Singularity-free time integration of rotational quaternions using non-redundant ordinary differential equations
A novel ODE time stepping scheme for solving rotational kinematics in terms of unit quaternions is presented in the paper. This scheme inherently respects the unit-length condition without including it explicitly as a constraint equation, as it is common practice. In the standard algorithms, the uni...
Saved in:
| Published in: | Multibody system dynamics Vol. 38; no. 3; pp. 201 - 225 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Netherlands
01.11.2016
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1384-5640, 1573-272X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A novel ODE time stepping scheme for solving rotational kinematics in terms of unit quaternions is presented in the paper. This scheme inherently respects the unit-length condition without including it explicitly as a constraint equation, as it is common practice. In the standard algorithms, the unit-length condition is included as an additional equation leading to kinematical equations in the form of a system of differential-algebraic equations (DAEs). On the contrary, the proposed method is based on numerical integration of the kinematic relations in terms of the instantaneous rotation vector that form a system of ordinary differential equations (ODEs) on the Lie algebra
so
(
3
)
of the rotation group
SO
(
3
)
. This rotation vector defines an incremental rotation (and thus the associated incremental unit quaternion), and the rotation update is determined by the exponential mapping on the quaternion group. Since the kinematic ODE on
so
(
3
)
can be solved by using any standard (possibly higher-order) ODE integration scheme, the proposed method yields a non-redundant integration algorithm for the rotational kinematics in terms of unit quaternions, avoiding integration of DAE equations. Besides being ‘more elegant’—in the opinion of the authors—this integration procedure also exhibits numerical advantages in terms of better accuracy when longer integration steps are applied during simulation. As presented in the paper, the numerical integration of three non-linear ODEs in terms of the rotation vector as canonical coordinates achieves a higher accuracy compared to integrating the four (linear in ODE part) standard-quaternion DAE system. In summary, this paper solves the long-standing problem of the necessity of imposing the unit-length constraint equation during integration of quaternions, i.e. the need to deal with DAE’s in the context of such kinematical model, which has been a major drawback of using quaternions, and a numerical scheme is presented that also allows for longer integration steps during kinematic reconstruction of large three-dimensional rotations. |
|---|---|
| AbstractList | A novel ODE time stepping scheme for solving rotational kinematics in terms of unit quaternions is presented in the paper. This scheme inherently respects the unit-length condition without including it explicitly as a constraint equation, as it is common practice. In the standard algorithms, the unit-length condition is included as an additional equation leading to kinematical equations in the form of a system of differential-algebraic equations (DAEs). On the contrary, the proposed method is based on numerical integration of the kinematic relations in terms of the instantaneous rotation vector that form a system of ordinary differential equations (ODEs) on the Lie algebra
so
(
3
)
of the rotation group
SO
(
3
)
. This rotation vector defines an incremental rotation (and thus the associated incremental unit quaternion), and the rotation update is determined by the exponential mapping on the quaternion group. Since the kinematic ODE on
so
(
3
)
can be solved by using any standard (possibly higher-order) ODE integration scheme, the proposed method yields a non-redundant integration algorithm for the rotational kinematics in terms of unit quaternions, avoiding integration of DAE equations. Besides being ‘more elegant’—in the opinion of the authors—this integration procedure also exhibits numerical advantages in terms of better accuracy when longer integration steps are applied during simulation. As presented in the paper, the numerical integration of three non-linear ODEs in terms of the rotation vector as canonical coordinates achieves a higher accuracy compared to integrating the four (linear in ODE part) standard-quaternion DAE system. In summary, this paper solves the long-standing problem of the necessity of imposing the unit-length constraint equation during integration of quaternions, i.e. the need to deal with DAE’s in the context of such kinematical model, which has been a major drawback of using quaternions, and a numerical scheme is presented that also allows for longer integration steps during kinematic reconstruction of large three-dimensional rotations. A novel ODE time stepping scheme for solving rotational kinematics in terms of unit quaternions is presented in the paper. This scheme inherently respects the unit-length condition without including it explicitly as a constraint equation, as it is common practice. In the standard algorithms, the unit-length condition is included as an additional equation leading to kinematical equations in the form of a system of differential-algebraic equations (DAEs). On the contrary, the proposed method is based on numerical integration of the kinematic relations in terms of the instantaneous rotation vector that form a system of ordinary differential equations (ODEs) on the Lie algebra so ( 3 ) of the rotation group SO ( 3 ) . This rotation vector defines an incremental rotation (and thus the associated incremental unit quaternion), and the rotation update is determined by the exponential mapping on the quaternion group. Since the kinematic ODE on so ( 3 ) can be solved by using any standard (possibly higher-order) ODE integration scheme, the proposed method yields a non-redundant integration algorithm for the rotational kinematics in terms of unit quaternions, avoiding integration of DAE equations. Besides being ‘more elegant’—in the opinion of the authors—this integration procedure also exhibits numerical advantages in terms of better accuracy when longer integration steps are applied during simulation. As presented in the paper, the numerical integration of three non-linear ODEs in terms of the rotation vector as canonical coordinates achieves a higher accuracy compared to integrating the four (linear in ODE part) standard-quaternion DAE system. In summary, this paper solves the long-standing problem of the necessity of imposing the unit-length constraint equation during integration of quaternions, i.e. the need to deal with DAE’s in the context of such kinematical model, which has been a major drawback of using quaternions, and a numerical scheme is presented that also allows for longer integration steps during kinematic reconstruction of large three-dimensional rotations. |
| Author | Terze, Zdravko Müller, Andreas Zlatar, Dario |
| Author_xml | – sequence: 1 givenname: Zdravko surname: Terze fullname: Terze, Zdravko email: zdravko.terze@fsb.hr organization: Department of Aeronautical Engineering, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb – sequence: 2 givenname: Andreas surname: Müller fullname: Müller, Andreas organization: Institute of Robotics, Johannes Kepler University – sequence: 3 givenname: Dario surname: Zlatar fullname: Zlatar, Dario organization: Department of Aeronautical Engineering, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb |
| BookMark | eNp9kE9LAzEQxYNUsK1-AG8Bz9Fks7vZPUrxHwgeVPAW0uykpGyTNske-u3Nuh5E0NO8gfcb5r0FmjnvAKFLRq8ZpeImMkbLklBWk7ZiDREnaM4qwUkhio9Z1rwpSVWX9AwtYtxSWrCqbOfIv1q3GXoVbDoSEwBwsjvA1iXYBJWsd9gbHHz60qrHh0ElCC4vEQ8xwzh_QgJ0g-uUS9iHzjoVjrizxkAAl2ymYMRG5hydGtVHuPieS_R-f_e2eiTPLw9Pq9tnojmrEwHO13XbUqOhqtZl2xlueK07LQQzolWiWDc1FQ1ttGJQAG81FwpoRRXtABhfoqvp7j74wwAxya0fQg4QJWsyVpW8bLNLTC4dfIwBjNR2SpqCsr1kVI7tyqldmduVY7tSZJL9IvfB7nLuf5liYmL2ug2EHz_9CX0CAeGR6A |
| CitedBy_id | crossref_primary_10_1007_s11044_021_09807_8 crossref_primary_10_1007_s11044_021_09778_w crossref_primary_10_1007_s11071_023_08410_0 crossref_primary_10_1007_s42405_018_0103_6 crossref_primary_10_1007_s11044_024_09970_8 crossref_primary_10_1016_j_ast_2019_105617 crossref_primary_10_1007_s40571_024_00780_5 crossref_primary_10_1016_j_cmpb_2021_106460 crossref_primary_10_1007_s11071_017_3722_8 crossref_primary_10_1109_LRA_2018_2849557 crossref_primary_10_3390_math12203239 crossref_primary_10_1007_s11044_019_09700_5 crossref_primary_10_1007_s11044_016_9547_2 crossref_primary_10_1016_j_actaastro_2025_08_039 |
| Cites_doi | 10.2514/3.55974 10.1142/p549 10.1002/zamm.200900383 10.1109/TSMC.1982.4308815 10.1007/BF02510919 10.1007/978-3-662-09156-2 10.2307/2689481 10.1016/S0045-7825(98)00031-0 10.1016/S0168-9274(98)00030-0 10.1364/JOSAA.4.000629 10.1098/rsta.1999.0360 10.1007/978-0-85729-760-0 10.1145/325165.325242 10.1007/978-3-642-52465-3_9 10.1007/978-94-007-0335-3 10.1147/rd.234.0424 10.1088/0004-6256/135/6/2298 10.1023/A:1009701220769 10.4173/mic.1997.1.4 10.1007/s11044-014-9439-2 10.1007/978-1-4612-5286-3 10.1002/nme.2586 10.1017/S0962492900002154 10.1016/S0045-7825(02)00520-0 10.1016/j.cam.2013.10.039 10.2514/6.1970-996 10.1007/978-3-319-07260-9_10 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media Dordrecht 2016 Copyright Springer Science & Business Media 2016 |
| Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2016 – notice: Copyright Springer Science & Business Media 2016 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11044-016-9518-7 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1573-272X |
| EndPage | 225 |
| ExternalDocumentID | 10_1007_s11044_016_9518_7 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9P PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c316t-e33b6990fce55b49df3f36cdc771f79a72b8607808ca1e2e39c37ae050a0dee13 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386347700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1384-5640 |
| IngestDate | Thu Oct 02 16:27:26 EDT 2025 Sat Nov 29 02:44:50 EST 2025 Tue Nov 18 21:05:58 EST 2025 Fri Feb 21 02:37:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Time integration schemes Special orthogonal group Lie groups Rotational quaternions Symplectic group Integration of quaternions Special unitary group Spatial rotations |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-e33b6990fce55b49df3f36cdc771f79a72b8607808ca1e2e39c37ae050a0dee13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1880854349 |
| PQPubID | 2043839 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_1880854349 crossref_citationtrail_10_1007_s11044_016_9518_7 crossref_primary_10_1007_s11044_016_9518_7 springer_journals_10_1007_s11044_016_9518_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-11-01 |
| PublicationDateYYYYMMDD | 2016-11-01 |
| PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationTitle | Multibody system dynamics |
| PublicationTitleAbbrev | Multibody Syst Dyn |
| PublicationYear | 2016 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Engø, Marthinsen (CR28) 1998; 2 Müller (CR33) 2010; 19 Morawiec (CR22) 2004 Iserles, Munthe-Kaas, Norsett, Zanna (CR26) 2000; 9 Kelland, Tait (CR11) 1882 Shoemake (CR20) 1985; 19 Horn (CR21) 1987; 4 Betsch, Siebert (CR1) 2009; 79 CR18 Vince (CR14) 2011 CR15 Tait (CR10) 1867 Mueller, Terze (CR35) 2013; 262 Fukushima (CR36) 2008; 135 Nikravesh, Haug (CR2) 1984 Marthinsen, Munthe-Kaas, Owren (CR29) 1997; 18 Huston, Kelly (CR17) 1982; 12 Junkins, Turner (CR19) 1980; 3 Celledoni, Owren (CR31) 2003; 192 Budd, Iserles (CR39) 1999; 357 D’Souza, Garg (CR23) 1984 Nikravesh (CR6) 1988 Terze, Mueller, Zlatar (CR34) 2015; 34 CR5 Bauchau (CR7) 2011 Munthe-Kaas (CR27) 1998; 38 Holm (CR4) 2008 Cayley (CR12) 1889 Taylor (CR16) 1979; 23 Goldstein (CR24) 1980 Müller (CR37) 2010; 90 Becker, Betsch, Terze (CR38) 2014 Altmann (CR3) 1986 Curtis (CR32) 1984 Hamilton (CR8) 1853 Hamilton (CR9) 1969 Bottasso, Borri (CR30) 1998; 164 Hairer, Lubich, Wanner (CR25) 2006 Munthe-Kaas (CR40) 1999; 29 Altmann (CR13) 1989; 62 9518_CR18 E. Celledoni (9518_CR31) 2003; 192 A. Mueller (9518_CR35) 2013; 262 A. Müller (9518_CR37) 2010; 90 9518_CR5 A. Iserles (9518_CR26) 2000; 9 A. Morawiec (9518_CR22) 2004 P.E. Nikravesh (9518_CR6) 1988 R.H. Taylor (9518_CR16) 1979; 23 W.R. Hamilton (9518_CR9) 1969 R.L. Huston (9518_CR17) 1982; 12 Z. Terze (9518_CR34) 2015; 34 A.F. D’Souza (9518_CR23) 1984 P. Betsch (9518_CR1) 2009; 79 9518_CR15 A. Marthinsen (9518_CR29) 1997; 18 A. Cayley (9518_CR12) 1889 E. Hairer (9518_CR25) 2006 D.D. Holm (9518_CR4) 2008 P. Kelland (9518_CR11) 1882 J.L. Junkins (9518_CR19) 1980; 3 C. Becker (9518_CR38) 2014 H. Goldstein (9518_CR24) 1980 P.E. Nikravesh (9518_CR2) 1984 B.K.P. Horn (9518_CR21) 1987; 4 M.L. Curtis (9518_CR32) 1984 H. Munthe-Kaas (9518_CR40) 1999; 29 A. Müller (9518_CR33) 2010; 19 S.L. Altmann (9518_CR3) 1986 O.A. Bauchau (9518_CR7) 2011 C.L. Bottasso (9518_CR30) 1998; 164 W.R. Hamilton (9518_CR8) 1853 S.L. Altmann (9518_CR13) 1989; 62 K. Shoemake (9518_CR20) 1985; 19 P.G. Tait (9518_CR10) 1867 C.J. Budd (9518_CR39) 1999; 357 H.Z. Munthe-Kaas (9518_CR27) 1998; 38 J. Vince (9518_CR14) 2011 T. Fukushima (9518_CR36) 2008; 135 K. Engø (9518_CR28) 1998; 2 |
| References_xml | – year: 1986 ident: CR3 publication-title: Rotations, Quaternions, and Double Groups – volume: 3 start-page: 210 year: 1980 end-page: 217 ident: CR19 article-title: Optimal continuous torque attitude maneuvers publication-title: J. Guid. Control doi: 10.2514/3.55974 – ident: CR18 – year: 2008 ident: CR4 publication-title: Geometric Mechanics. Part II: Rotating, Translating and Rolling doi: 10.1142/p549 – volume: 90 start-page: 514 year: 2010 end-page: 521 ident: CR37 article-title: Approximation of finite rigid body motions from velocity fields publication-title: Z. Angew. Math. Mech. doi: 10.1002/zamm.200900383 – year: 1853 ident: CR8 publication-title: Lectures on Quaternions – volume: 12 start-page: 259 year: 1982 end-page: 266 ident: CR17 article-title: The development of equations of motion of single-arm robots publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1982.4308815 – year: 1969 ident: CR9 publication-title: Elements of Quaternions – volume: 38 start-page: 92 year: 1998 end-page: 111 ident: CR27 article-title: Runge–Kutta methods on Lie groups publication-title: BIT Numer. Math. doi: 10.1007/BF02510919 – volume: 19 start-page: 243 year: 2010 end-page: 272 ident: CR33 article-title: Group theoretical approaches to vector parameterization of rotations publication-title: J. Geom. Symmetry Phys. – year: 1988 ident: CR6 publication-title: Computer-Aided Analysis of Mechanical Systems – start-page: 123 year: 1889 end-page: 126 ident: CR12 article-title: On certain results relating to quaternions publication-title: The Collected Mathematical Papers of Arthur Cayley – year: 2006 ident: CR25 publication-title: Geometric Numerical Integration – year: 2004 ident: CR22 publication-title: Orientations and Rotations doi: 10.1007/978-3-662-09156-2 – year: 1980 ident: CR24 publication-title: Classical Mechanics – volume: 62 start-page: 306 year: 1989 ident: CR13 article-title: Hamilton, Rodrigues, and the quaternion scandal publication-title: Math. Mag. doi: 10.2307/2689481 – volume: 164 start-page: 307 year: 1998 end-page: 331 ident: CR30 article-title: Integrating finite rotations publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(98)00031-0 – volume: 29 start-page: 115 year: 1999 end-page: 127 ident: CR40 article-title: High order Runge–Kutta methods on manifolds publication-title: Appl. Numer. Math. doi: 10.1016/S0168-9274(98)00030-0 – start-page: 237 year: 2014 end-page: 254 ident: CR38 article-title: Application of a gyrostatic rigid body formulation in the context of a direct transcription method for optimal control in multibody dynamics publication-title: Multibody Dynamics: Computational Methods and Applications – volume: 4 start-page: 629 year: 1987 end-page: 642 ident: CR21 article-title: Closed-form solution of absolute orientation using unit quaternions publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSAA.4.000629 – volume: 357 start-page: 945 year: 1999 end-page: 956 ident: CR39 article-title: Geometric integration: numerical solution of differential equations on manifolds publication-title: Philos. Trans. R. Soc., Math. Phys. Eng. Sci. doi: 10.1098/rsta.1999.0360 – year: 2011 ident: CR14 publication-title: Quaternions for Computer Graphics doi: 10.1007/978-0-85729-760-0 – ident: CR15 – volume: 19 start-page: 245 year: 1985 end-page: 254 ident: CR20 article-title: Animating rotation with quaternion curves publication-title: Comput. Graph. doi: 10.1145/325165.325242 – start-page: 261 year: 1984 end-page: 281 ident: CR2 article-title: Spatial kinematic and dynamic analysis with Euler parameters publication-title: Computer Aided Analysis and Optimization of Mechanical System Dynamics doi: 10.1007/978-3-642-52465-3_9 – year: 2011 ident: CR7 publication-title: Flexible Multibody Dynamics doi: 10.1007/978-94-007-0335-3 – volume: 23 start-page: 424 year: 1979 end-page: 436 ident: CR16 article-title: Planning and execution of straight line manipulator trajectories publication-title: IBM J. Res. Dev. doi: 10.1147/rd.234.0424 – volume: 135 start-page: 2298 year: 2008 end-page: 2322 ident: CR36 article-title: Simple, regular, and efficient numerical integration of rotational motion publication-title: Astron. J. doi: 10.1088/0004-6256/135/6/2298 – volume: 2 start-page: 71 year: 1998 end-page: 88 ident: CR28 article-title: Modeling and solutions of some mechanical problems on Lie groups publication-title: Multibody Syst. Dyn. doi: 10.1023/A:1009701220769 – year: 1867 ident: CR10 publication-title: An Elementary Treatise on Quaternions – volume: 18 start-page: 75 year: 1997 end-page: 88 ident: CR29 article-title: Simulation of ordin differential equations on manifolds: some numerical experiments and verifications publication-title: Model. Identif. Control doi: 10.4173/mic.1997.1.4 – volume: 34 start-page: 275 year: 2015 end-page: 305 ident: CR34 article-title: Lie Group integration method for constrained multibody systems in state space publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-014-9439-2 – ident: CR5 – year: 1984 ident: CR32 publication-title: Matrix Groups doi: 10.1007/978-1-4612-5286-3 – volume: 79 start-page: 444 year: 2009 end-page: 473 ident: CR1 article-title: Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.2586 – year: 1984 ident: CR23 publication-title: Advanced Dynamics, Modeling and Analysis – volume: 9 start-page: 215 year: 2000 end-page: 365 ident: CR26 article-title: Lie group methods publication-title: Acta Numer. doi: 10.1017/S0962492900002154 – year: 1882 ident: CR11 publication-title: Introduction to Quaternions, with Numerous Examples – volume: 192 start-page: 421 year: 2003 end-page: 438 ident: CR31 article-title: Lie group methods for rigid body dynamics and time integration on manifolds publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(02)00520-0 – volume: 262 start-page: 3 year: 2013 end-page: 13 ident: CR35 article-title: On the choice of configuration space for numerical Lie group integration of constrained rigid body systems publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2013.10.039 – volume-title: Computer-Aided Analysis of Mechanical Systems year: 1988 ident: 9518_CR6 – volume: 135 start-page: 2298 year: 2008 ident: 9518_CR36 publication-title: Astron. J. doi: 10.1088/0004-6256/135/6/2298 – volume: 62 start-page: 306 year: 1989 ident: 9518_CR13 publication-title: Math. Mag. doi: 10.2307/2689481 – ident: 9518_CR18 doi: 10.2514/6.1970-996 – volume-title: Geometric Mechanics. Part II: Rotating, Translating and Rolling year: 2008 ident: 9518_CR4 – volume: 262 start-page: 3 year: 2013 ident: 9518_CR35 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2013.10.039 – volume: 90 start-page: 514 year: 2010 ident: 9518_CR37 publication-title: Z. Angew. Math. Mech. doi: 10.1002/zamm.200900383 – volume: 38 start-page: 92 year: 1998 ident: 9518_CR27 publication-title: BIT Numer. Math. doi: 10.1007/BF02510919 – volume-title: Orientations and Rotations year: 2004 ident: 9518_CR22 doi: 10.1007/978-3-662-09156-2 – volume-title: Lectures on Quaternions year: 1853 ident: 9518_CR8 – volume-title: Introduction to Quaternions, with Numerous Examples year: 1882 ident: 9518_CR11 – volume-title: Elements of Quaternions year: 1969 ident: 9518_CR9 – volume: 19 start-page: 243 year: 2010 ident: 9518_CR33 publication-title: J. Geom. Symmetry Phys. – volume-title: Geometric Numerical Integration year: 2006 ident: 9518_CR25 – start-page: 261 volume-title: Computer Aided Analysis and Optimization of Mechanical System Dynamics year: 1984 ident: 9518_CR2 doi: 10.1007/978-3-642-52465-3_9 – volume: 19 start-page: 245 year: 1985 ident: 9518_CR20 publication-title: Comput. Graph. doi: 10.1145/325165.325242 – volume: 23 start-page: 424 year: 1979 ident: 9518_CR16 publication-title: IBM J. Res. Dev. doi: 10.1147/rd.234.0424 – volume-title: Advanced Dynamics, Modeling and Analysis year: 1984 ident: 9518_CR23 – volume-title: Matrix Groups year: 1984 ident: 9518_CR32 doi: 10.1007/978-1-4612-5286-3 – volume-title: Quaternions for Computer Graphics year: 2011 ident: 9518_CR14 doi: 10.1007/978-0-85729-760-0 – volume: 9 start-page: 215 year: 2000 ident: 9518_CR26 publication-title: Acta Numer. doi: 10.1017/S0962492900002154 – volume: 12 start-page: 259 year: 1982 ident: 9518_CR17 publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1982.4308815 – ident: 9518_CR5 – volume: 34 start-page: 275 year: 2015 ident: 9518_CR34 publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-014-9439-2 – volume: 3 start-page: 210 year: 1980 ident: 9518_CR19 publication-title: J. Guid. Control doi: 10.2514/3.55974 – volume-title: An Elementary Treatise on Quaternions year: 1867 ident: 9518_CR10 – volume: 29 start-page: 115 year: 1999 ident: 9518_CR40 publication-title: Appl. Numer. Math. doi: 10.1016/S0168-9274(98)00030-0 – start-page: 237 volume-title: Multibody Dynamics: Computational Methods and Applications year: 2014 ident: 9518_CR38 doi: 10.1007/978-3-319-07260-9_10 – volume: 357 start-page: 945 year: 1999 ident: 9518_CR39 publication-title: Philos. Trans. R. Soc., Math. Phys. Eng. Sci. doi: 10.1098/rsta.1999.0360 – volume: 4 start-page: 629 year: 1987 ident: 9518_CR21 publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSAA.4.000629 – volume: 2 start-page: 71 year: 1998 ident: 9518_CR28 publication-title: Multibody Syst. Dyn. doi: 10.1023/A:1009701220769 – volume: 18 start-page: 75 year: 1997 ident: 9518_CR29 publication-title: Model. Identif. Control doi: 10.4173/mic.1997.1.4 – volume-title: Rotations, Quaternions, and Double Groups year: 1986 ident: 9518_CR3 – volume: 79 start-page: 444 year: 2009 ident: 9518_CR1 publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.2586 – volume-title: Flexible Multibody Dynamics year: 2011 ident: 9518_CR7 doi: 10.1007/978-94-007-0335-3 – ident: 9518_CR15 – start-page: 123 volume-title: The Collected Mathematical Papers of Arthur Cayley year: 1889 ident: 9518_CR12 – volume-title: Classical Mechanics year: 1980 ident: 9518_CR24 – volume: 192 start-page: 421 year: 2003 ident: 9518_CR31 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(02)00520-0 – volume: 164 start-page: 307 year: 1998 ident: 9518_CR30 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(98)00031-0 |
| SSID | ssj0021549 |
| Score | 2.212121 |
| Snippet | A novel ODE time stepping scheme for solving rotational kinematics in terms of unit quaternions is presented in the paper. This scheme inherently respects the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 201 |
| SubjectTerms | Algorithms Automotive Engineering Control Differential equations Dynamical Systems Electrical Engineering Engineering Kinematics Lie groups Mechanical Engineering Numerical integration Optimization Ordinary differential equations Quaternions Rotation Singularity (mathematics) Time integration Vibration |
| Title | Singularity-free time integration of rotational quaternions using non-redundant ordinary differential equations |
| URI | https://link.springer.com/article/10.1007/s11044-016-9518-7 https://www.proquest.com/docview/1880854349 |
| Volume | 38 |
| WOSCitedRecordID | wos000386347700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-272X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021549 issn: 1384-5640 databaseCode: RSV dateStart: 19970301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8QwDA9-PeiD3-L5RR98Ugq7tVvbRxHFBxHxVHwbW5eJIHe6nf79Jrvt7hQVFAZ7WFdKkjZJk_wCcOiiyGCqrcw8HYEanZJW61Dm3HZPaXIy8hoy_9JcXdmHB3fd1HFXbbZ7G5KsT-pJsRt5DpwxEUuyCqw0szBP2s5yv4ab3v3Yy2LMsdrLslpGsR6HMr-b4rMymliYX4Kita45X_nXKldhuTEtxclIFtZgBvvrsNKYmaLZxNU6LE1hEG7AoEcvzkUlc1wWJaLgdvOihZEgtolBIcrBsLk1FK9vKV8isrgKzpp_FP1BX5bI5WjEJkHebF3jK9reK3SGPAt8HWGKV5twd352e3ohmy4M0qtuPJSoVBaTzio8RlGmXV6oQsU-98Z0C-NSE2Y2JkMjsD7tYojKeWVSDKIgDXLErtqCOVoHboPIfGwyooqx5KQVzrjQo6bHWB3lxqYdCFp2JL6BKOdOGc_JBFyZyZtwWhqTNzEdOBr_8jLC5_ht8F7L46TZqlXCgHSWC2xdB45bnk59_mmynT-N3oXFkIWirmLcg7lh-Yb7sODfh09VeVBL8AdTYuvd |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDLfgmAQ87BgMcRsfeeBpKFKvSZvkcUIgJo4T4mPirWpTd5qE7kZ78Pdj99o7QDAJpEp9aBpFtuPYsf0zwL6LIoOptjLzpAI1OiWt1qHMue2e0uRk5DVk_sAMh_bmxp03ddxVm-3ehiRrTT0vdiPPgTMmYklWgZVmEZZorogB8y8uf8-8LMYcq70sq2UU61ko87Upnh9GcwvzRVC0PmuOux9a5Rp8bkxL8XMqC19gAUfr0G3MTNFs4modVp9gEG7A-JJenItK5rgsSkTB7eZFCyNBbBPjQpTjSXNrKO7uU75EZHEVnDX_R4zGI1kil6MRmwR5s3WNr2h7r5AOuRV4N8UUr77C9fHR1eGJbLowSK_68USiUllMZ1bhMYoy7fJCFSr2uTemXxiXmjCzMRkagfVpH0NUziuTYhAFaZAj9tUmdGgduAUi87HJiCrGkpNWOONCj5oeY3WUG5v2IGjZkfgGopw7Zdwmc3BlJm_CaWlM3sT04Mfsl39TfI7_Dd5ueZw0W7VKGJDOcoGt68FBy9Mnn9-a7Nu7Ru_B8snV2SAZ_BqefoeVkAWkrmjchs6kvMcd-OQfJn-rcreW5kdpvO7B |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXrwLa7PHDwpwW6TNslR1EVRFsEH3kqbTkVYdrWt_n4z3XZXRQURCj00DWFmksyXzHwDsG-CQGEsNU-sWwIlGsG1lD5PqeyekA5kpBVl_pXqdvXDg7mu65wWTbR7cyU5zGkglqZ-efScZkfjxDeHIih6IuTOQ9BcTcK0pDh6gus39yPERfxjFeLSkgehHF1rftfF541p7G1-uSCt9p3O4r9HvAQLtcvJjoc2sgwT2F-Bxdr9ZPXkLlZg_gM34SoMbtyLYlSdm86zHJFRGXrW0Es4dbJBxvJBWZ8mspfXmA4XyYwZRdM_sv6gz3OkNDWnPuZQbpX7y5qaLG5t6TF8GXKNF2tw1zm7PTnndXUGbkU7LDkKkYRuL8ssBkEiTZqJTIQ2tUq1M2Vi5Sc6dA6Ip23cRh-FsULF6AVe7KWIbbEOU24cuAEssaFKnFSUduAtM8r4FqV7lJZBqnTcAq9RTWRr6nKqoNGLxqTLJN6IwtVIvJFqwcHol-chb8dvjbcbfUf1FC4iIqrTlHhrWnDY6PfD55862_xT6z2YvT7tRFcX3cstmPPJPqpEx22YKvNX3IEZ-1Y-FfluZdjvE7j3pQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Singularity-free+time+integration+of+rotational+quaternions+using+non-redundant+ordinary+differential+equations&rft.jtitle=Multibody+system+dynamics&rft.au=Terze%2C+Zdravko&rft.au=M%C3%BCller%2C+Andreas&rft.au=Zlatar%2C+Dario&rft.date=2016-11-01&rft.issn=1384-5640&rft.eissn=1573-272X&rft.volume=38&rft.issue=3&rft.spage=201&rft.epage=225&rft_id=info:doi/10.1007%2Fs11044-016-9518-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11044_016_9518_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5640&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5640&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5640&client=summon |