A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations

In this research, a Bernoulli wavelet operational matrix of fractional integration is presented. Bernoulli wavelets and their properties are employed for deriving a general procedure for forming this matrix. The application of the proposed operational matrix for solving the fractional delay differen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 74; číslo 1; s. 223 - 245
Hlavní autoři: Rahimkhani, P., Ordokhani, Y., Babolian, E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.01.2017
Springer Nature B.V
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this research, a Bernoulli wavelet operational matrix of fractional integration is presented. Bernoulli wavelets and their properties are employed for deriving a general procedure for forming this matrix. The application of the proposed operational matrix for solving the fractional delay differential equations is explained. Also, upper bound for the error of operational matrix of the fractional integration is given. This operational matrix is utilized to transform the problem to a set of algebraic equations with unknown Bernoulli wavelet coefficients. Several numerical examples are solved to demonstrate the validity and applicability of the presented technique.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-016-0146-3