Particulate matter pollution prone-areas mapping using an enhanced explainable ensemble meta-algorithm
Particulate matter pollution in the air, especially PM2.5 and PM10, remains a critical environmental concern, particularly in urban areas like Tehran. Identifying areas susceptible to particulate matter pollution through mapping is crucial for effective public health management, informed urban plann...
Gespeichert in:
| Veröffentlicht in: | International journal of digital earth Jg. 18; H. 2 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Taylor & Francis Group
31.12.2025
|
| Schlagworte: | |
| ISSN: | 1753-8947, 1753-8955 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Particulate matter pollution in the air, especially PM2.5 and PM10, remains a critical environmental concern, particularly in urban areas like Tehran. Identifying areas susceptible to particulate matter pollution through mapping is crucial for effective public health management, informed urban planning, and formulating policies to combat air pollution. This study introduces an advanced approach to spatial modeling and susceptibility mapping of PM2.5 and PM10 pollutants in Tehran, utilizing an advanced XGBoost (eXtreme Gradient Boosting) algorithm and metaheuristic optimization algorithms (Bat and artificial bee colony (ABC)). Moreover, due to the black-box nature of machine learning algorithms in this research, an interpretable approach, namely SHAP (Shapley Additive exPlanations), has been employed. Significantly, higher temperatures, lower altitudes, moderate rainfall, and proximity to industrial zones were identified as crucial factors by the SHAP method. The evaluation results of particulate matter susceptibility maps using the receiver operating characteristic (ROC) curve indicated a higher accuracy for the XGBoost-Bat (PM2.5 = 95.9% and PM10 = 97.4%) algorithm than the XGBoost-ABC (PM2.5 = 95.5% and PM10 = 96.7%) and XGBoost (PM2.5 = 92.8% and PM10 = 96.3%) algorithms. This integrated framework provides a comprehensive understanding of particulate matter pollution and offers valuable insights for targeted interventions and urban planning in Tehran. |
|---|---|
| AbstractList | Particulate matter pollution in the air, especially PM2.5 and PM10, remains a critical environmental concern, particularly in urban areas like Tehran. Identifying areas susceptible to particulate matter pollution through mapping is crucial for effective public health management, informed urban planning, and formulating policies to combat air pollution. This study introduces an advanced approach to spatial modeling and susceptibility mapping of PM2.5 and PM10 pollutants in Tehran, utilizing an advanced XGBoost (eXtreme Gradient Boosting) algorithm and metaheuristic optimization algorithms (Bat and artificial bee colony (ABC)). Moreover, due to the black-box nature of machine learning algorithms in this research, an interpretable approach, namely SHAP (Shapley Additive exPlanations), has been employed. Significantly, higher temperatures, lower altitudes, moderate rainfall, and proximity to industrial zones were identified as crucial factors by the SHAP method. The evaluation results of particulate matter susceptibility maps using the receiver operating characteristic (ROC) curve indicated a higher accuracy for the XGBoost-Bat (PM2.5 = 95.9% and PM10 = 97.4%) algorithm than the XGBoost-ABC (PM2.5 = 95.5% and PM10 = 96.7%) and XGBoost (PM2.5 = 92.8% and PM10 = 96.3%) algorithms. This integrated framework provides a comprehensive understanding of particulate matter pollution and offers valuable insights for targeted interventions and urban planning in Tehran. |
| Author | Pirasteh, Saied Sadeghi-Niaraki, Abolghasem Razavi-Termeh, Seyed Vahid Choi, Soo-Mi Ali, Farman |
| Author_xml | – sequence: 1 givenname: Seyed Vahid surname: Razavi-Termeh fullname: Razavi-Termeh, Seyed Vahid – sequence: 2 givenname: Abolghasem surname: Sadeghi-Niaraki fullname: Sadeghi-Niaraki, Abolghasem – sequence: 3 givenname: Farman surname: Ali fullname: Ali, Farman – sequence: 4 givenname: Saied surname: Pirasteh fullname: Pirasteh, Saied – sequence: 5 givenname: Soo-Mi surname: Choi fullname: Choi, Soo-Mi |
| BookMark | eNo9kNtKw0AQhhepYFt9BCEvkLrnTS6leCgU9EKvl9lTm5ITuyno25u0tTczwz_wDfMt0KztWo_QI8Erggv8RJRgRcnVimIqVlQIJQi5QfMpz4tSiNl15uoOLVI6YCwx52yOwifEobLHGgafNTAMPmZ9V9fHoerarI_jpRyihzQu-75qd9kxTRXazLd7aK13mf_pa6haMLUfw-SbaWj8ADnUuy5Ww765R7cB6uQfLn2Jvl9fvtbv-fbjbbN-3uaWETnkDoKiYAW3rCQyGFIoHwrmjBMSVBmkMYWgzjDmHHXScApAXCipwZIZRtkSbc5c18FB97FqIP7qDip9Crq406d_a69VwanxFhNOgFOLwdkQJKYlcUYQLEaWOLNs7FKKPlx5BOtJvP4Xryfx-iKe_QESJXqZ |
| Cites_doi | 10.1016/j.trd.2017.03.013 10.1080/08839514.2015.1038434 10.4249/scholarpedia.6915 10.1016/j.envpol.2020.114635 10.5194/adgeo-4-63-2005 10.3390/math10081283 10.1016/j.rsase.2023.101011 10.1016/j.scitotenv.2014.01.025 10.1016/j.ejrs.2024.06.005 10.1016/j.scs.2022.103675 10.1016/j.apr.2016.03.007 10.1016/j.jenvman.2023.117357 10.3390/atmos10070373 10.1080/10494820.2021.1928235 10.1016/j.apr.2018.12.017 10.1016/j.scitotenv.2019.134474 10.1515/cait-2017-0027 10.1016/j.chemosphere.2022.136353 10.1088/1755-1315/1054/1/012046 10.3390/rs13163222 10.1080/10106049.2021.2001580 10.3390/ijerph16132288 10.1016/j.cam.2012.01.013 10.3390/rs14205239 10.1007/s40201-020-00573-x 10.1167/iovs.12-10598 10.4209/aaqr.2016.03.0117 10.1016/j.apr.2021.101235 10.3390/ijerph191710908 10.1109/ICCCSP49186.2020.9315283 10.5194/acp-23-771-2023 10.1016/j.envpol.2017.12.070 10.1016/j.envpol.2021.116846 10.1016/1352-2310(95)00219-7 10.1016/j.pce.2021.103043 10.1177/0956247808096127 10.1016/j.asr.2024.07.013 10.1371/journal.pone.0091917 10.1080/10473289.2006.10464559 10.3390/cancers15245793 10.1016/j.envres.2014.06.029 10.1016/j.scs.2021.103592 10.1016/j.apgeochem.2019.03.018 10.1016/j.envpol.2021.116971 10.1016/j.autcon.2020.103155 10.3390/su14169951 10.4000/cybergeo.24798 10.3390/land12051018 10.1016/j.aap.2019.105405 10.1016/j.scitotenv.2019.134123 10.3390/ijgi8020099 10.1007/s10653-022-01331-8 10.1016/j.gloplacha.2012.10.021 10.3389/fendo.2018.00680 10.1080/19475683.2023.2183523 10.1007/s11869-023-01456-4 10.1016/j.aeaoa.2023.100222 10.3390/su11216019 10.1016/j.envpol.2021.117859 10.1016/j.scitotenv.2018.07.073 10.1007/s11356-011-0546-9 10.1080/10106049.2021.1878291 10.1016/j.ins.2010.07.015 10.3390/rs12142180 10.1016/j.atmosenv.2015.01.052 10.1029/2018JG004828 10.1016/j.apr.2022.101547 10.1016/j.eti.2023.103272 10.1080/19475683.2018.1534889 10.1016/j.jenvman.2023.118790 10.1080/17549507.2022.2138544 10.3390/atmos13030484 10.1016/j.scs.2022.104002 10.4209/aaqr.2016.07.0294 10.1016/j.proci.2022.06.001 10.1016/j.atmosenv.2018.10.036 10.1016/j.envint.2022.107691 10.1016/j.apr.2021.101202 10.1016/j.cities.2019.01.032 10.1016/j.cities.2007.04.001 10.1016/j.jhydrol.2023.129100 10.1080/19475683.2012.727866 10.3390/math7020135 10.1007/s11831-022-09817-5 10.1145/3380973 10.3389/fgene.2019.01077 10.1016/j.compag.2025.110490 10.3390/app12042126 10.1007/s11356-021-16150-0 10.1016/j.scs.2022.104183 10.1155/2022/5245622 10.1007/s11356-021-13255-4 10.1007/s12517-021-07056-9 10.1080/10106049.2022.2076928 10.12911/22998993/113074 10.1016/j.eiar.2009.04.001 10.1016/S0197-3975(01)00025-X 10.1016/j.envpol.2018.08.029 10.1016/j.jclepro.2021.129072 10.1016/j.asoc.2016.05.007 10.1007/s10874-021-09421-0 10.1016/j.eswa.2016.10.050 10.1016/B978-0-12-818234-5.00039-0 10.1016/j.envint.2020.105801 10.1016/j.ecolind.2023.109881 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.1080/17538947.2025.2557511 |
| DatabaseName | CrossRef Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 1753-8955 |
| ExternalDocumentID | oai_doaj_org_article_7842bec0141a42c0adcff60291db5105 10_1080_17538947_2025_2557511 |
| GroupedDBID | .7F 0YH 30N 4.4 5GY AAHBH AAJMT AAYXX ABCCY ABDBF ABFIM ABPEM ABTAI ACGFS ACIWK ACTIO ACUHS ADCVX ADMSI AEISY AENEX AEYOC AFKVX AFRAH AHDSZ AHDZW AIJEM AIYEW AJWEG ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW BLEHA CCCUG CE4 CITATION CS3 DGEBU DKSSO DU5 EBS ESX GROUPED_DOAJ GTTXZ H13 HZ~ J~4 KYCEM LJTGL M4Z ML. O9- OK1 SNACF TDBHL TFL TFW TTHFI TWF TWN UU3 VAE |
| ID | FETCH-LOGICAL-c316t-daf72ac54c3916fb187ef83dbd56a79f6bb852db33dd2d6b42aa1df92b063b323 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001578468000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1753-8947 |
| IngestDate | Mon Nov 10 04:33:10 EST 2025 Sat Nov 29 07:22:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-daf72ac54c3916fb187ef83dbd56a79f6bb852db33dd2d6b42aa1df92b063b323 |
| OpenAccessLink | https://doaj.org/article/7842bec0141a42c0adcff60291db5105 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7842bec0141a42c0adcff60291db5105 crossref_primary_10_1080_17538947_2025_2557511 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-31 |
| PublicationDateYYYYMMDD | 2025-12-31 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of digital earth |
| PublicationYear | 2025 |
| Publisher | Taylor & Francis Group |
| Publisher_xml | – name: Taylor & Francis Group |
| References | e_1_3_3_50_1 e_1_3_3_77_1 e_1_3_3_117_1 e_1_3_3_39_1 e_1_3_3_16_1 e_1_3_3_58_1 e_1_3_3_92_1 e_1_3_3_12_1 Denis E. (e_1_3_3_30_1) 2010 e_1_3_3_31_1 e_1_3_3_54_1 e_1_3_3_73_1 e_1_3_3_96_1 e_1_3_3_113_1 e_1_3_3_61_1 e_1_3_3_88_1 e_1_3_3_9_1 e_1_3_3_105_1 e_1_3_3_109_1 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_69_1 e_1_3_3_80_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_42_1 e_1_3_3_65_1 e_1_3_3_84_1 e_1_3_3_101_1 Ajaj Q. M. (e_1_3_3_6_1) 2025; 6 e_1_3_3_76_1 e_1_3_3_99_1 Enayatrad M. (e_1_3_3_35_1) 2019; 48 e_1_3_3_116_1 e_1_3_3_19_1 e_1_3_3_38_1 e_1_3_3_91_1 e_1_3_3_15_1 e_1_3_3_57_1 e_1_3_3_72_1 e_1_3_3_95_1 e_1_3_3_112_1 e_1_3_3_11_1 e_1_3_3_53_1 Muhammad M. (e_1_3_3_71_1) 2022; 13 e_1_3_3_41_1 e_1_3_3_87_1 e_1_3_3_60_1 e_1_3_3_108_1 e_1_3_3_8_1 Memić B. (e_1_3_3_68_1) 2023 e_1_3_3_49_1 e_1_3_3_100_1 e_1_3_3_26_1 e_1_3_3_45_1 e_1_3_3_83_1 e_1_3_3_104_1 Doygun N. (e_1_3_3_34_1) 2020; 21 e_1_3_3_22_1 e_1_3_3_64_1 e_1_3_3_52_1 e_1_3_3_75_1 e_1_3_3_98_1 e_1_3_3_79_1 Micheal V. A. (e_1_3_3_70_1) 2014; 2 e_1_3_3_18_1 e_1_3_3_37_1 e_1_3_3_90_1 e_1_3_3_111_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_56_1 e_1_3_3_94_1 e_1_3_3_115_1 e_1_3_3_40_1 e_1_3_3_63_1 e_1_3_3_86_1 e_1_3_3_7_1 e_1_3_3_107_1 e_1_3_3_29_1 e_1_3_3_25_1 e_1_3_3_48_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_44_1 e_1_3_3_67_1 e_1_3_3_82_1 e_1_3_3_103_1 e_1_3_3_97_1 e_1_3_3_51_1 e_1_3_3_78_1 Song Y. (e_1_3_3_89_1) 2022; 2022 e_1_3_3_17_1 Adeboye N. O. (e_1_3_3_4_1) 2014; 10 e_1_3_3_110_1 e_1_3_3_13_1 e_1_3_3_59_1 e_1_3_3_36_1 e_1_3_3_93_1 e_1_3_3_114_1 e_1_3_3_55_1 Anandababu D. (e_1_3_3_14_1) 2018; 4 e_1_3_3_32_1 e_1_3_3_74_1 e_1_3_3_62_1 Bhargav A. (e_1_3_3_20_1) 2020; 1 e_1_3_3_106_1 e_1_3_3_28_1 e_1_3_3_24_1 e_1_3_3_47_1 e_1_3_3_81_1 e_1_3_3_2_1 e_1_3_3_66_1 e_1_3_3_43_1 e_1_3_3_85_1 e_1_3_3_102_1 |
| References_xml | – ident: e_1_3_3_18_1 doi: 10.1016/j.trd.2017.03.013 – ident: e_1_3_3_25_1 doi: 10.1080/08839514.2015.1038434 – ident: e_1_3_3_8_1 – ident: e_1_3_3_46_1 doi: 10.4249/scholarpedia.6915 – ident: e_1_3_3_22_1 doi: 10.1016/j.envpol.2020.114635 – start-page: 659 volume-title: In International Conference “New Technologies, Development and Applications” year: 2023 ident: e_1_3_3_68_1 – ident: e_1_3_3_66_1 doi: 10.5194/adgeo-4-63-2005 – ident: e_1_3_3_24_1 doi: 10.3390/math10081283 – ident: e_1_3_3_96_1 doi: 10.1016/j.rsase.2023.101011 – volume: 2 start-page: 404 year: 2014 ident: e_1_3_3_70_1 article-title: Estimation of Regression Coefficients in the Presence of Multicollinearity publication-title: Social and Basic Sciences Research Review – ident: e_1_3_3_33_1 doi: 10.1016/j.scitotenv.2014.01.025 – ident: e_1_3_3_95_1 doi: 10.1016/j.ejrs.2024.06.005 – volume: 10 start-page: 16 issue: 4 year: 2014 ident: e_1_3_3_4_1 article-title: Estimation of the Effect of Multicollinearity on the Standard Error for Regression Coefficients publication-title: Journal of Mathematics – ident: e_1_3_3_37_1 doi: 10.1016/j.scs.2022.103675 – ident: e_1_3_3_76_1 doi: 10.1016/j.apr.2016.03.007 – ident: e_1_3_3_112_1 doi: 10.1016/j.jenvman.2023.117357 – ident: e_1_3_3_110_1 doi: 10.3390/atmos10070373 – ident: e_1_3_3_16_1 doi: 10.1080/10494820.2021.1928235 – ident: e_1_3_3_73_1 doi: 10.1016/j.apr.2018.12.017 – volume: 6 start-page: 300 issue: 2 year: 2025 ident: e_1_3_3_6_1 article-title: Air Quality Regression Analysis over Iraq during Severe Dust Periods Using GIS and Remotely Sensed PM2.5 publication-title: DYSONA - Applied Science – ident: e_1_3_3_26_1 doi: 10.1016/j.scitotenv.2019.134474 – ident: e_1_3_3_52_1 doi: 10.1515/cait-2017-0027 – ident: e_1_3_3_75_1 doi: 10.1016/j.chemosphere.2022.136353 – ident: e_1_3_3_44_1 doi: 10.1088/1755-1315/1054/1/012046 – ident: e_1_3_3_78_1 doi: 10.3390/rs13163222 – ident: e_1_3_3_28_1 doi: 10.1080/10106049.2021.2001580 – ident: e_1_3_3_107_1 doi: 10.3390/ijerph16132288 – ident: e_1_3_3_39_1 doi: 10.1016/j.cam.2012.01.013 – ident: e_1_3_3_55_1 doi: 10.3390/rs14205239 – ident: e_1_3_3_101_1 doi: 10.1007/s40201-020-00573-x – ident: e_1_3_3_82_1 doi: 10.1167/iovs.12-10598 – volume: 48 start-page: 1082 issue: 6 year: 2019 ident: e_1_3_3_35_1 article-title: Determining the Levels of Urbanization in Iran Using Hierarchical Clustering publication-title: Iranian Journal of Public Health – ident: e_1_3_3_72_1 doi: 10.4209/aaqr.2016.03.0117 – volume: 4 start-page: 177 year: 2018 ident: e_1_3_3_14_1 article-title: Estimation of Land Surface Temperature Using Landsat 8 Data publication-title: International Journal of Advance Research – ident: e_1_3_3_47_1 doi: 10.1016/j.apr.2021.101235 – ident: e_1_3_3_97_1 doi: 10.3390/ijerph191710908 – ident: e_1_3_3_88_1 doi: 10.1109/ICCCSP49186.2020.9315283 – ident: e_1_3_3_111_1 doi: 10.5194/acp-23-771-2023 – ident: e_1_3_3_56_1 doi: 10.1016/j.envpol.2017.12.070 – ident: e_1_3_3_105_1 doi: 10.1016/j.envpol.2021.116846 – ident: e_1_3_3_60_1 doi: 10.1016/1352-2310(95)00219-7 – ident: e_1_3_3_79_1 doi: 10.1016/j.pce.2021.103043 – ident: e_1_3_3_81_1 doi: 10.1177/0956247808096127 – ident: e_1_3_3_104_1 doi: 10.1016/j.asr.2024.07.013 – ident: e_1_3_3_117_1 doi: 10.1371/journal.pone.0091917 – ident: e_1_3_3_15_1 – ident: e_1_3_3_40_1 doi: 10.1080/10473289.2006.10464559 – ident: e_1_3_3_2_1 doi: 10.3390/cancers15245793 – ident: e_1_3_3_59_1 doi: 10.1016/j.envres.2014.06.029 – ident: e_1_3_3_13_1 doi: 10.1016/j.scs.2021.103592 – ident: e_1_3_3_51_1 doi: 10.1016/j.apgeochem.2019.03.018 – volume: 13 start-page: 400 issue: 1 year: 2022 ident: e_1_3_3_71_1 article-title: Investigating the Effect of Altitude and Meteorological Parameters on the Concentration of Particulate Matter at an Urban Area of Kano State, Nigeria publication-title: Bayero Journal of Pure and Applied Sciences – ident: e_1_3_3_43_1 doi: 10.1016/j.envpol.2021.116971 – ident: e_1_3_3_32_1 doi: 10.1016/j.autcon.2020.103155 – ident: e_1_3_3_93_1 doi: 10.3390/su14169951 – year: 2010 ident: e_1_3_3_30_1 article-title: Toward a Better Appraisal of Urbanization in India. A Fresh Look at the Landscape of Morphological Agglomerates publication-title: Cybergeo: European Journal of Geography doi: 10.4000/cybergeo.24798 – ident: e_1_3_3_94_1 doi: 10.3390/land12051018 – ident: e_1_3_3_74_1 doi: 10.1016/j.aap.2019.105405 – ident: e_1_3_3_38_1 doi: 10.1016/j.scitotenv.2019.134123 – ident: e_1_3_3_29_1 doi: 10.3390/ijgi8020099 – ident: e_1_3_3_53_1 doi: 10.1007/s10653-022-01331-8 – ident: e_1_3_3_69_1 doi: 10.1016/j.gloplacha.2012.10.021 – ident: e_1_3_3_42_1 doi: 10.3389/fendo.2018.00680 – ident: e_1_3_3_84_1 doi: 10.1080/19475683.2023.2183523 – ident: e_1_3_3_86_1 doi: 10.1007/s11869-023-01456-4 – ident: e_1_3_3_49_1 doi: 10.1016/j.aeaoa.2023.100222 – ident: e_1_3_3_3_1 doi: 10.3390/su11216019 – ident: e_1_3_3_87_1 doi: 10.1016/j.envpol.2021.117859 – ident: e_1_3_3_106_1 doi: 10.1016/j.scitotenv.2018.07.073 – ident: e_1_3_3_63_1 doi: 10.1007/s11356-011-0546-9 – ident: e_1_3_3_62_1 doi: 10.1080/10106049.2021.1878291 – ident: e_1_3_3_7_1 doi: 10.1016/j.ins.2010.07.015 – volume: 21 start-page: 481 issue: 4 year: 2020 ident: e_1_3_3_34_1 article-title: Assessment of Public Perception on Urban Environmental Problems by Using Q Methodology publication-title: Turkish Journal of Forestry – ident: e_1_3_3_114_1 doi: 10.3390/rs12142180 – ident: e_1_3_3_45_1 doi: 10.1016/j.atmosenv.2015.01.052 – ident: e_1_3_3_98_1 doi: 10.1029/2018JG004828 – ident: e_1_3_3_50_1 doi: 10.1016/j.apr.2022.101547 – ident: e_1_3_3_91_1 doi: 10.1016/j.eti.2023.103272 – ident: e_1_3_3_19_1 doi: 10.1080/19475683.2018.1534889 – ident: e_1_3_3_80_1 doi: 10.1016/j.jenvman.2023.118790 – ident: e_1_3_3_102_1 doi: 10.1080/17549507.2022.2138544 – ident: e_1_3_3_27_1 doi: 10.3390/atmos13030484 – ident: e_1_3_3_109_1 doi: 10.1016/j.scs.2022.104002 – ident: e_1_3_3_31_1 doi: 10.4209/aaqr.2016.07.0294 – ident: e_1_3_3_58_1 doi: 10.1016/j.proci.2022.06.001 – ident: e_1_3_3_48_1 doi: 10.1016/j.atmosenv.2018.10.036 – ident: e_1_3_3_113_1 doi: 10.1016/j.envint.2022.107691 – ident: e_1_3_3_100_1 doi: 10.1016/j.apr.2021.101202 – ident: e_1_3_3_10_1 doi: 10.1016/j.cities.2019.01.032 – ident: e_1_3_3_17_1 doi: 10.1016/j.cities.2007.04.001 – ident: e_1_3_3_67_1 doi: 10.1016/j.jhydrol.2023.129100 – ident: e_1_3_3_36_1 doi: 10.1080/19475683.2012.727866 – ident: e_1_3_3_103_1 doi: 10.3390/math7020135 – ident: e_1_3_3_85_1 doi: 10.1007/s11831-022-09817-5 – volume: 1 issue: 4 year: 2020 ident: e_1_3_3_20_1 article-title: Air Pollution-Sources and Classification publication-title: Open Acc Journal of Biological Sciences & Research – ident: e_1_3_3_92_1 doi: 10.1145/3380973 – ident: e_1_3_3_54_1 doi: 10.3389/fgene.2019.01077 – ident: e_1_3_3_90_1 doi: 10.1016/j.compag.2025.110490 – ident: e_1_3_3_12_1 doi: 10.3390/app12042126 – ident: e_1_3_3_99_1 doi: 10.1007/s11356-021-16150-0 – ident: e_1_3_3_9_1 doi: 10.1016/j.scs.2022.104183 – volume: 2022 start-page: 5245622 issue: 1 year: 2022 ident: e_1_3_3_89_1 article-title: A Method of Intrusion Detection Based on woa-xgboost Algorithm publication-title: Discrete Dynamics in Nature and Society doi: 10.1155/2022/5245622 – ident: e_1_3_3_11_1 doi: 10.1007/s11356-021-13255-4 – ident: e_1_3_3_61_1 doi: 10.1007/s12517-021-07056-9 – ident: e_1_3_3_116_1 doi: 10.1080/10106049.2022.2076928 – ident: e_1_3_3_77_1 doi: 10.12911/22998993/113074 – ident: e_1_3_3_83_1 doi: 10.1016/j.eiar.2009.04.001 – ident: e_1_3_3_64_1 doi: 10.1016/S0197-3975(01)00025-X – ident: e_1_3_3_108_1 doi: 10.1016/j.envpol.2018.08.029 – ident: e_1_3_3_65_1 doi: 10.1016/j.jclepro.2021.129072 – ident: e_1_3_3_115_1 doi: 10.1016/j.asoc.2016.05.007 – ident: e_1_3_3_21_1 doi: 10.1007/s10874-021-09421-0 – ident: e_1_3_3_23_1 doi: 10.1016/j.eswa.2016.10.050 – ident: e_1_3_3_57_1 doi: 10.1016/B978-0-12-818234-5.00039-0 – ident: e_1_3_3_41_1 doi: 10.1016/j.envint.2020.105801 – ident: e_1_3_3_5_1 doi: 10.1016/j.ecolind.2023.109881 |
| SSID | ssj0060443 |
| Score | 2.36128 |
| Snippet | Particulate matter pollution in the air, especially PM2.5 and PM10, remains a critical environmental concern, particularly in urban areas like Tehran.... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| SubjectTerms | explainable method machine learning metaheuristic algorithms Particulate matter pollution prone-area maps |
| Title | Particulate matter pollution prone-areas mapping using an enhanced explainable ensemble meta-algorithm |
| URI | https://doaj.org/article/7842bec0141a42c0adcff60291db5105 |
| Volume | 18 |
| WOSCitedRecordID | wos001578468000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1753-8955 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060443 issn: 1753-8947 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1753-8955 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060443 issn: 1753-8947 databaseCode: TFW dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis – providerCode: PRVAWR databaseName: Taylor & Francis Open Access customDbUrl: eissn: 1753-8955 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060443 issn: 1753-8947 databaseCode: 0YH dateStart: 20221201 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEN4o8eDF-CLig-zBa6HdR3d7VAPhRDhogqdmn0AClUA1_nx32qJ48uKtmW3ayTf7mMnOfIPQPRVcOG5ZCEuYjcIMcZFmDtZV5o0SRguuq2YTYjyW02k22Wv1BTlhNT1wDVxfSEbCfyAfUTFiYmWN92lMssRqcA5g9w1ezy6YqvfgNGZ1an1wxiOZMbGr3ZFxH2QgCrEh4b3gUQueJL9OpT3y_uqUGZ6ik8Y9xA-1WmfowBXnqD34qUYLg81y3F4gP6n0hw5cDq8qpky8ht7FgDYOe2PhIgVZ52EQeBhmGNLcZ1gV2BXz6u4fu8_1sqmgCsKtW8HDypUqUsvZ22ZRzleX6GU4eH4aRU3jhMjQJC0jq7wgynBmoKzW60QK5yW12vJUicynWktOrKbUWmJTzYhSifUZ0cFh0ZTQNmoVQcUrhIXwinKTWJNp5rWVwlMpaIhzDHdcmQ7q7YDL1zU_Rp40tKM7pHNAOm-Q7qBHgPf7ZaC3rgTB6Hlj9Pwvo1__x0du0DEoVrM23qJWuXl3d-jIfJSL7aaLDuPXUbeaVV9Ihs_p |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particulate+matter+pollution+prone-areas+mapping+using+an+enhanced+explainable+ensemble+meta-algorithm&rft.jtitle=International+journal+of+digital+earth&rft.au=Razavi-Termeh%2C+Seyed+Vahid&rft.au=Sadeghi-Niaraki%2C+Abolghasem&rft.au=Ali%2C+Farman&rft.au=Pirasteh%2C+Saied&rft.date=2025-12-31&rft.issn=1753-8947&rft.eissn=1753-8955&rft.volume=18&rft.issue=2&rft_id=info:doi/10.1080%2F17538947.2025.2557511&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_17538947_2025_2557511 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1753-8947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1753-8947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1753-8947&client=summon |