More Efficient Oblivious Transfer Extensions

Oblivious transfer (OT) is one of the most fundamental primitives in cryptography and is widely used in protocols for secure two-party and multi-party computation. As secure computation becomes more practical, the need for practical large-scale OT protocols is becoming more evident. OT extensions ar...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cryptology Vol. 30; no. 3; pp. 805 - 858
Main Authors: Asharov, Gilad, Lindell, Yehuda, Schneider, Thomas, Zohner, Michael
Format: Journal Article
Language:English
Published: New York Springer US 01.07.2017
Springer Nature B.V
Subjects:
ISSN:0933-2790, 1432-1378
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Oblivious transfer (OT) is one of the most fundamental primitives in cryptography and is widely used in protocols for secure two-party and multi-party computation. As secure computation becomes more practical, the need for practical large-scale OT protocols is becoming more evident. OT extensions are protocols that enable a relatively small number of “base-OTs” to be utilized to compute a very large number of OTs at low cost. In the semi-honest setting, Ishai et al. (Advances in cryptology—CRYPTO’03, vol 2729 of LNCS, Springer, 2003 ) presented an OT extension protocol for which the cost of each OT (beyond the base-OTs) is just a few hash function operations. In the malicious setting, Nielsen et al. (Advances in cryptology—CRYPTO’12, vol 7417 of LNCS, Springer, 2012 ) presented an efficient OT extension protocol for the setting of malicious adversaries that is secure in a random oracle model. In this work, we improve OT extensions with respect to communication complexity, computation complexity, and scalability in the semi-honest, covert, and malicious model. Furthermore, we show how to modify our maliciously secure OT extension protocol to achieve security with respect to a version of correlation robustness instead of the random oracle. We also provide specific optimizations of OT extensions that are tailored to the use of OT in various secure computation protocols such as Yao’s garbled circuits and the protocol of Goldreich–Micali–Wigderson, which reduce the communication complexity even further. We experimentally verify the efficiency gains of our protocols and optimizations.
AbstractList Oblivious transfer (OT) is one of the most fundamental primitives in cryptography and is widely used in protocols for secure two-party and multi-party computation. As secure computation becomes more practical, the need for practical large-scale OT protocols is becoming more evident. OT extensions are protocols that enable a relatively small number of “base-OTs” to be utilized to compute a very large number of OTs at low cost. In the semi-honest setting, Ishai et al. (Advances in cryptology—CRYPTO’03, vol 2729 of LNCS, Springer, 2003) presented an OT extension protocol for which the cost of each OT (beyond the base-OTs) is just a few hash function operations. In the malicious setting, Nielsen et al. (Advances in cryptology—CRYPTO’12, vol 7417 of LNCS, Springer, 2012) presented an efficient OT extension protocol for the setting of malicious adversaries that is secure in a random oracle model. In this work, we improve OT extensions with respect to communication complexity, computation complexity, and scalability in the semi-honest, covert, and malicious model. Furthermore, we show how to modify our maliciously secure OT extension protocol to achieve security with respect to a version of correlation robustness instead of the random oracle. We also provide specific optimizations of OT extensions that are tailored to the use of OT in various secure computation protocols such as Yao’s garbled circuits and the protocol of Goldreich–Micali–Wigderson, which reduce the communication complexity even further. We experimentally verify the efficiency gains of our protocols and optimizations.
Oblivious transfer (OT) is one of the most fundamental primitives in cryptography and is widely used in protocols for secure two-party and multi-party computation. As secure computation becomes more practical, the need for practical large-scale OT protocols is becoming more evident. OT extensions are protocols that enable a relatively small number of “base-OTs” to be utilized to compute a very large number of OTs at low cost. In the semi-honest setting, Ishai et al. (Advances in cryptology—CRYPTO’03, vol 2729 of LNCS, Springer, 2003 ) presented an OT extension protocol for which the cost of each OT (beyond the base-OTs) is just a few hash function operations. In the malicious setting, Nielsen et al. (Advances in cryptology—CRYPTO’12, vol 7417 of LNCS, Springer, 2012 ) presented an efficient OT extension protocol for the setting of malicious adversaries that is secure in a random oracle model. In this work, we improve OT extensions with respect to communication complexity, computation complexity, and scalability in the semi-honest, covert, and malicious model. Furthermore, we show how to modify our maliciously secure OT extension protocol to achieve security with respect to a version of correlation robustness instead of the random oracle. We also provide specific optimizations of OT extensions that are tailored to the use of OT in various secure computation protocols such as Yao’s garbled circuits and the protocol of Goldreich–Micali–Wigderson, which reduce the communication complexity even further. We experimentally verify the efficiency gains of our protocols and optimizations.
Author Lindell, Yehuda
Asharov, Gilad
Schneider, Thomas
Zohner, Michael
Author_xml – sequence: 1
  givenname: Gilad
  surname: Asharov
  fullname: Asharov, Gilad
  organization: IBM T.J. Watson Research Center
– sequence: 2
  givenname: Yehuda
  surname: Lindell
  fullname: Lindell, Yehuda
  organization: The Department of Computer Science, Bar-Ilan University
– sequence: 3
  givenname: Thomas
  surname: Schneider
  fullname: Schneider, Thomas
  organization: Department of Computer Science
– sequence: 4
  givenname: Michael
  surname: Zohner
  fullname: Zohner, Michael
  email: michael.zohner@crisp-da.de
  organization: Department of Computer Science
BookMark eNp9kE1LAzEQQIMo2FZ_gLcFr0YnH5tkj1LqB1R6qeeQ3U0kpWZrkor-e1PWgwh6mst7M8ObouMwBIvQBYFrAiBvEgDhNQYicEOZwOIITQhnFBMm1TGaQMMYprKBUzRNaVNoWUs2QVdPQ7TVwjnfeRtytWq3_t0P-1StownJ2VgtPrINyQ8hnaETZ7bJnn_PGXq-W6znD3i5un-c3y5xx4jIuDdCtgqsooKKGkyvus5xR5UCwwhvFREtKOmA9g1pLOGNcgJY39Qdb4WlbIYux727OLztbcp6M-xjKCc1KYYQnBMolBypLg4pRet057PJ5dEcjd9qAvqQRo9pdEmjD2m0KCb5Ze6ifzXx81-Hjk4qbHix8cdPf0pfRZt19A
CitedBy_id crossref_primary_10_1186_s12967_022_03671_6
crossref_primary_10_1049_qtc2_12010
crossref_primary_10_1109_ACCESS_2018_2846798
crossref_primary_10_1007_s11227_021_03826_0
crossref_primary_10_1186_s12911_022_01994_4
crossref_primary_10_1080_19393555_2022_2138798
crossref_primary_10_3390_app10124080
crossref_primary_10_1109_TDSC_2022_3185313
crossref_primary_10_1186_s12920_020_0718_x
crossref_primary_10_3390_e24070945
crossref_primary_10_1109_TBDATA_2023_3342623
crossref_primary_10_1109_TDSC_2021_3074439
crossref_primary_10_1145_3628446
Cites_doi 10.1145/2508859.2516701
10.1145/2046707.2093509
10.1145/2484313.2484369
10.1007/978-3-540-78524-8_22
10.1145/2382196.2382278
10.1109/T-C.1972.223584
10.1007/978-3-642-38980-1_21
10.1007/978-3-319-16295-9_20
10.1007/978-3-662-46800-5_26
10.1007/978-3-540-85174-5_31
10.1007/978-3-642-03168-7_14
10.1007/978-3-540-85174-5_32
10.1007/978-3-319-22174-8_3
10.1145/2508859.2516744
10.1007/978-3-642-19571-6_20
10.1007/978-3-662-48797-6_29
10.1007/978-3-642-40084-1_4
10.1145/3812.3818
10.1145/1064009.1064025
10.1007/978-3-662-44381-1_28
10.1145/2046707.2046786
10.1007/978-3-642-41320-9_11
10.1007/978-3-642-27954-6_26
10.1007/978-3-642-39884-1_23
10.1007/s001459910006
10.1007/s00145-009-9040-7
10.1145/1866307.1866358
10.1007/978-3-540-70583-3_40
10.1007/978-3-319-10879-7_23
10.1007/3-540-46766-1_34
10.14722/ndss.2015.23113
10.1145/237814.237996
10.1145/2810103.2813666
10.1007/978-3-642-36594-2_35
10.1109/SP.2013.39
10.1007/978-3-540-45146-4_9
10.1145/948109.948139
10.1007/978-3-662-47989-6_35
10.1007/978-3-642-32009-5_40
10.1017/CBO9780511721656
10.1145/2046707.2046787
10.1145/2382196.2382251
10.1145/1455770.1455804
10.1145/1374376.1374438
10.1109/SP.2013.30
10.1109/SFCS.1986.25
10.1007/978-3-642-36594-2_29
10.1145/2508859.2516738
10.1145/28395.28420
10.1007/0-387-34799-2_2
ContentType Journal Article
Copyright International Association for Cryptologic Research 2016
International Association for Cryptologic Research 2016.
Copyright_xml – notice: International Association for Cryptologic Research 2016
– notice: International Association for Cryptologic Research 2016.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00145-016-9236-6
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Education
Computer Science
EISSN 1432-1378
EndPage 858
ExternalDocumentID 10_1007_s00145_016_9236_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
28-
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EIS
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8M
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c316t-da67b80e8262650ad8ccf4f2880a314b816b087f02d919e1498f603d95c4b6e23
IEDL.DBID RSV
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405794700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0933-2790
IngestDate Wed Sep 17 23:53:29 EDT 2025
Sat Nov 29 06:12:31 EST 2025
Tue Nov 18 22:43:11 EST 2025
Fri Feb 21 02:32:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Oblivious transfer extension
Implementation
Cryptographic protocols
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-da67b80e8262650ad8ccf4f2880a314b816b087f02d919e1498f603d95c4b6e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://dx.doi.org/10.1007/s00145-016-9236-6
PQID 1919664410
PQPubID 2043756
PageCount 54
ParticipantIDs proquest_journals_1919664410
crossref_citationtrail_10_1007_s00145_016_9236_6
crossref_primary_10_1007_s00145_016_9236_6
springer_journals_10_1007_s00145_016_9236_6
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of cryptology
PublicationTitleAbbrev J Cryptol
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References B. Pinkas, T. Schneider, G. Segev, M. Zohner. Phasing: Private set intersection using permutation-based hashing, in USENIX Security’15, (USENIX, 2015), pp. 515–530
A. Holzer, M. Franz, S. Katzenbeisser, H. Veith. Secure two-party computations in ANSI C, in ACM Computer and Communications Security (CCS’12), (ACM, 2012) pp. 772–783
P. MacKenzie, A. Oprea, M.K. Reiter. Automatic generation of two-party computations, in ACM Computer and Communications Security (CCS’03), (ACM, 2003), pp. 210–219
Y. Huang, P. Chapman, D. Evans. Privacy-preserving applications on smartphones, in Hot topics in security (HotSec’11). USENIX, 2011
Y. Aumann, Y. Lindell. Security against covert adversaries: Efficient protocols for realistic adversaries, in Journal of Cryptology, vol. 23(2), (Springer, 2010) pp. 281–343
T. Chou, C. Orlandi. The simplest protocol for oblivious transfer, in Progress in Cryptology—LATINCRYPT’15, vol. 9230 of LNCS, (Springer, 2015), pp. 40–58
Y. Lindell, B. Pinkas. Secure two-party computation via cut-and-choose oblivious transfer, in Theory of Cryptography Conference (TCC’11), vol. 6597 of LNCS, (Springer, 2011), pp. 329–346
Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious transfer - efficiently, in Advances in Cryptology—CRYPTO’08, vol. 5157 of LNCS, (Springer, 2008), pp. 572–591
O. Goldreich. Foundations of Cryptography, vol. 2: Basic Applications. Cambridge University Press, 2004
CanettiRSecurity and composition of multiparty cryptographic protocolsJ. Cryptology2000131143202173290010.1007/s0014599100060957.68040
A.C. Yao. How to generate and exchange secrets, in Foundations of Computer Science (FOCS’86), (IEEE, 1986), pp. 162–167
K. Frikken, M. Atallah, C. Zhang. Privacy-preserving credit checking, in Electronic Commerce (EC’05), (ACM, 2005), pp. 147–154
F. Kerschbaum. Automatically optimizing secure computation, in ACM Computer and Communications Security (CCS’11), (ACM, 2011), pp. 703–714
NIST. NIST Special Publication 800-57, Recommendation for Key Management Part 1: General (Rev. 3). Technical report, NIST, 2012
W. Henecka, T. Schneider. Faster secure two-party computation with less memory, in ACM Symposium on Information, Computer and Communications Security (ASIACCS’13), (ACM, 2013), pp. 437–446
M. Bellare, V. Hoang, S. Keelveedhi, P. Rogaway. Efficient garbling from a fixed-key blockcipher, on IEEE Symposium on Security and Privacy (S&P’13), (IEEE, 2013), pp. 478–492
S. Even, O. Goldreich, A. Lempel. A randomized protocol for signing contracts, in Communications of the ACM, vol. 28(6), (ACM, 1985), pp. 637–647
V. Kolesnikov, R. Kumaresan. Improved OT extension for transferring short secrets, in Advances in Cryptology—CRYPTO’13, vol. 8043 of LNCS, (Springer, 2013) pp. 54–70
M. Naor, B. Pinkas. Efficient oblivious transfer protocols, in Symposium on Discrete Algorithms (SODA’01), (ACM/SIAM, 2001), pp. 448–457
S. S. Burra, E. Larraia, J. B. Nielsen, P. S. Nordholt, C. Orlandi, E. Orsini, P. Scholl, and N. P. Smart. High performance multi-party computation for binary circuits based on oblivious transfer. Cryptology ePrint Archive, Report 2015/472, 2015. Online: http://eprint.iacr.org/2015/472.
L. Lovász, M.D. Plummer. Matching Theory. Akadémiai Kiadó, Budapest, 1986. Also published as vol. 121 of the North-Holland Mathematics Studies, North-Holland Publishing, Amsterdam
I. Damgård, S. Zakarias. Constant-overhead secure computation of Boolean circuits using preprocessing, in Theory of cryptography conference (TCC’13), vol. 7785 of LNCS, (Springer, 2013), pp. 621–641
S.G. Choi, K.-W. Hwang, J. Katz, T. Malkin, D. Rubenstein. Secure multi-party computation of Boolean circuits with applications to privacy in on-line marketplaces, in Cryptographers’ Track at the RSA Conference (CT-RSA’12), vol. 7178 of LNCS, (Springer, 2012) pp. 416–432
Y. Huang, D. Evans, J. Katz. Private set intersection: Are garbled circuits better than custom protocols? in Network and Distributed System Security (NDSS’12). The Internet Society, 2012
D. Harnik, Y. Ishai, E. Kushilevitz, J. Buus Nielsen. OT-combiners via secure computation, in Theory of Cryptography Conference (TCC’08), vol. 4948 of LNCS, (Springer, 2008), pp. 393–411
V. Kolesnikov, T. Schneider. Improved garbled circuit: free XOR gates and applications, in International Colloquium on Automata, Languages and Programming (ICALP’08), vol. 5126 of LNCS, (Springer, 2008), pp. 486–498
G. Asharov, Y. Lindell, T. Schneider, M. Zohner. More efficient oblivious transfer extensions with security for malicious adversaries, in Advances in Cryptology—EUROCRYPT’15, vol. 9056 of LNCS, (Springer, 2015) pp. 673–701. Full version: http://eprint.iacr.org/2015/061
J.O. Eklundh. A fast computer method for matrix transposing, in IEEE Transactions on Computers, vol. C-21(7), (IEEE, 1972), pp. 801–803
B. Pinkas, T. Schneider, M. Zohner. Faster private set intersection based on ot extension, in USENIX Security’14, (USENIX, 2014), pp. 797–812
C. Peikert, V. Vaikuntanathan, B. Waters. A framework for efficient and composable oblivious transfer, in Advances in Cryptology—CRYPTO’08, vol. 5157 of LNCS, (Springer, 2008) pp. 554–571
D. Malkhi, N. Nisan, B. Pinkas, Y. Sella. Fairplay—a secure two-party computation system, in USENIX Security’04, (USENIX, 2004), pp. 287–302
T. Schneider, M. Zohner. GMW vs. Yao? Efficient secure two-party computation with low depth circuits, in Financial Cryptography and Data Security (FC’13), vol. 7859 of LNCS, (Springer, 2013), pp. 275–292
B. Kreuter, A. Shelat, C. Shen. Billion-gate secure computation with malicious adversaries, in USENIX Security’12, (USENIX, 2012), pp. 285–300
V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, N. Taft. Privacy-preserving ridge regression on hundreds of millions of records, in IEEE Symposium on Security and Privacy (S&P’13), (IEEE, 2013), pp. 334–348
Y. Huang, D. Evans, J. Katz, L. Malka. Faster secure two-party computation using garbled circuits, in USENIX Security’11, (USENIX, 2011), pp. 539–554
O. Goldreich, S. Micali, A. Wigderson. How to play any mental game or a completeness theorem for protocols with honest majority, in Symposium on Theory of Computing (STOC’87), (ACM, 1987), pp. 218–229
J. Bringer, H. Chabanne, A. Patey. SHADE: secure hamming distance computation from oblivious transfer, in Financial Cryptography and Data Security (FC’13), vol. 7862 of LNCS, (Springer, 2013), pp. 164–176
W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, I. Wehrenberg. TASTY: Tool for Automating Secure Two-partY computations, in ACM Computer and Communications Security (CCS’10), (ACM, 2010), pp. 451–462
M.O. Rabin. How to exchange secrets with oblivious transfer, TR-81 edition, 1981. Aiken Computation Lab, Harvard University.
G. Asharov, Y. Lindell, T. Schneider, M. Zohner. More efficient oblivious transfer and extensions for faster secure computation, in ACM Computer and Communications Security (CCS’13), pp. 535–548. ACM, 2013. Code: http://encrypto.de/code/OTExtension
A. Ben-David, N. Nisan, B. Pinkas. FairplayMP: a system for secure multi-party computation, in ACM Computer and Communications Security (CCS’08), (ACM, 2008) pp. 257–266
T. K. Frederiksen, J. B. Nielsen. Fast and maliciously secure two-party computation using the GPU, in Applied Cryptography and Network Security (ACNS’13), vol. 7954 of LNCS, (Springer, 2013), pp. 339–356
E. Larraia, E. Orsini, N.P. Smart. Dishonest majority multi-party computation for binary circuits, in Advances in Cryptology—CRYPTO’14, vol. 8617 of LNCS, (Springer, 2014), pp. 495–512
Y. Ishai, J. Kilian, K. Nissim, E. Petrank. Extending oblivious transfers efficiently, in Advances in Cryptology—CRYPTO’03, vol. 2729 of LNCS, (Springer, 2003), pp. 145–161
Y. Huang, L. Malka, D. Evans, J. Katz. Efficient privacy-preserving biometric identification, in Network and Distributed Security Symposium (NDSS’11). The Internet Society, 2011
D. Demmler, T. Schneider, M. Zohner. ABY—a framework for efficient mixed-protocol secure two-party computation, in Network and Distributed System Security (NDSS’15). The Internet Society, 2015
C. Dong, L. Chen, Z. Wen. When private set intersection meets big data: an efficient and scalable protocol, in ACM Computer and Communications Security (CCS’13), (ACM, 2013), pp. 789–800
I. Damgård, R. Lauritsen, T. Toft. An empirical study and some improvements of the MiniMac protocol for secure computation, in Security and Cryptography for Networks (SCN’14), vol. 8642 of LNCS, (Springer, 2014), pp. 398–415
L. Malka. VMCrypt—modular software architecture for scalable secure computation, in ACM Computer and Communications Security (CCS’11), (ACM, 2011), pp. 715–724
T.K. Frederiksen, M. Keller, E. Orsini, P. Scholl. A unified approach to MPC with preprocessing using OT, in Advances in Cryptology—ASIACRYPT’15, vol. 9452 of LNCS, (Springer, 2015), pp. 711–735
S.D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin, M. Raykova, Y. Vahlis. Secure two-party computation in sublinear (amortized) time, in ACM Computer and Communications Security (CCS’12), (ACM, 2012), pp. 513–524
D. Beaver. Correlated pseudorandomness and the complexity of private computations, in Symposium on the theory of computing (STOC’96), (ACM, 1996), pp. 479–488
Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, T. Toft. Privacy-preserving face recognition, in Privacy Enhancing Technologies Symposium (PETS’09), vol. 5672 of LNCS, (Springer, 2009), pp. 235–253
Y. Lindell, H. Zarosim. On the feasibility of extending oblivious transfer, in Theory of Cryptography Conference (TCC’13), vol. 7785 of LNCS, (Springer, 2013), pp. 519–538
M. Keller, E. Orsini, P. Scholl. Actively secure OT extension with optimal overhead, in Advances in Cryptology—CRYPTO’15, vol. 9215 of LNCS, (Springer, 2015), pp. 724–741
Y. Lindell, B. Riva. Blazing fast 2pc in the offline/online setting with security for malicious adversaries, in ACM Computer and Communications Security (CCS’15), (ACM, 2015), pp. 579–590
Y. Ishai, E. Kushilevitz, R. Ostrovsky, A. Sahai. Cryptogra
9236_CR25
9236_CR24
9236_CR27
9236_CR26
9236_CR21
9236_CR65
9236_CR20
9236_CR64
9236_CR23
9236_CR22
R Canetti (9236_CR10) 2000; 13
9236_CR29
9236_CR28
9236_CR61
9236_CR60
9236_CR63
9236_CR62
9236_CR36
9236_CR35
9236_CR38
9236_CR37
9236_CR32
9236_CR31
9236_CR34
9236_CR33
9236_CR39
9236_CR30
9236_CR47
9236_CR46
9236_CR49
9236_CR48
9236_CR43
9236_CR42
9236_CR45
9236_CR44
9236_CR1
9236_CR41
9236_CR40
9236_CR8
9236_CR14
9236_CR58
9236_CR9
9236_CR13
9236_CR57
9236_CR6
9236_CR16
9236_CR7
9236_CR15
9236_CR59
9236_CR4
9236_CR54
9236_CR5
9236_CR53
9236_CR2
9236_CR12
9236_CR56
9236_CR3
9236_CR11
9236_CR55
9236_CR18
9236_CR17
9236_CR19
9236_CR50
9236_CR52
9236_CR51
References_xml – reference: T. Schneider, M. Zohner. GMW vs. Yao? Efficient secure two-party computation with low depth circuits, in Financial Cryptography and Data Security (FC’13), vol. 7859 of LNCS, (Springer, 2013), pp. 275–292
– reference: I. Damgård, R. Lauritsen, T. Toft. An empirical study and some improvements of the MiniMac protocol for secure computation, in Security and Cryptography for Networks (SCN’14), vol. 8642 of LNCS, (Springer, 2014), pp. 398–415
– reference: Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, T. Toft. Privacy-preserving face recognition, in Privacy Enhancing Technologies Symposium (PETS’09), vol. 5672 of LNCS, (Springer, 2009), pp. 235–253
– reference: Y. Ejgenberg, M. Farbstein, M. Levy, Y. Lindell. SCAPI: the secure computation application programming interface. Cryptology ePrint Archive, Report 2012/629, 2012. Online: http://eprint.iacr.org/2012/629
– reference: A. Ben-David, N. Nisan, B. Pinkas. FairplayMP: a system for secure multi-party computation, in ACM Computer and Communications Security (CCS’08), (ACM, 2008) pp. 257–266
– reference: Y. Ishai, E. Kushilevitz, R. Ostrovsky, A. Sahai. Cryptography with constant computational overhead, in ACM Symposium on Theory of Computing (STOC’08), (ACM, 2008), pp. 433–442
– reference: M. Bellare, V. Hoang, S. Keelveedhi, P. Rogaway. Efficient garbling from a fixed-key blockcipher, on IEEE Symposium on Security and Privacy (S&P’13), (IEEE, 2013), pp. 478–492
– reference: D. Harnik, Y. Ishai, E. Kushilevitz, J. Buus Nielsen. OT-combiners via secure computation, in Theory of Cryptography Conference (TCC’08), vol. 4948 of LNCS, (Springer, 2008), pp. 393–411
– reference: G. Asharov, Y. Lindell, T. Schneider, M. Zohner. More efficient oblivious transfer extensions with security for malicious adversaries, in Advances in Cryptology—EUROCRYPT’15, vol. 9056 of LNCS, (Springer, 2015) pp. 673–701. Full version: http://eprint.iacr.org/2015/061
– reference: P. MacKenzie, A. Oprea, M.K. Reiter. Automatic generation of two-party computations, in ACM Computer and Communications Security (CCS’03), (ACM, 2003), pp. 210–219
– reference: D. Malkhi, N. Nisan, B. Pinkas, Y. Sella. Fairplay—a secure two-party computation system, in USENIX Security’04, (USENIX, 2004), pp. 287–302
– reference: A. Schröpfer, F. Kerschbaum. Demo: secure computation in JavaScript, in ACM Computer and Communications Security (CCS’11), (ACM, 2011), pp. 849–852
– reference: V. Kolesnikov, T. Schneider. Improved garbled circuit: free XOR gates and applications, in International Colloquium on Automata, Languages and Programming (ICALP’08), vol. 5126 of LNCS, (Springer, 2008), pp. 486–498
– reference: S.G. Choi, K.-W. Hwang, J. Katz, T. Malkin, D. Rubenstein. Secure multi-party computation of Boolean circuits with applications to privacy in on-line marketplaces, in Cryptographers’ Track at the RSA Conference (CT-RSA’12), vol. 7178 of LNCS, (Springer, 2012) pp. 416–432
– reference: T. K. Frederiksen, J. B. Nielsen. Fast and maliciously secure two-party computation using the GPU, in Applied Cryptography and Network Security (ACNS’13), vol. 7954 of LNCS, (Springer, 2013), pp. 339–356
– reference: Y. Ishai, J. Kilian, K. Nissim, E. Petrank. Extending oblivious transfers efficiently, in Advances in Cryptology—CRYPTO’03, vol. 2729 of LNCS, (Springer, 2003), pp. 145–161
– reference: S. S. Burra, E. Larraia, J. B. Nielsen, P. S. Nordholt, C. Orlandi, E. Orsini, P. Scholl, and N. P. Smart. High performance multi-party computation for binary circuits based on oblivious transfer. Cryptology ePrint Archive, Report 2015/472, 2015. Online: http://eprint.iacr.org/2015/472.
– reference: M. Keller, P. Scholl, N.P. Smart. An architecture for practical actively secure MPC with dishonest majority, in ACM Computer and Communications Security (CCS’13), (ACM, 2013), pp. 549–560
– reference: Y. Huang, D. Evans, J. Katz. Private set intersection: Are garbled circuits better than custom protocols? in Network and Distributed System Security (NDSS’12). The Internet Society, 2012
– reference: W. Henecka, T. Schneider. Faster secure two-party computation with less memory, in ACM Symposium on Information, Computer and Communications Security (ASIACCS’13), (ACM, 2013), pp. 437–446
– reference: E. Larraia, E. Orsini, N.P. Smart. Dishonest majority multi-party computation for binary circuits, in Advances in Cryptology—CRYPTO’14, vol. 8617 of LNCS, (Springer, 2014), pp. 495–512
– reference: J. Bringer, H. Chabanne, A. Patey. SHADE: secure hamming distance computation from oblivious transfer, in Financial Cryptography and Data Security (FC’13), vol. 7862 of LNCS, (Springer, 2013), pp. 164–176
– reference: Y. Huang, D. Evans, J. Katz, L. Malka. Faster secure two-party computation using garbled circuits, in USENIX Security’11, (USENIX, 2011), pp. 539–554
– reference: W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, I. Wehrenberg. TASTY: Tool for Automating Secure Two-partY computations, in ACM Computer and Communications Security (CCS’10), (ACM, 2010), pp. 451–462
– reference: D. Beaver. Correlated pseudorandomness and the complexity of private computations, in Symposium on the theory of computing (STOC’96), (ACM, 1996), pp. 479–488
– reference: T. Chou, C. Orlandi. The simplest protocol for oblivious transfer, in Progress in Cryptology—LATINCRYPT’15, vol. 9230 of LNCS, (Springer, 2015), pp. 40–58
– reference: S. Even, O. Goldreich, A. Lempel. A randomized protocol for signing contracts, in Communications of the ACM, vol. 28(6), (ACM, 1985), pp. 637–647
– reference: V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, N. Taft. Privacy-preserving ridge regression on hundreds of millions of records, in IEEE Symposium on Security and Privacy (S&P’13), (IEEE, 2013), pp. 334–348
– reference: A. Holzer, M. Franz, S. Katzenbeisser, H. Veith. Secure two-party computations in ANSI C, in ACM Computer and Communications Security (CCS’12), (ACM, 2012) pp. 772–783
– reference: V. Kolesnikov, R. Kumaresan. Improved OT extension for transferring short secrets, in Advances in Cryptology—CRYPTO’13, vol. 8043 of LNCS, (Springer, 2013) pp. 54–70
– reference: B. Pinkas, T. Schneider, M. Zohner. Faster private set intersection based on ot extension, in USENIX Security’14, (USENIX, 2014), pp. 797–812
– reference: J.B. Nielsen. Extending oblivious transfers efficiently—how to get robustness almost for free. Cryptology ePrint Archive, Report 2007/215, 2007. Online: http://eprint.iacr.org/2007/215
– reference: Y. Huang, L. Malka, D. Evans, J. Katz. Efficient privacy-preserving biometric identification, in Network and Distributed Security Symposium (NDSS’11). The Internet Society, 2011
– reference: D. Beaver. Efficient multiparty protocols using circuit randomization, in Advances in cryptology—-CRYPTO’91, vol. 576 of LNCS, (Springer, 1991), pp. 420–432
– reference: F. Kerschbaum. Automatically optimizing secure computation, in ACM Computer and Communications Security (CCS’11), (ACM, 2011), pp. 703–714
– reference: M.O. Rabin. How to exchange secrets with oblivious transfer, TR-81 edition, 1981. Aiken Computation Lab, Harvard University.
– reference: Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious transfer - efficiently, in Advances in Cryptology—CRYPTO’08, vol. 5157 of LNCS, (Springer, 2008), pp. 572–591
– reference: R. Impagliazzo, S. Rudich. Limits on the provable consequences of one-way permutations, in Advances in Cryptology—CRYPTO’88, vol. 403 of LNCS, (Springer, 1988), pp. 8–26
– reference: C. Dong, L. Chen, Z. Wen. When private set intersection meets big data: an efficient and scalable protocol, in ACM Computer and Communications Security (CCS’13), (ACM, 2013), pp. 789–800
– reference: B. Kreuter, A. Shelat, C. Shen. Billion-gate secure computation with malicious adversaries, in USENIX Security’12, (USENIX, 2012), pp. 285–300
– reference: T.K. Frederiksen, M. Keller, E. Orsini, P. Scholl. A unified approach to MPC with preprocessing using OT, in Advances in Cryptology—ASIACRYPT’15, vol. 9452 of LNCS, (Springer, 2015), pp. 711–735
– reference: J. B. Nielsen, P.S. Nordholt, C. Orlandi, S.S. Burra. A new approach to practical active-secure two-party computation. In Advances in Cryptology – CRYPTO’12, vol. 7417 of LNCS, (Springer, 2012), pp. 681–700
– reference: Y. Aumann, Y. Lindell. Security against covert adversaries: Efficient protocols for realistic adversaries, in Journal of Cryptology, vol. 23(2), (Springer, 2010) pp. 281–343
– reference: Y. Lindell, B. Riva. Blazing fast 2pc in the offline/online setting with security for malicious adversaries, in ACM Computer and Communications Security (CCS’15), (ACM, 2015), pp. 579–590
– reference: M. Naor, B. Pinkas. Efficient oblivious transfer protocols, in Symposium on Discrete Algorithms (SODA’01), (ACM/SIAM, 2001), pp. 448–457
– reference: O. Goldreich. Foundations of Cryptography, vol. 2: Basic Applications. Cambridge University Press, 2004
– reference: K. Frikken, M. Atallah, C. Zhang. Privacy-preserving credit checking, in Electronic Commerce (EC’05), (ACM, 2005), pp. 147–154
– reference: S.D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin, M. Raykova, Y. Vahlis. Secure two-party computation in sublinear (amortized) time, in ACM Computer and Communications Security (CCS’12), (ACM, 2012), pp. 513–524
– reference: I. Damgård, S. Zakarias. Constant-overhead secure computation of Boolean circuits using preprocessing, in Theory of cryptography conference (TCC’13), vol. 7785 of LNCS, (Springer, 2013), pp. 621–641
– reference: Y. Huang, P. Chapman, D. Evans. Privacy-preserving applications on smartphones, in Hot topics in security (HotSec’11). USENIX, 2011
– reference: Y. Lindell, H. Zarosim. On the feasibility of extending oblivious transfer, in Theory of Cryptography Conference (TCC’13), vol. 7785 of LNCS, (Springer, 2013), pp. 519–538
– reference: J.O. Eklundh. A fast computer method for matrix transposing, in IEEE Transactions on Computers, vol. C-21(7), (IEEE, 1972), pp. 801–803
– reference: O. Goldreich, S. Micali, A. Wigderson. How to play any mental game or a completeness theorem for protocols with honest majority, in Symposium on Theory of Computing (STOC’87), (ACM, 1987), pp. 218–229
– reference: Y. Lindell, B. Pinkas. Secure two-party computation via cut-and-choose oblivious transfer, in Theory of Cryptography Conference (TCC’11), vol. 6597 of LNCS, (Springer, 2011), pp. 329–346
– reference: L. Malka. VMCrypt—modular software architecture for scalable secure computation, in ACM Computer and Communications Security (CCS’11), (ACM, 2011), pp. 715–724
– reference: G. Asharov, Y. Lindell, T. Schneider, M. Zohner. More efficient oblivious transfer and extensions for faster secure computation, in ACM Computer and Communications Security (CCS’13), pp. 535–548. ACM, 2013. Code: http://encrypto.de/code/OTExtension
– reference: C. Peikert, V. Vaikuntanathan, B. Waters. A framework for efficient and composable oblivious transfer, in Advances in Cryptology—CRYPTO’08, vol. 5157 of LNCS, (Springer, 2008) pp. 554–571
– reference: NIST. NIST Special Publication 800-57, Recommendation for Key Management Part 1: General (Rev. 3). Technical report, NIST, 2012
– reference: D. Demmler, T. Schneider, M. Zohner. ABY—a framework for efficient mixed-protocol secure two-party computation, in Network and Distributed System Security (NDSS’15). The Internet Society, 2015
– reference: CanettiRSecurity and composition of multiparty cryptographic protocolsJ. Cryptology2000131143202173290010.1007/s0014599100060957.68040
– reference: L. Lovász, M.D. Plummer. Matching Theory. Akadémiai Kiadó, Budapest, 1986. Also published as vol. 121 of the North-Holland Mathematics Studies, North-Holland Publishing, Amsterdam
– reference: M. Keller, E. Orsini, P. Scholl. Actively secure OT extension with optimal overhead, in Advances in Cryptology—CRYPTO’15, vol. 9215 of LNCS, (Springer, 2015), pp. 724–741
– reference: B. Pinkas, T. Schneider, G. Segev, M. Zohner. Phasing: Private set intersection using permutation-based hashing, in USENIX Security’15, (USENIX, 2015), pp. 515–530
– reference: E. Larraia. Extending oblivious transfer efficiently, or - how to get active security with constant cryptographic overhead, in Progress in Cryptology– LATINCRYPT’14, vol. 8895 of LNCS, (Springer, 2014), pp. 368–386
– reference: A.C. Yao. How to generate and exchange secrets, in Foundations of Computer Science (FOCS’86), (IEEE, 1986), pp. 162–167
– ident: 9236_CR13
  doi: 10.1145/2508859.2516701
– ident: 9236_CR47
– ident: 9236_CR63
  doi: 10.1145/2046707.2093509
– ident: 9236_CR18
– ident: 9236_CR43
– ident: 9236_CR34
  doi: 10.1145/2484313.2484369
– ident: 9236_CR31
  doi: 10.1007/978-3-540-78524-8_22
– ident: 9236_CR30
  doi: 10.1145/2382196.2382278
– ident: 9236_CR20
  doi: 10.1109/T-C.1972.223584
– ident: 9236_CR23
  doi: 10.1007/978-3-642-38980-1_21
– ident: 9236_CR45
  doi: 10.1007/978-3-319-16295-9_20
– ident: 9236_CR3
  doi: 10.1007/978-3-662-46800-5_26
– ident: 9236_CR57
– ident: 9236_CR61
  doi: 10.1007/978-3-540-85174-5_31
– ident: 9236_CR17
  doi: 10.1007/978-3-642-03168-7_14
– ident: 9236_CR27
– ident: 9236_CR37
  doi: 10.1007/978-3-540-85174-5_32
– ident: 9236_CR12
  doi: 10.1007/978-3-319-22174-8_3
– ident: 9236_CR44
  doi: 10.1145/2508859.2516744
– ident: 9236_CR48
  doi: 10.1007/978-3-642-19571-6_20
– ident: 9236_CR22
  doi: 10.1007/978-3-662-48797-6_29
– ident: 9236_CR40
  doi: 10.1007/978-3-642-40084-1_4
– ident: 9236_CR19
  doi: 10.1145/3812.3818
– ident: 9236_CR52
– ident: 9236_CR21
  doi: 10.1145/1064009.1064025
– ident: 9236_CR46
  doi: 10.1007/978-3-662-44381-1_28
– ident: 9236_CR39
  doi: 10.1145/2046707.2046786
– ident: 9236_CR59
– ident: 9236_CR4
  doi: 10.1007/978-3-642-41320-9_11
– ident: 9236_CR11
  doi: 10.1007/978-3-642-27954-6_26
– ident: 9236_CR64
  doi: 10.1007/978-3-642-39884-1_23
– ident: 9236_CR28
– ident: 9236_CR62
– volume: 13
  start-page: 143
  issue: 1
  year: 2000
  ident: 9236_CR10
  publication-title: J. Cryptology
  doi: 10.1007/s001459910006
– ident: 9236_CR1
  doi: 10.1007/s00145-009-9040-7
– ident: 9236_CR32
  doi: 10.1145/1866307.1866358
– ident: 9236_CR42
  doi: 10.1007/978-3-540-70583-3_40
– ident: 9236_CR14
  doi: 10.1007/978-3-319-10879-7_23
– ident: 9236_CR5
  doi: 10.1007/3-540-46766-1_34
– ident: 9236_CR15
  doi: 10.14722/ndss.2015.23113
– ident: 9236_CR6
  doi: 10.1145/237814.237996
– ident: 9236_CR49
  doi: 10.1145/2810103.2813666
– ident: 9236_CR55
– ident: 9236_CR16
  doi: 10.1007/978-3-642-36594-2_35
– ident: 9236_CR29
– ident: 9236_CR8
– ident: 9236_CR7
  doi: 10.1109/SP.2013.39
– ident: 9236_CR35
  doi: 10.1007/978-3-540-45146-4_9
– ident: 9236_CR53
  doi: 10.1145/948109.948139
– ident: 9236_CR41
  doi: 10.1007/978-3-662-47989-6_35
– ident: 9236_CR56
  doi: 10.1007/978-3-642-32009-5_40
– ident: 9236_CR26
  doi: 10.1017/CBO9780511721656
– ident: 9236_CR51
  doi: 10.1145/2046707.2046787
– ident: 9236_CR24
  doi: 10.1145/2382196.2382251
– ident: 9236_CR9
  doi: 10.1145/1455770.1455804
– ident: 9236_CR36
  doi: 10.1145/1374376.1374438
– ident: 9236_CR58
  doi: 10.1109/SP.2013.30
– ident: 9236_CR65
  doi: 10.1109/SFCS.1986.25
– ident: 9236_CR50
  doi: 10.1007/978-3-642-36594-2_29
– ident: 9236_CR2
  doi: 10.1145/2508859.2516738
– ident: 9236_CR33
– ident: 9236_CR25
  doi: 10.1145/28395.28420
– ident: 9236_CR54
– ident: 9236_CR60
– ident: 9236_CR38
  doi: 10.1007/0-387-34799-2_2
SSID ssj0017573
Score 2.3643625
Snippet Oblivious transfer (OT) is one of the most fundamental primitives in cryptography and is widely used in protocols for secure two-party and multi-party...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 805
SubjectTerms Circuits
Coding and Information Theory
Combinatorics
Communications Engineering
Complexity
Computation
Computational Mathematics and Numerical Analysis
Computer Science
Cryptography
Low cost
Networks
Probability Theory and Stochastic Processes
Protocol
Robustness
Title More Efficient Oblivious Transfer Extensions
URI https://link.springer.com/article/10.1007/s00145-016-9236-6
https://www.proquest.com/docview/1919664410
Volume 30
WOSCitedRecordID wos000405794700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1432-1378
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017573
  issn: 0933-2790
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60evBitSpWq-TgSQ0km2SzexRp8aBVUEtvYZ9QkFbaWvz5zm6T-EAFPYZ9EHbn8Q3z7QzAiU6ZFGj5Q4SqEQYoRoSMC_wkuRA2UVr68sWD67zfZ8Mhvyvfcc8qtnuVkvSWun7s5tC8I5rREEEJDekqrGWu2IwL0e8Hdeogz5ZpZe6alOW8TmV-t8VnZ_SOML8kRb2v6TX_9ZdbsFlCy-BiKQvbsGLGLWhWbRuCUotbrlFzSerYgfObydQEXV9HAt1PcCufRgtHiw28E7O4rvvqSe4onbvw2Os-XF6FZQOFUCUxnYda0FyyyGAIQRCJCc2UsqklqLMiiVPJYiojltuIaB5zg8ESszRKNM9UKqkhyR40xpOx2YcgI6lOmNFZrGiqKe6lRGqF5CKhzki0IapOslBldXHX5OKpqOsi-5MpHKPMnUxB23BaL3leltb4bXKnup6i1LJZgbEmRmsI6KI2nFXX8WH4p80O_jT7EDaI8-Weo9uBxnz6Yo5gXS3mo9n02AvfGzFz0J0
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CnqxWhWrVffgSV3YRzabHEVaFNsqWEtvSzbJQqG00tbiz3eS7q4PVNDjkgdLMo9vmC8zAGeKsFSg5XcRqnoYoGjhMi7wM4iFyEKpUlu-uN-Ou102GPCH_B33rGC7FylJa6nLx24GzRuiGXURlFCXrsIaMV12TIj-2C9TB3G0TCtz06Qs5mUq87stPjujd4T5JSlqfU2r-q-_3IatHFo6V0tZ2IEVPa5BtWjb4ORaXDONmnNSxy5cdiZT7TRtHQl0P859OhouDC3WsU4sw3XNV0tyR-ncg6dWs3d94-YNFFwZ-nTuKkHjlHkaQ4gAkZhQTMqMZAHqrAh9kjKfph6LMy9Q3OcagyWWUS9UPJIkpToI96Eynoz1AThRQFTItIp8SYmiuJcUJBMpFyE1RqIOXnGSicyri5smF6OkrItsTyYxjDJzMgmtw3m55HlZWuO3yY3iepJcy2YJxpoYrSGg8-pwUVzHh-GfNjv80-xT2LjpddpJ-7Z7dwSbgfHrlq_bgMp8-qKPYV0u5sPZ9MQK4hsCFNOB
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60inixWhWrVXPwpIbmudkcRVsUay0-Sm9hsw8olLa0sfjznc3LByqIx5DdTZid2fmG-XYG4ER4NGZ48psIVS0MUCQzacjw0QkYUy4XcVq-uN8Jul06GIS9vM_pvGC7FynJ7E6DrtI0TppToZrlxTeN7DXpjJgIUIhJlmHFw0BGc7oeHvtlGiHwsxRzqBuWBWGZ1vxuic-O6R1tfkmQpn6nXf33H2_CRg45jYtMR7ZgSY5rUC3aORi5ddd0A-ec7LEN53eTmTRaaX0J_IhxH4-GC02XNVLnpnBe6zUlv6PW7sBzu_V0eW3mjRVM7tokMQUjQUwtiaGFgwiNCcq58pSDtsxc24upTWKLBspyRGiHEoMoqojlitDnXkyk4-5CZTwZyz0wfMcTLpXCtznxBMG1OPMUi0PmEn141MEqpBrxvOq4bn4xisp6yalkIs0005KJSB1OyynTrOTGb4MbxVZFufXNI4xBMYpDoGfV4azYmg-vf1ps_0-jj2Gtd9WOOjfd2wNYd7S7T2m8Dagksxd5CKt8kQzns6NUJ98AXhncZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=More+Efficient+Oblivious+Transfer+Extensions&rft.jtitle=Journal+of+cryptology&rft.au=Asharov%2C+Gilad&rft.au=Lindell%2C+Yehuda&rft.au=Schneider%2C+Thomas&rft.au=Zohner%2C+Michael&rft.date=2017-07-01&rft.pub=Springer+US&rft.issn=0933-2790&rft.eissn=1432-1378&rft.volume=30&rft.issue=3&rft.spage=805&rft.epage=858&rft_id=info:doi/10.1007%2Fs00145-016-9236-6&rft.externalDocID=10_1007_s00145_016_9236_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-2790&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-2790&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-2790&client=summon