Singularity-free time integration of rotational quaternions using non-redundant ordinary differential equations

A novel ODE time stepping scheme for solving rotational kinematics in terms of unit quaternions is presented in the paper. This scheme inherently respects the unit-length condition without including it explicitly as a constraint equation, as it is common practice. In the standard algorithms, the uni...

Full description

Saved in:
Bibliographic Details
Published in:Multibody system dynamics Vol. 38; no. 3; pp. 201 - 225
Main Authors: Terze, Zdravko, Müller, Andreas, Zlatar, Dario
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.11.2016
Springer Nature B.V
Subjects:
ISSN:1384-5640, 1573-272X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A novel ODE time stepping scheme for solving rotational kinematics in terms of unit quaternions is presented in the paper. This scheme inherently respects the unit-length condition without including it explicitly as a constraint equation, as it is common practice. In the standard algorithms, the unit-length condition is included as an additional equation leading to kinematical equations in the form of a system of differential-algebraic equations (DAEs). On the contrary, the proposed method is based on numerical integration of the kinematic relations in terms of the instantaneous rotation vector that form a system of ordinary differential equations (ODEs) on the Lie algebra so ( 3 ) of the rotation group SO ( 3 ) . This rotation vector defines an incremental rotation (and thus the associated incremental unit quaternion), and the rotation update is determined by the exponential mapping on the quaternion group. Since the kinematic ODE on so ( 3 ) can be solved by using any standard (possibly higher-order) ODE integration scheme, the proposed method yields a non-redundant integration algorithm for the rotational kinematics in terms of unit quaternions, avoiding integration of DAE equations. Besides being ‘more elegant’—in the opinion of the authors—this integration procedure also exhibits numerical advantages in terms of better accuracy when longer integration steps are applied during simulation. As presented in the paper, the numerical integration of three non-linear ODEs in terms of the rotation vector as canonical coordinates achieves a higher accuracy compared to integrating the four (linear in ODE part) standard-quaternion DAE system. In summary, this paper solves the long-standing problem of the necessity of imposing the unit-length constraint equation during integration of quaternions, i.e. the need to deal with DAE’s in the context of such kinematical model, which has been a major drawback of using quaternions, and a numerical scheme is presented that also allows for longer integration steps during kinematic reconstruction of large three-dimensional rotations.
AbstractList A novel ODE time stepping scheme for solving rotational kinematics in terms of unit quaternions is presented in the paper. This scheme inherently respects the unit-length condition without including it explicitly as a constraint equation, as it is common practice. In the standard algorithms, the unit-length condition is included as an additional equation leading to kinematical equations in the form of a system of differential-algebraic equations (DAEs). On the contrary, the proposed method is based on numerical integration of the kinematic relations in terms of the instantaneous rotation vector that form a system of ordinary differential equations (ODEs) on the Lie algebra so ( 3 ) of the rotation group SO ( 3 ) . This rotation vector defines an incremental rotation (and thus the associated incremental unit quaternion), and the rotation update is determined by the exponential mapping on the quaternion group. Since the kinematic ODE on so ( 3 ) can be solved by using any standard (possibly higher-order) ODE integration scheme, the proposed method yields a non-redundant integration algorithm for the rotational kinematics in terms of unit quaternions, avoiding integration of DAE equations. Besides being ‘more elegant’—in the opinion of the authors—this integration procedure also exhibits numerical advantages in terms of better accuracy when longer integration steps are applied during simulation. As presented in the paper, the numerical integration of three non-linear ODEs in terms of the rotation vector as canonical coordinates achieves a higher accuracy compared to integrating the four (linear in ODE part) standard-quaternion DAE system. In summary, this paper solves the long-standing problem of the necessity of imposing the unit-length constraint equation during integration of quaternions, i.e. the need to deal with DAE’s in the context of such kinematical model, which has been a major drawback of using quaternions, and a numerical scheme is presented that also allows for longer integration steps during kinematic reconstruction of large three-dimensional rotations.
A novel ODE time stepping scheme for solving rotational kinematics in terms of unit quaternions is presented in the paper. This scheme inherently respects the unit-length condition without including it explicitly as a constraint equation, as it is common practice. In the standard algorithms, the unit-length condition is included as an additional equation leading to kinematical equations in the form of a system of differential-algebraic equations (DAEs). On the contrary, the proposed method is based on numerical integration of the kinematic relations in terms of the instantaneous rotation vector that form a system of ordinary differential equations (ODEs) on the Lie algebra so ( 3 ) of the rotation group SO ( 3 ) . This rotation vector defines an incremental rotation (and thus the associated incremental unit quaternion), and the rotation update is determined by the exponential mapping on the quaternion group. Since the kinematic ODE on so ( 3 ) can be solved by using any standard (possibly higher-order) ODE integration scheme, the proposed method yields a non-redundant integration algorithm for the rotational kinematics in terms of unit quaternions, avoiding integration of DAE equations. Besides being ‘more elegant’—in the opinion of the authors—this integration procedure also exhibits numerical advantages in terms of better accuracy when longer integration steps are applied during simulation. As presented in the paper, the numerical integration of three non-linear ODEs in terms of the rotation vector as canonical coordinates achieves a higher accuracy compared to integrating the four (linear in ODE part) standard-quaternion DAE system. In summary, this paper solves the long-standing problem of the necessity of imposing the unit-length constraint equation during integration of quaternions, i.e. the need to deal with DAE’s in the context of such kinematical model, which has been a major drawback of using quaternions, and a numerical scheme is presented that also allows for longer integration steps during kinematic reconstruction of large three-dimensional rotations.
Author Terze, Zdravko
Müller, Andreas
Zlatar, Dario
Author_xml – sequence: 1
  givenname: Zdravko
  surname: Terze
  fullname: Terze, Zdravko
  email: zdravko.terze@fsb.hr
  organization: Department of Aeronautical Engineering, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb
– sequence: 2
  givenname: Andreas
  surname: Müller
  fullname: Müller, Andreas
  organization: Institute of Robotics, Johannes Kepler University
– sequence: 3
  givenname: Dario
  surname: Zlatar
  fullname: Zlatar, Dario
  organization: Department of Aeronautical Engineering, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb
BookMark eNp9kE9LAzEQxYNUsK1-AG8Bz9Fks7vZPUrxHwgeVPAW0uykpGyTNske-u3Nuh5E0NO8gfcb5r0FmjnvAKFLRq8ZpeImMkbLklBWk7ZiDREnaM4qwUkhio9Z1rwpSVWX9AwtYtxSWrCqbOfIv1q3GXoVbDoSEwBwsjvA1iXYBJWsd9gbHHz60qrHh0ElCC4vEQ8xwzh_QgJ0g-uUS9iHzjoVjrizxkAAl2ymYMRG5hydGtVHuPieS_R-f_e2eiTPLw9Pq9tnojmrEwHO13XbUqOhqtZl2xlueK07LQQzolWiWDc1FQ1ttGJQAG81FwpoRRXtABhfoqvp7j74wwAxya0fQg4QJWsyVpW8bLNLTC4dfIwBjNR2SpqCsr1kVI7tyqldmduVY7tSZJL9IvfB7nLuf5liYmL2ug2EHz_9CX0CAeGR6A
CitedBy_id crossref_primary_10_1007_s11044_021_09807_8
crossref_primary_10_1007_s11044_021_09778_w
crossref_primary_10_1007_s11071_023_08410_0
crossref_primary_10_1007_s42405_018_0103_6
crossref_primary_10_1007_s11044_024_09970_8
crossref_primary_10_1016_j_ast_2019_105617
crossref_primary_10_1007_s40571_024_00780_5
crossref_primary_10_1016_j_cmpb_2021_106460
crossref_primary_10_1007_s11071_017_3722_8
crossref_primary_10_1109_LRA_2018_2849557
crossref_primary_10_3390_math12203239
crossref_primary_10_1007_s11044_019_09700_5
crossref_primary_10_1007_s11044_016_9547_2
crossref_primary_10_1016_j_actaastro_2025_08_039
Cites_doi 10.2514/3.55974
10.1142/p549
10.1002/zamm.200900383
10.1109/TSMC.1982.4308815
10.1007/BF02510919
10.1007/978-3-662-09156-2
10.2307/2689481
10.1016/S0045-7825(98)00031-0
10.1016/S0168-9274(98)00030-0
10.1364/JOSAA.4.000629
10.1098/rsta.1999.0360
10.1007/978-0-85729-760-0
10.1145/325165.325242
10.1007/978-3-642-52465-3_9
10.1007/978-94-007-0335-3
10.1147/rd.234.0424
10.1088/0004-6256/135/6/2298
10.1023/A:1009701220769
10.4173/mic.1997.1.4
10.1007/s11044-014-9439-2
10.1007/978-1-4612-5286-3
10.1002/nme.2586
10.1017/S0962492900002154
10.1016/S0045-7825(02)00520-0
10.1016/j.cam.2013.10.039
10.2514/6.1970-996
10.1007/978-3-319-07260-9_10
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2016
Copyright Springer Science & Business Media 2016
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2016
– notice: Copyright Springer Science & Business Media 2016
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11044-016-9518-7
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-272X
EndPage 225
ExternalDocumentID 10_1007_s11044_016_9518_7
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c316t-e33b6990fce55b49df3f36cdc771f79a72b8607808ca1e2e39c37ae050a0dee13
IEDL.DBID RSV
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386347700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1384-5640
IngestDate Thu Oct 02 16:27:26 EDT 2025
Sat Nov 29 02:44:50 EST 2025
Tue Nov 18 21:05:58 EST 2025
Fri Feb 21 02:37:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Time integration schemes
Special orthogonal group
Lie groups
Rotational quaternions
Symplectic group
Integration of quaternions
Special unitary group
Spatial rotations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-e33b6990fce55b49df3f36cdc771f79a72b8607808ca1e2e39c37ae050a0dee13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1880854349
PQPubID 2043839
PageCount 25
ParticipantIDs proquest_journals_1880854349
crossref_citationtrail_10_1007_s11044_016_9518_7
crossref_primary_10_1007_s11044_016_9518_7
springer_journals_10_1007_s11044_016_9518_7
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Multibody system dynamics
PublicationTitleAbbrev Multibody Syst Dyn
PublicationYear 2016
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Engø, Marthinsen (CR28) 1998; 2
Müller (CR33) 2010; 19
Morawiec (CR22) 2004
Iserles, Munthe-Kaas, Norsett, Zanna (CR26) 2000; 9
Kelland, Tait (CR11) 1882
Shoemake (CR20) 1985; 19
Horn (CR21) 1987; 4
Betsch, Siebert (CR1) 2009; 79
CR18
Vince (CR14) 2011
CR15
Tait (CR10) 1867
Mueller, Terze (CR35) 2013; 262
Fukushima (CR36) 2008; 135
Nikravesh, Haug (CR2) 1984
Marthinsen, Munthe-Kaas, Owren (CR29) 1997; 18
Huston, Kelly (CR17) 1982; 12
Junkins, Turner (CR19) 1980; 3
Celledoni, Owren (CR31) 2003; 192
Budd, Iserles (CR39) 1999; 357
D’Souza, Garg (CR23) 1984
Nikravesh (CR6) 1988
Terze, Mueller, Zlatar (CR34) 2015; 34
CR5
Bauchau (CR7) 2011
Munthe-Kaas (CR27) 1998; 38
Holm (CR4) 2008
Cayley (CR12) 1889
Taylor (CR16) 1979; 23
Goldstein (CR24) 1980
Müller (CR37) 2010; 90
Becker, Betsch, Terze (CR38) 2014
Altmann (CR3) 1986
Curtis (CR32) 1984
Hamilton (CR8) 1853
Hamilton (CR9) 1969
Bottasso, Borri (CR30) 1998; 164
Hairer, Lubich, Wanner (CR25) 2006
Munthe-Kaas (CR40) 1999; 29
Altmann (CR13) 1989; 62
9518_CR18
E. Celledoni (9518_CR31) 2003; 192
A. Mueller (9518_CR35) 2013; 262
A. Müller (9518_CR37) 2010; 90
9518_CR5
A. Iserles (9518_CR26) 2000; 9
A. Morawiec (9518_CR22) 2004
P.E. Nikravesh (9518_CR6) 1988
R.H. Taylor (9518_CR16) 1979; 23
W.R. Hamilton (9518_CR9) 1969
R.L. Huston (9518_CR17) 1982; 12
Z. Terze (9518_CR34) 2015; 34
A.F. D’Souza (9518_CR23) 1984
P. Betsch (9518_CR1) 2009; 79
9518_CR15
A. Marthinsen (9518_CR29) 1997; 18
A. Cayley (9518_CR12) 1889
E. Hairer (9518_CR25) 2006
D.D. Holm (9518_CR4) 2008
P. Kelland (9518_CR11) 1882
J.L. Junkins (9518_CR19) 1980; 3
C. Becker (9518_CR38) 2014
H. Goldstein (9518_CR24) 1980
P.E. Nikravesh (9518_CR2) 1984
B.K.P. Horn (9518_CR21) 1987; 4
M.L. Curtis (9518_CR32) 1984
H. Munthe-Kaas (9518_CR40) 1999; 29
A. Müller (9518_CR33) 2010; 19
S.L. Altmann (9518_CR3) 1986
O.A. Bauchau (9518_CR7) 2011
C.L. Bottasso (9518_CR30) 1998; 164
W.R. Hamilton (9518_CR8) 1853
S.L. Altmann (9518_CR13) 1989; 62
K. Shoemake (9518_CR20) 1985; 19
P.G. Tait (9518_CR10) 1867
C.J. Budd (9518_CR39) 1999; 357
H.Z. Munthe-Kaas (9518_CR27) 1998; 38
J. Vince (9518_CR14) 2011
T. Fukushima (9518_CR36) 2008; 135
K. Engø (9518_CR28) 1998; 2
References_xml – year: 1986
  ident: CR3
  publication-title: Rotations, Quaternions, and Double Groups
– volume: 3
  start-page: 210
  year: 1980
  end-page: 217
  ident: CR19
  article-title: Optimal continuous torque attitude maneuvers
  publication-title: J. Guid. Control
  doi: 10.2514/3.55974
– ident: CR18
– year: 2008
  ident: CR4
  publication-title: Geometric Mechanics. Part II: Rotating, Translating and Rolling
  doi: 10.1142/p549
– volume: 90
  start-page: 514
  year: 2010
  end-page: 521
  ident: CR37
  article-title: Approximation of finite rigid body motions from velocity fields
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.200900383
– year: 1853
  ident: CR8
  publication-title: Lectures on Quaternions
– volume: 12
  start-page: 259
  year: 1982
  end-page: 266
  ident: CR17
  article-title: The development of equations of motion of single-arm robots
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1982.4308815
– year: 1969
  ident: CR9
  publication-title: Elements of Quaternions
– volume: 38
  start-page: 92
  year: 1998
  end-page: 111
  ident: CR27
  article-title: Runge–Kutta methods on Lie groups
  publication-title: BIT Numer. Math.
  doi: 10.1007/BF02510919
– volume: 19
  start-page: 243
  year: 2010
  end-page: 272
  ident: CR33
  article-title: Group theoretical approaches to vector parameterization of rotations
  publication-title: J. Geom. Symmetry Phys.
– year: 1988
  ident: CR6
  publication-title: Computer-Aided Analysis of Mechanical Systems
– start-page: 123
  year: 1889
  end-page: 126
  ident: CR12
  article-title: On certain results relating to quaternions
  publication-title: The Collected Mathematical Papers of Arthur Cayley
– year: 2006
  ident: CR25
  publication-title: Geometric Numerical Integration
– year: 2004
  ident: CR22
  publication-title: Orientations and Rotations
  doi: 10.1007/978-3-662-09156-2
– year: 1980
  ident: CR24
  publication-title: Classical Mechanics
– volume: 62
  start-page: 306
  year: 1989
  ident: CR13
  article-title: Hamilton, Rodrigues, and the quaternion scandal
  publication-title: Math. Mag.
  doi: 10.2307/2689481
– volume: 164
  start-page: 307
  year: 1998
  end-page: 331
  ident: CR30
  article-title: Integrating finite rotations
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(98)00031-0
– volume: 29
  start-page: 115
  year: 1999
  end-page: 127
  ident: CR40
  article-title: High order Runge–Kutta methods on manifolds
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(98)00030-0
– start-page: 237
  year: 2014
  end-page: 254
  ident: CR38
  article-title: Application of a gyrostatic rigid body formulation in the context of a direct transcription method for optimal control in multibody dynamics
  publication-title: Multibody Dynamics: Computational Methods and Applications
– volume: 4
  start-page: 629
  year: 1987
  end-page: 642
  ident: CR21
  article-title: Closed-form solution of absolute orientation using unit quaternions
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSAA.4.000629
– volume: 357
  start-page: 945
  year: 1999
  end-page: 956
  ident: CR39
  article-title: Geometric integration: numerical solution of differential equations on manifolds
  publication-title: Philos. Trans. R. Soc., Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.1999.0360
– year: 2011
  ident: CR14
  publication-title: Quaternions for Computer Graphics
  doi: 10.1007/978-0-85729-760-0
– ident: CR15
– volume: 19
  start-page: 245
  year: 1985
  end-page: 254
  ident: CR20
  article-title: Animating rotation with quaternion curves
  publication-title: Comput. Graph.
  doi: 10.1145/325165.325242
– start-page: 261
  year: 1984
  end-page: 281
  ident: CR2
  article-title: Spatial kinematic and dynamic analysis with Euler parameters
  publication-title: Computer Aided Analysis and Optimization of Mechanical System Dynamics
  doi: 10.1007/978-3-642-52465-3_9
– year: 2011
  ident: CR7
  publication-title: Flexible Multibody Dynamics
  doi: 10.1007/978-94-007-0335-3
– volume: 23
  start-page: 424
  year: 1979
  end-page: 436
  ident: CR16
  article-title: Planning and execution of straight line manipulator trajectories
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.234.0424
– volume: 135
  start-page: 2298
  year: 2008
  end-page: 2322
  ident: CR36
  article-title: Simple, regular, and efficient numerical integration of rotational motion
  publication-title: Astron. J.
  doi: 10.1088/0004-6256/135/6/2298
– volume: 2
  start-page: 71
  year: 1998
  end-page: 88
  ident: CR28
  article-title: Modeling and solutions of some mechanical problems on Lie groups
  publication-title: Multibody Syst. Dyn.
  doi: 10.1023/A:1009701220769
– year: 1867
  ident: CR10
  publication-title: An Elementary Treatise on Quaternions
– volume: 18
  start-page: 75
  year: 1997
  end-page: 88
  ident: CR29
  article-title: Simulation of ordin differential equations on manifolds: some numerical experiments and verifications
  publication-title: Model. Identif. Control
  doi: 10.4173/mic.1997.1.4
– volume: 34
  start-page: 275
  year: 2015
  end-page: 305
  ident: CR34
  article-title: Lie Group integration method for constrained multibody systems in state space
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-014-9439-2
– ident: CR5
– year: 1984
  ident: CR32
  publication-title: Matrix Groups
  doi: 10.1007/978-1-4612-5286-3
– volume: 79
  start-page: 444
  year: 2009
  end-page: 473
  ident: CR1
  article-title: Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.2586
– year: 1984
  ident: CR23
  publication-title: Advanced Dynamics, Modeling and Analysis
– volume: 9
  start-page: 215
  year: 2000
  end-page: 365
  ident: CR26
  article-title: Lie group methods
  publication-title: Acta Numer.
  doi: 10.1017/S0962492900002154
– year: 1882
  ident: CR11
  publication-title: Introduction to Quaternions, with Numerous Examples
– volume: 192
  start-page: 421
  year: 2003
  end-page: 438
  ident: CR31
  article-title: Lie group methods for rigid body dynamics and time integration on manifolds
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(02)00520-0
– volume: 262
  start-page: 3
  year: 2013
  end-page: 13
  ident: CR35
  article-title: On the choice of configuration space for numerical Lie group integration of constrained rigid body systems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2013.10.039
– volume-title: Computer-Aided Analysis of Mechanical Systems
  year: 1988
  ident: 9518_CR6
– volume: 135
  start-page: 2298
  year: 2008
  ident: 9518_CR36
  publication-title: Astron. J.
  doi: 10.1088/0004-6256/135/6/2298
– volume: 62
  start-page: 306
  year: 1989
  ident: 9518_CR13
  publication-title: Math. Mag.
  doi: 10.2307/2689481
– ident: 9518_CR18
  doi: 10.2514/6.1970-996
– volume-title: Geometric Mechanics. Part II: Rotating, Translating and Rolling
  year: 2008
  ident: 9518_CR4
– volume: 262
  start-page: 3
  year: 2013
  ident: 9518_CR35
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2013.10.039
– volume: 90
  start-page: 514
  year: 2010
  ident: 9518_CR37
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.200900383
– volume: 38
  start-page: 92
  year: 1998
  ident: 9518_CR27
  publication-title: BIT Numer. Math.
  doi: 10.1007/BF02510919
– volume-title: Orientations and Rotations
  year: 2004
  ident: 9518_CR22
  doi: 10.1007/978-3-662-09156-2
– volume-title: Lectures on Quaternions
  year: 1853
  ident: 9518_CR8
– volume-title: Introduction to Quaternions, with Numerous Examples
  year: 1882
  ident: 9518_CR11
– volume-title: Elements of Quaternions
  year: 1969
  ident: 9518_CR9
– volume: 19
  start-page: 243
  year: 2010
  ident: 9518_CR33
  publication-title: J. Geom. Symmetry Phys.
– volume-title: Geometric Numerical Integration
  year: 2006
  ident: 9518_CR25
– start-page: 261
  volume-title: Computer Aided Analysis and Optimization of Mechanical System Dynamics
  year: 1984
  ident: 9518_CR2
  doi: 10.1007/978-3-642-52465-3_9
– volume: 19
  start-page: 245
  year: 1985
  ident: 9518_CR20
  publication-title: Comput. Graph.
  doi: 10.1145/325165.325242
– volume: 23
  start-page: 424
  year: 1979
  ident: 9518_CR16
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.234.0424
– volume-title: Advanced Dynamics, Modeling and Analysis
  year: 1984
  ident: 9518_CR23
– volume-title: Matrix Groups
  year: 1984
  ident: 9518_CR32
  doi: 10.1007/978-1-4612-5286-3
– volume-title: Quaternions for Computer Graphics
  year: 2011
  ident: 9518_CR14
  doi: 10.1007/978-0-85729-760-0
– volume: 9
  start-page: 215
  year: 2000
  ident: 9518_CR26
  publication-title: Acta Numer.
  doi: 10.1017/S0962492900002154
– volume: 12
  start-page: 259
  year: 1982
  ident: 9518_CR17
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1982.4308815
– ident: 9518_CR5
– volume: 34
  start-page: 275
  year: 2015
  ident: 9518_CR34
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-014-9439-2
– volume: 3
  start-page: 210
  year: 1980
  ident: 9518_CR19
  publication-title: J. Guid. Control
  doi: 10.2514/3.55974
– volume-title: An Elementary Treatise on Quaternions
  year: 1867
  ident: 9518_CR10
– volume: 29
  start-page: 115
  year: 1999
  ident: 9518_CR40
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(98)00030-0
– start-page: 237
  volume-title: Multibody Dynamics: Computational Methods and Applications
  year: 2014
  ident: 9518_CR38
  doi: 10.1007/978-3-319-07260-9_10
– volume: 357
  start-page: 945
  year: 1999
  ident: 9518_CR39
  publication-title: Philos. Trans. R. Soc., Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.1999.0360
– volume: 4
  start-page: 629
  year: 1987
  ident: 9518_CR21
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSAA.4.000629
– volume: 2
  start-page: 71
  year: 1998
  ident: 9518_CR28
  publication-title: Multibody Syst. Dyn.
  doi: 10.1023/A:1009701220769
– volume: 18
  start-page: 75
  year: 1997
  ident: 9518_CR29
  publication-title: Model. Identif. Control
  doi: 10.4173/mic.1997.1.4
– volume-title: Rotations, Quaternions, and Double Groups
  year: 1986
  ident: 9518_CR3
– volume: 79
  start-page: 444
  year: 2009
  ident: 9518_CR1
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.2586
– volume-title: Flexible Multibody Dynamics
  year: 2011
  ident: 9518_CR7
  doi: 10.1007/978-94-007-0335-3
– ident: 9518_CR15
– start-page: 123
  volume-title: The Collected Mathematical Papers of Arthur Cayley
  year: 1889
  ident: 9518_CR12
– volume-title: Classical Mechanics
  year: 1980
  ident: 9518_CR24
– volume: 192
  start-page: 421
  year: 2003
  ident: 9518_CR31
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(02)00520-0
– volume: 164
  start-page: 307
  year: 1998
  ident: 9518_CR30
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(98)00031-0
SSID ssj0021549
Score 2.212121
Snippet A novel ODE time stepping scheme for solving rotational kinematics in terms of unit quaternions is presented in the paper. This scheme inherently respects the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 201
SubjectTerms Algorithms
Automotive Engineering
Control
Differential equations
Dynamical Systems
Electrical Engineering
Engineering
Kinematics
Lie groups
Mechanical Engineering
Numerical integration
Optimization
Ordinary differential equations
Quaternions
Rotation
Singularity (mathematics)
Time integration
Vibration
Title Singularity-free time integration of rotational quaternions using non-redundant ordinary differential equations
URI https://link.springer.com/article/10.1007/s11044-016-9518-7
https://www.proquest.com/docview/1880854349
Volume 38
WOSCitedRecordID wos000386347700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-272X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021549
  issn: 1384-5640
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8QwDA9-PeiD3-L5RR98Ugq7tVvbRxHFBxHxVHwbW5eJIHe6nf79Jrvt7hQVFAZ7WFdKkjZJk_wCcOiiyGCqrcw8HYEanZJW61Dm3HZPaXIy8hoy_9JcXdmHB3fd1HFXbbZ7G5KsT-pJsRt5DpwxEUuyCqw0szBP2s5yv4ab3v3Yy2LMsdrLslpGsR6HMr-b4rMymliYX4Kita45X_nXKldhuTEtxclIFtZgBvvrsNKYmaLZxNU6LE1hEG7AoEcvzkUlc1wWJaLgdvOihZEgtolBIcrBsLk1FK9vKV8isrgKzpp_FP1BX5bI5WjEJkHebF3jK9reK3SGPAt8HWGKV5twd352e3ohmy4M0qtuPJSoVBaTzio8RlGmXV6oQsU-98Z0C-NSE2Y2JkMjsD7tYojKeWVSDKIgDXLErtqCOVoHboPIfGwyooqx5KQVzrjQo6bHWB3lxqYdCFp2JL6BKOdOGc_JBFyZyZtwWhqTNzEdOBr_8jLC5_ht8F7L46TZqlXCgHSWC2xdB45bnk59_mmynT-N3oXFkIWirmLcg7lh-Yb7sODfh09VeVBL8AdTYuvd
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDLfgmAQ87BgMcRsfeeBpKFKvSZvkcUIgJo4T4mPirWpTd5qE7kZ78Pdj99o7QDAJpEp9aBpFtuPYsf0zwL6LIoOptjLzpAI1OiWt1qHMue2e0uRk5DVk_sAMh_bmxp03ddxVm-3ehiRrTT0vdiPPgTMmYklWgZVmEZZorogB8y8uf8-8LMYcq70sq2UU61ko87Upnh9GcwvzRVC0PmuOux9a5Rp8bkxL8XMqC19gAUfr0G3MTNFs4modVp9gEG7A-JJenItK5rgsSkTB7eZFCyNBbBPjQpTjSXNrKO7uU75EZHEVnDX_R4zGI1kil6MRmwR5s3WNr2h7r5AOuRV4N8UUr77C9fHR1eGJbLowSK_68USiUllMZ1bhMYoy7fJCFSr2uTemXxiXmjCzMRkagfVpH0NUziuTYhAFaZAj9tUmdGgduAUi87HJiCrGkpNWOONCj5oeY3WUG5v2IGjZkfgGopw7Zdwmc3BlJm_CaWlM3sT04Mfsl39TfI7_Dd5ueZw0W7VKGJDOcoGt68FBy9Mnn9-a7Nu7Ru_B8snV2SAZ_BqefoeVkAWkrmjchs6kvMcd-OQfJn-rcreW5kdpvO7B
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXrwLa7PHDwpwW6TNslR1EVRFsEH3kqbTkVYdrWt_n4z3XZXRQURCj00DWFmksyXzHwDsG-CQGEsNU-sWwIlGsG1lD5PqeyekA5kpBVl_pXqdvXDg7mu65wWTbR7cyU5zGkglqZ-efScZkfjxDeHIih6IuTOQ9BcTcK0pDh6gus39yPERfxjFeLSkgehHF1rftfF541p7G1-uSCt9p3O4r9HvAQLtcvJjoc2sgwT2F-Bxdr9ZPXkLlZg_gM34SoMbtyLYlSdm86zHJFRGXrW0Es4dbJBxvJBWZ8mspfXmA4XyYwZRdM_sv6gz3OkNDWnPuZQbpX7y5qaLG5t6TF8GXKNF2tw1zm7PTnndXUGbkU7LDkKkYRuL8ssBkEiTZqJTIQ2tUq1M2Vi5Sc6dA6Ip23cRh-FsULF6AVe7KWIbbEOU24cuAEssaFKnFSUduAtM8r4FqV7lJZBqnTcAq9RTWRr6nKqoNGLxqTLJN6IwtVIvJFqwcHol-chb8dvjbcbfUf1FC4iIqrTlHhrWnDY6PfD55862_xT6z2YvT7tRFcX3cstmPPJPqpEx22YKvNX3IEZ-1Y-FfluZdjvE7j3pQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Singularity-free+time+integration+of+rotational+quaternions+using+non-redundant+ordinary+differential+equations&rft.jtitle=Multibody+system+dynamics&rft.au=Terze%2C+Zdravko&rft.au=M%C3%BCller%2C+Andreas&rft.au=Zlatar%2C+Dario&rft.date=2016-11-01&rft.issn=1384-5640&rft.eissn=1573-272X&rft.volume=38&rft.issue=3&rft.spage=201&rft.epage=225&rft_id=info:doi/10.1007%2Fs11044-016-9518-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11044_016_9518_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5640&client=summon