 1176_CR24 – volume-title: Hamiltonian Chaos and Fractional Dynamics year: 2005 ident: 1176_CR2 – volume: 275 start-page: 72 year: 2016 ident: 1176_CR13 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2015.11.057 – volume: 219 start-page: 8938 year: 2013 ident: 1176_CR32 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2013.03.006 – volume: 293 start-page: 385 year: 2015 ident: 1176_CR14 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.09.034 – volume: 62 start-page: 1127 year: 2011 ident: 1176_CR8 publication-title: Comput. Math Appl. doi: 10.1016/j.camwa.2011.03.037 – volume-title: Fractional Integrals and Derivatives Theory and Applications year: 1993 ident: 1176_CR4 – ident: 1176_CR9 doi: 10.1155/2014/431965 – volume: 243 start-page: 911 year: 2014 ident: 1176_CR33 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2014.06.063 – volume: 39 start-page: 5592 year: 2015 ident: 1176_CR48 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2015.01.021 – volume: 230 start-page: 770 year: 2009 ident: 1176_CR26 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2009.01.012 – volume: 19 start-page: 808 year: 2006 ident: 1176_CR25 publication-title: Applied Mathematics Letters doi: 10.1016/j.aml.2005.10.010 – year: 2017 ident: 1176_CR40 publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-07-2016-0278 – volume-title: Reproducing Kernel Hilbert Space in Probability and Statistics year: 2004 ident: 1176_CR22 doi: 10.1007/978-1-4419-9096-9 – ident: 1176_CR41 |
| SSID | ssj0067909 |
| Score | 2.4868224 |
| Snippet | In this article, we propose and analyze an efficient computational algorithm for the numerical solutions of singular Fredholm time-fractional partial... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 227 |
| SubjectTerms | Algorithms Applied mathematics Computational Mathematics and Numerical Analysis Computer simulation Dirichlet problem Error analysis Infinite series Mathematical and Computational Engineering Mathematics Mathematics and Statistics Mathematics of Computing Nonlinear equations Original Research Simulated annealing Theory of Computation |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8RADB5k9aAH3-LqKnPwpBQ63XbaOYq4eNBFfLG3Mp2murAv2yoe_ekmfWxRVFB6KLTzKE0yk2SSL4wdaRQ-YYO2HO0ay01QFLWOPEuoWHbxilwoQFwv_X4_GAzUdZXHndXR7vWRZLFSN8luDqU92wKtHuFLCxXHRdztApLGm9uHevmVviriOnCbppQi6dVHmd8N8XkzajTML4eixV7TW_vXV66z1Uq15KclL2ywBZhsspWrOS5rtsXeyyIOlQOQ69HjNB3mT2OOqitHLiTvAifvAQWn8l4KMTlNORWgt5K0zIHAfjPiN7yXWBPTushK8QyeS_DwjJOLl0Oa4tAE5TEmrXab3ffO784urKoGg2W6QuYW6CjyJMSx5xhwTeSAsU2kJUAiRew4Bs03P0GlIghIuj0RJEYLLeJEgy8St7vDWpPpBHYZN75C0iu0YNCqVGCUtoVJPBviSGnpOW1m18QITQVQTnUyRmEDrUw_N8TJCKNchm9tdjzvMivROX5r3KkpHFaCmoUOpZLTJdrspKZo8_rHwfb-1HqfLeNEiqK9hddhrTx9gQO2ZF7zYZYeFvz7ASUT7-s priority: 102 providerName: Springer Nature |
| Title | Computational algorithm for solving singular Fredholm time-fractional partial integrodifferential equations with error estimates |
| URI | https://link.springer.com/article/10.1007/s12190-018-1176-x https://www.proquest.com/docview/2015656561 |
| Volume | 59 |
| WOSCitedRecordID | wos000463773000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1865-2085 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067909 issn: 1598-5865 databaseCode: RSV dateStart: 20020901 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMceFcsLSsfOIEsxd7YXp8QrbpCgi6rlkfhEjnOpEVqd7fJgnrkpzOTR1cg0QuKNFEediLN2PPw-BuAF4EGn0owSB3SKNOShmIIuZHKF3ZER55iA-L63k2n45MTP-sCbnWXVtnPic1EXSwix8jJSVdse5C6f728lFw1ildXuxIaG7CltFYs5--c7Gdi63yT4kEam3cXWdOvajZb5zRvok4U-VDKWXn1p15aG5t_rY82amdy_39_-AHc6wxO8aaVkIdwC-eP4O7hNVpr_Rh-taUdurCgCOen1M_q7EKQQStINjnmIDimwCmrYlJhwaFUwWXpZVm1OyOo3ZKlkM4tAsWiL73S3MPLFlK8Fhz4FVhV1DUDfFywrfsEPk0OPu6_lV1lBhlHyq4khjw3FovC6IhpzDXGJObBIpZWFVpHcupcSabGeMxj3qhxGYMKqigDOlWmo23YnC_m-BREdJ4EwpNfQ76mx-hDomJpEixyH6zRA0h6vmSxgy3n6hnn2RpwmVmZ0ccYudxmVwN4ed1k2WJ23PTybs--rBu-dbbm3QBe9QKwfvzPzp7d3NkO3KELz0nfyuzC5qr6gc_hdvy5-l5XQ9hwX74OYWvvYDo7GjaSTPQw2WeqPzR0xtQdE52Zb0SPjj__BqhXAek |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceCMWCvgAF5Cl2Js460OFUGHVqtsVhyL1FhxnUip1H00CbW_8ov5GZpK4K5DorQeUQ6Q8JlHyjT0znvkG4I0j5VMROqld7GVckio6lydS2cIMactjbElcJ-l0Ojo4sF_W4CLUwnBaZRgT24G6WHiOkZOTrtj2oOn-w_JEctcoXl0NLTQ6WOzi-Sm5bPXmzif6v2-1Hn_e39qWfVcB6YfKNBJdnicGiyLRHmOfa_SRz51BLI0qtPbkkKQlTZOjEeM1UaPSO-VUUTpMVRkPSe4NuBnHpA6cKhhthZHfpLZNKSELgauZTBJWUdtSPc1F2yRVKpUaefbnPLgybv9aj22nufH9_-0DPYB7vUEtPnYa8BDWcP4I7u5dstHWj-FX17qiD3sKd3xI7918nwky2AXpHsdUBMdMOCVXjCssOFQsmqMZyrLqKj_oviVrGe07ho1FaC3THsOTjjK9FhzYFlhVJJoJTGZsyz-Br9fyCZ7C-nwxx2cgfGoJ8Jb8NvKlLXrrIuXLJMIit84kegBRwEHme1p27g5ynK0IpRk6GT2MmdlNdjaAd5e3LDtOkqsu3ghwyfrhqc5WWBnA-wC41el_Cnt-tbDXcHt7f2-STXamuy_gDp2wnOCukg1Yb6of-BJu-Z_NUV29avVGwLfrxuFvnItZ0A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iInrwLa6umoMnpdh023RzFHVR1EXwgbeSphMV3IdtFY_-dGf6cFFUEMmh0OZRmplmnt8wtq2R-YQL2vG0bxzfIitqHQeOUIlsYYt9KEBcz8Jut317qy6qOqdZHe1euyTLnAZCaerne8PE7o0S3zxKgXYFakAilA4KkRM-1Qwidf3ypv4Vy1AVMR54ZFN6kQxqt-Z3U3w-mEbS5hcHaXHudOb-_cbzbLYSOfl-SSMLbAz6i2zm_AOvNVtib2Vxh8owyPXj3SB9yO97HEVajtRJVgdOVgUKWuWdFBIypnIqTO_YtMyNwHFDokO8lhgUg7r4SnEPnkpQ8YyT6ZdDmuLUBPHRI2l3mV13jq4Ojp2qNoNjWkLmDug4DiQkSeAZ8E3sgXFNrCWAlSLxPINqXWhR2Gi3iesD0bZGCy0SqyEU1m-tsPH-oA-rjJtQIUko1GxQ21RglHaFsYELSay0DLwGc-uNiUwFXE71Mx6jEeQyfdwIFyPschm9NtjOx5BhidrxW-dmvdtRxcBZ5FGKOTXRYLv17o4e_zjZ2p96b7Gpi8NOdHbSPV1n07imooBwETTZeJ4-wwabNC_5Q5ZuFmT9Dhsz-7M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+algorithm+for+solving+singular+Fredholm+time-fractional+partial+integrodifferential+equations+with+error+estimates&rft.jtitle=Journal+of+applied+mathematics+%26+computing&rft.au=Omar+Abu+Arqub&rft.date=2019-02-15&rft.pub=Springer+Nature+B.V&rft.issn=1598-5865&rft.eissn=1865-2085&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1007%2Fs12190-018-1176-x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-5865&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-5865&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-5865&client=summon |